Clot Composition and Pre-Interventional Radiological Characterization for Better Prognosis and Potential Choice of Treatment in Acute Ischemic Strokes
Abstract
:1. Introduction
1.1. Imaging in Acute Ischemic Stroke
1.2. Current Role of CT Imaging in Acute Ischemic Stroke
1.3. Current Role of MRI in Acute Ischemic Stroke
1.4. Current AIS Management
1.5. Clot Compositions in Acute Ischemic Stroke
2. Methods of Clot Characterization
2.1. Histological Methods
2.2. Clot Characterization Through Scanning Electron Microscopy
2.3. Limitations of Clot Characterization
2.4. Influence of Clot Composition on Thrombolysis Outcomes
2.5. Influence of Clot Composition on Thrombectomy Outcomes
3. Radiological Signs for Clot Characterization
3.1. CT
3.2. MRI
4. Emerging Technologies
Artificial Intelligence
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Capirossi, C.; Laiso, A.; Renieri, L.; Capasso, F.; Limbucci, N. Epidemiology, organization, diagnosis and treatment of acute ischemic stroke. Eur. J. Radiol. Open 2023, 11, 100527. [Google Scholar] [CrossRef]
- Puig, J.; Shankar, J.; Liebeskind, D.; Terceño, M.; Nael, K.; Demchuk, A.M.; Menon, B.; Dowlatshahi, D.; Leiva-Salinas, C.; Wintermark, M.; et al. From “Time is Brain” to “Imaging is Brain”: A Paradigm Shift in the Management of Acute Ischemic Stroke. J. Neuroimaging 2020, 30, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Luthman, A.S.; Bouchez, L.; Botta, D.; Vargas, M.I.; Machi, P.; Lövblad, K.-O. Imaging Clot Characteristics in Stroke and its Possible Implication on Treatment. Clin. Neuroradiol. 2020, 30, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Boeckh-Behrens, T.; Schubert, M.; Förschler, A.; Prothmann, S.; Kreiser, K.; Zimmer, C.; Riegger, J.; Bauer, J.; Neff, F.; Kehl, V.; et al. The Impact of Histological Clot Composition in Embolic Stroke. Clin. Neuroradiol. 2016, 26, 189–197. [Google Scholar] [CrossRef]
- Hashimoto, T.; Hayakawa, M.; Funatsu, N.; Yamagami, H.; Satow, T.; Takahashi, J.C.; Nagatsuka, K.; Ishibashi-Ueda, H.; Kira, J.-I.; Toyoda, K. Histopathologic Analysis of Retrieved Thrombi Associated with Successful Reperfusion After Acute Stroke Thrombectomy. Stroke 2016, 47, 3035–3037. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.G.; Hellkamp, A.S.; Olson, D.; Smith, E.E.; Schwamm, L.H. Predictors of Rapid Brain Imaging in Acute Stroke. Stroke 2012, 43, 1279–1284. [Google Scholar] [CrossRef]
- Bouchez, L.; Sztajzel, R.; Vargas, M.I.; Machi, P.; Kulcsar, Z.; Poletti, P.-A.; Pereira, V.M.; Lövblad, K.-O. CT imaging selection in acute stroke. Eur. J. Radiol. 2017, 96, 153–161. [Google Scholar] [CrossRef]
- Von Kummer, R.; Allen, K.L.; Holle, R.; Bozzao, L.; Bastianello, S.; Manelfe, C.; Bluhmki, E.; Ringleb, P.; Meier, D.H.; Hacke, W. Acute stroke: Usefulness of early CT findings before thrombolytic therapy. Radiology 1997, 205, 327–333. [Google Scholar] [CrossRef]
- Herpich, F.; Rincon, F. Management of Acute Ischemic Stroke. Crit. Care Med. 2020, 48, 1654–1663. [Google Scholar] [CrossRef]
- Ryu, C.-W.; Shin, H.S.; Park, S.; Suh, S.H.; Koh, J.S.; Choi, H.-Y. Alberta Stroke Program Early CT Score in the Prognostication after Endovascular Treatment for Ischemic Stroke: A Meta-analysis. Neurointervention 2017, 12, 20–30. [Google Scholar] [CrossRef]
- Mendelson, S.J.; Prabhakaran, S. Diagnosis and Management of Transient Ischemic Attack and Acute Ischemic Stroke: A Review. JAMA 2021, 325, 1088–1098. [Google Scholar] [CrossRef]
- Weyland, C.S.; Papanagiotou, P.; Schmitt, N.; Joly, O.; Bellot, P.; Mokli, Y.; Ringleb, P.A.; Kastrup, A.; Möhlenbruch, M.A.; Bendszus, M.; et al. Hyperdense Artery Sign in Patients with Acute Ischemic Stroke–Automated Detection with Artificial Intelligence-Driven Software. Front. Neurol. 2022, 13, 807145. [Google Scholar] [CrossRef]
- Chen, Y.; Diana, F.; Mofatteh, M.; Zhou, S.; Chen, J.; Huang, Z.; Wu, W.; Yang, Y.; Zeng, Z.; Zhang, W.; et al. Functional and technical outcomes in acute ischemic stroke patients with hyperdense middle cerebral artery sign treated with endovascular thrombectomy. Front. Neurol. 2023, 14, 1150058. [Google Scholar] [CrossRef] [PubMed]
- Dumitriu LaGrange, D.; Hofmeister, J.; Rosi, A.; Vargas, M.I.; Wanke, I.; Machi, P.; Lövblad, K.-O. Predictive value of clot imaging in acute ischemic stroke: A systematic review of artificial intelligence and conventional studies. Neurosci. Inform. 2023, 3, 100114. [Google Scholar] [CrossRef]
- Santos, E.M.M.; Marquering, H.A.; den Blanken, M.D.; Berkhemer, O.A.; Boers, A.M.M.; Yoo, A.J.; Beenen, L.F.; Treurniet, K.M.; Wismans, C.; van Noort, K.; et al. Thrombus Permeability Is Associated with Improved Functional Outcome and Recanalization in Patients with Ischemic Stroke. Stroke 2016, 47, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Kobeissi, H.; Ghozy, S.; Adusumilli, G.; Bilgin, C.; Tolba, H.; Amoukhteh, M.; Kadirvel, R.; Brinjikji, W.; Heit, J.J.; Rabinstein, A.A.; et al. CT Perfusion vs Noncontrast CT for Late Window Stroke Thrombectomy: A Systematic Review and Meta-analysis. Neurology 2023, 100, e2304–e2311. [Google Scholar] [CrossRef] [PubMed]
- Chalela, J.A.; Kidwell, C.S.; Nentwich, L.M.; Luby, M.; Butman, J.A.; Demchuk, A.M.; Hill, M.D.; Patronas, N.; Latour, L.; Warach, S. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: A prospective comparison. Lancet 2007, 369, 293–298. [Google Scholar] [CrossRef]
- Lin, M.P.; Liebeskind, D.S. Imaging of Ischemic Stroke. Contin. Lifelong Learn. Neurol. 2016, 22, 1399–1423. [Google Scholar] [CrossRef]
- Nael, K.; Yoo, B.; Salamon, N.; Liebeskind, D.S. Acute Ischemic Stroke: MR Imaging–Based Paradigms. Neuroimaging Clin. N. Am. 2021, 31, 177–192. [Google Scholar] [CrossRef]
- Kang, D.-W.; Jeong, H.-G.; Kim, D.Y.; Yang, W.; Lee, S.-H. Prediction of Stroke Subtype and Recanalization Using Susceptibility Vessel Sign on Susceptibility-Weighted Magnetic Resonance Imaging. Stroke 2017, 48, 1554–1559. [Google Scholar] [CrossRef]
- Bourcier, R.; Pautre, R.; Mirza, M.; Castets, C.; Darcourt, J.; Labreuche, J.; Detraz, L.; Desal, H.; Serfaty, J.-M.; Toquet, C. MRI Quantitative T2* Mapping to Predict Dominant Composition of In Vitro Thrombus. AJNR Am. J. Neuroradiol. 2019, 40, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Bourcier, R.; Volpi, S.; Guyomarch, B.; Daumas-Duport, B.; Lintia-Gaultier, A.; Papagiannaki, C.; Serfaty, J.M.; Desal, H. Susceptibility Vessel Sign on MRI Predicts Favorable Clinical Outcome in Patients with Anterior Circulation Acute Stroke Treated with Mechanical Thrombectomy. AJNR Am. J. Neuroradiol. 2015, 36, 2346–2353. [Google Scholar] [CrossRef] [PubMed]
- Belachew, N.F.; Dobrocky, T.; Aleman, E.B.; Meinel, T.R.; Hakim, A.; Vynckier, J.; Arnold, M.; Seiffge, D.J.; Wiest, R.; Mordasini, P.; et al. SWI Susceptibility Vessel Sign in Patients Undergoing Mechanical Thrombectomy for Acute Ischemic Stroke. AJNR Am. J. Neuroradiol. 2021, 42, 1949–1955. [Google Scholar] [CrossRef]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. 2018 Guidelines for the Early Management of Patients with Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2018, 49, e46–e110. [Google Scholar] [CrossRef] [PubMed]
- Yoo, A.J.; Andersson, T. Thrombectomy in Acute Ischemic Stroke: Challenges to Procedural Success. J. Stroke 2017, 19, 121–130. [Google Scholar] [CrossRef]
- Spiotta, A.M.; Chaudry, M.I.; Hui, F.K.; Turner, R.D.; Kellogg, R.T.; Turk, A.S. Evolution of thrombectomy approaches and devices for acute stroke: A technical review. J. Neurointerv. Surg. 2015, 7, 2–7. [Google Scholar] [CrossRef]
- Brinjikji, W.; Duffy, S.; Burrows, A.; Hacke, W.; Liebeskind, D.; Majoie, C.B.L.M.; Dippel, D.W.J.; Siddiqui, A.H.; Khatri, P.; Baxter, B.; et al. Correlation of imaging and histopathology of thrombi in acute ischemic stroke with etiology and outcome: A systematic review. J. Neurointerv. Surg. 2017, 9, 529–534. [Google Scholar] [CrossRef]
- Shin, J.W.; Jeong, H.S.; Kwon, H.-J.; Song, K.S.; Kim, J. High red blood cell composition in clots is associated with successful recanalization during intra-arterial thrombectomy. PLoS ONE 2018, 13, e0197492. [Google Scholar] [CrossRef]
- Marder, V.J.; Chute, D.J.; Starkman, S.; Abolian, A.M.; Kidwell, C.; Liebeskind, D.; Ovbiagele, B.; Vinuela, F.; Duckwiler, G.; Jahan, R.; et al. Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke. Stroke 2006, 37, 2086–2093. [Google Scholar] [CrossRef]
- Schuhmann, M.K.; Gunreben, I.; Kleinschnitz, C.; Kraft, P. Immunohistochemical Analysis of Cerebral Thrombi Retrieved by Mechanical Thrombectomy from Patients with Acute Ischemic Stroke. Int. J. Mol. Sci. 2016, 17, 298. [Google Scholar] [CrossRef]
- Ahn, S.H.; Hong, R.; Choo, I.S.; Heo, J.H.; Nam, H.S.; Kang, H.G.; Kim, H.W.; Kim, J.H. Histologic features of acute thrombi retrieved from stroke patients during mechanical reperfusion therapy. Int. J. Stroke 2016, 11, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Undas, A. Fibrin clot properties and their modulation in thrombotic disorders. Thromb. Haemost. 2014, 112, 32–42. [Google Scholar] [CrossRef]
- Boeckh-Behrens, T.; Kleine, J.F.; Zimmer, C.; Neff, F.; Scheipl, F.; Pelisek, J.; Schirmer, L.; Nguyen, K.; Karatas, D.; Poppert, H. Thrombus Histology Suggests Cardioembolic Cause in Cryptogenic Stroke. Stroke 2016, 47, 1864–1871. [Google Scholar] [CrossRef]
- Fitzgerald, S.T.; Wang, S.; Dai, D.; Douglas, A.; Kadirvel, R.; Gounis, M.J.; Chueh, J.; Puri, A.S.; Layton, K.F.; Thacker, I.C.; et al. Platelet-rich clots as identified by Martius Scarlet Blue staining are isodense on NCCT. J. Neurointerv. Surg. 2019, 11, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.; Fitzgerald, S.; Mereuta, O.M.; Rossi, R.; O’Leary, S.; Pandit, A.; McCarthy, R.; Gilvarry, M.; Holmegaard, L.; Abrahamsson, M.; et al. Platelet-rich emboli are associated with von Willebrand factor levels and have poorer revascularization outcomes. J. Neurointerv. Surg. 2020, 12, 557–562. [Google Scholar] [CrossRef]
- Niesten, J.M.; van der Schaaf, I.C.; van Dam, L.; Vink, A.; Vos, J.A.; Schonewille, W.J.; de Bruin, P.C.; Mali, W.P.T.M.; Velthuis, B.K. Histopathologic composition of cerebral thrombi of acute stroke patients is correlated with stroke subtype and thrombus attenuation. PLoS ONE 2014, 9, e88882. [Google Scholar] [CrossRef]
- Funatsu, N.; Hayakawa, M.; Hashimoto, T.; Yamagami, H.; Satow, T.; Takahashi, J.C.; Koga, M.; Nagatsuka, K.; Ishibashi-Ueda, H.; Iwama, T.; et al. Vascular wall components in thrombi obtained by acute stroke thrombectomy: Clinical significance and related factors. J. Neurointerv. Surg. 2019, 11, 232–236. [Google Scholar] [CrossRef]
- Saghamanesh, S.; Dumitriu LaGrange, D.; Reymond, P.; Wanke, I.; Lövblad, K.-O.; Neels, A.; Zboray, R. Non contrast enhanced volumetric histology of blood clots through high resolution propagation-based X-ray microtomography. Sci. Rep. 2022, 12, 2778. [Google Scholar] [CrossRef]
- Santo, B.A.; Jenkins, T.D.; Ciecierska, S.-S.K.; Baig, A.A.; Levy, E.I.; Siddiqui, A.H.; Tutino, V.M. MicroCT and Histological Analysis of Clot Composition in Acute Ischemic Stroke: A Comparative Study of MT-Retrieved Clots and Clot Analogs. Clin. Neuroradiol. 2024, 34, 431–439. [Google Scholar] [CrossRef]
- LaGrange, D.D.; Wanke, I.; Machi, P.; Bernava, G.; Vargas, M.; Botta, D.; Berberat, J.; Muster, M.; Platon, A.; Poletti, P.-A.; et al. Multimodality Characterization of the Clot in Acute Stroke. Front. Neurol. 2021, 12, 760148. [Google Scholar] [CrossRef]
- Mereuta, O.M.; Fitzgerald, S.; Christensen, T.A.; Jaspersen, A.L.; Dai, D.; Abbasi, M.; Puttappa, T.; Kadirvel, R.; Kallmes, D.F.; Doyle, K.M.; et al. High-resolution scanning electron microscopy for the analysis of three-dimensional ultrastructure of clots in acute ischemic stroke. J. Neurointerv. Surg. 2021, 13, 906–911. [Google Scholar] [CrossRef] [PubMed]
- Dumitriu LaGrange, D.; Bernava, G.; Reymond, P.; Wanke, I.; Vargas, M.I.; Machi, P.; Lövblad, K.-O. A high resolution scanning electron microscopy analysis of intracranial thrombi embedded along the stent retrievers. Sci. Rep. 2022, 12, 8027. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, H.; Zhao, L.; Jian, Y.; Dang, M.; Jiang, Y.; Zhang, Y.; Zhang, L.; Wang, H.; Zhang, R.; et al. A case report of thrombolysis resistance: Thrombus ultrastructure in an ischemic stroke patient. BMC Neurol. 2020, 20, 135. [Google Scholar] [CrossRef]
- Essig, F.; Kollikowski, A.M.; Pham, M.; Solymosi, L.; Stoll, G.; Haeusler, K.G.; Kraft, P.; Schuhmann, M.K. Immunohistological Analysis of Neutrophils and Neutrophil Extracellular Traps in Human Thrombemboli Causing Acute Ischemic Stroke. Int. J. Mol. Sci. 2020, 21, 7387. [Google Scholar] [CrossRef] [PubMed]
- Laridan, E.; Denorme, F.; Desender, L.; François, O.; Andersson, T.; Deckmyn, H.; Vanhoorelbeke, K.; De Meyer, S.F. Neutrophil extracellular traps in ischemic stroke thrombi. Ann. Neurol. 2017, 82, 223–232. [Google Scholar] [CrossRef]
- Ducroux, C.; Di Meglio, L.; Loyau, S.; Delbosc, S.; Boisseau, W.; Deschildre, C.; Ben Maacha, M.; Blanc, R.; Redjem, H.; Ciccio, G.; et al. Thrombus Neutrophil Extracellular Traps Content Impair tPA-Induced Thrombolysis in Acute Ischemic Stroke. Stroke 2018, 49, 754–757. [Google Scholar] [CrossRef]
- Prochazka, V.; Jonszta, T.; Czerny, D.; Krajca, J.; Roubec, M.; Macak, J.; Kovar, P.; Kovarova, P.; Pulcer, M.; Zoubkova, R.; et al. The Role of von Willebrand Factor, ADAMTS13, and Cerebral Artery Thrombus Composition in Patient Outcome Following Mechanical Thrombectomy for Acute Ischemic Stroke. Med. Sci. Monit. 2018, 24, 3929–3945. [Google Scholar] [CrossRef]
- Jolugbo, P.; Ariëns, R.A.S. Thrombus Composition and Efficacy of Thrombolysis and Thrombectomy in Acute Ischemic Stroke. Stroke 2021, 52, 1131–1142. [Google Scholar] [CrossRef]
- Brinjikji, W.; Abbasi, M.; Mereuta, O.M.; Fitzgerald, S.; Larco, J.A.; Dai, D.; Kadirvel, R.; Nogueira, R.G.; Kvamme, P.; Layton, K.F.; et al. Histological composition of retrieved emboli in acute ischemic stroke is independent of pre-thrombectomy alteplase use. J. Stroke Cerebrovasc. Dis. 2022, 31, 106376. [Google Scholar] [CrossRef]
- Di Meglio, L.; Desilles, J.-P.; Ollivier, V.; Nomenjanahary, M.S.; Di Meglio, S.; Deschildre, C.; Loyau, S.; Olivot, J.-M.; Blanc, R.; Piotin, M.; et al. Acute ischemic stroke thrombi have an outer shell that impairs fibrinolysis. Neurology 2019, 93, e1686–e1698. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.; Molina, S.; Mereuta, O.M.; Douglas, A.; Fitzgerald, S.; Tierney, C.; Pandit, A.; Brennan, P.; Power, S.; O’Hare, A.; et al. Does prior administration of rtPA influence acute ischemic stroke clot composition? Findings from the analysis of clots retrieved with mechanical thrombectomy from the RESTORE registry. J. Neurol. 2022, 269, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.J.; Yoo, B.; Liebeskind, D.; Baharvahdat, H.; Gornbein, J.; Jahan, R.; Szeder, V.; Duckwiler, G.; Tateshima, S.; Colby, G.; et al. Frequency, Determinants, and Outcomes of Emboli to Distal and New Territories Related to Mechanical Thrombectomy for Acute Ischemic Stroke. Stroke 2021, 52, 2241–2249. [Google Scholar] [CrossRef]
- Mohammaden, M.H.; Stapleton, C.J.; Brunozzi, D.; Khedr, E.M.; Theiss, P.; Atwal, G.; Alaraj, A. Risk Factors for Distal Clot Migration during Mechanical Thrombectomy of Anterior Circulation Large Vessel Occlusion. Cerebrovasc. Dis. 2020, 49, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Khismatullin, R.R.; Nagaswami, C.; Shakirova, A.Z.; Vrtková, A.; Procházka, V.; Gumulec, J.; Mačák, J.; Litvinov, R.I.; Weisel, J.W. Quantitative Morphology of Cerebral Thrombi Related to Intravital Contraction and Clinical Features of Ischemic Stroke. Stroke 2020, 51, 3640–3650. [Google Scholar] [CrossRef]
- Maekawa, K.; Shibata, M.; Nakajima, H.; Mizutani, A.; Kitano, Y.; Seguchi, M.; Yamasaki, M.; Kobayashi, K.; Sano, T.; Mori, G.; et al. Erythrocyte-Rich Thrombus Is Associated with Reduced Number of Maneuvers and Procedure Time in Patients with Acute Ischemic Stroke Undergoing Mechanical Thrombectomy. Cerebrovasc. Dis. Extra 2018, 8, 39–49. [Google Scholar] [CrossRef]
- Kaesmacher, J.; Boeckh-Behrens, T.; Simon, S.; Maegerlein, C.; Kleine, J.F.; Zimmer, C.; Schirmer, L.; Poppert, H.; Huber, T. Risk of Thrombus Fragmentation during Endovascular Stroke Treatment. AJNR Am. J. Neuroradiol. 2017, 38, 991–998. [Google Scholar] [CrossRef]
- Staessens, S.; Denorme, F.; Francois, O.; Desender, L.; Dewaele, T.; Vanacker, P.; Deckmyn, H.; Vanhoorelbeke, K.; Andersson, T.; De Meyer, S.F. Structural analysis of ischemic stroke thrombi: Histological indications for therapy resistance. Haematologica 2020, 105, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Gersh, K.C.; Nagaswami, C.; Weisel, J.W. Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes. Thromb. Haemost. 2009, 102, 1169–1175. [Google Scholar] [CrossRef]
- Machi, P.; Jourdan, F.; Ambard, D.; Reynaud, C.; Lobotesis, K.; Sanchez, M.; Bonafé, A.; Costalat, V. Experimental evaluation of stent retrievers’ mechanical properties and effectiveness. J. Neurointerv. Surg. 2017, 9, 257–263. [Google Scholar] [CrossRef]
- Gunning, G.M.; McArdle, K.; Mirza, M.; Duffy, S.; Gilvarry, M.; Brouwer, P.A. Clot friction variation with fibrin content; implications for resistance to thrombectomy. J. Neurointerv. Surg. 2018, 10, 34–38. [Google Scholar] [CrossRef]
- Weafer, F.M.; Duffy, S.; Machado, I.; Gunning, G.; Mordasini, P.; Roche, E.; McHugh, P.E.; Gilvarry, M. Characterization of strut indentation during mechanical thrombectomy in acute ischemic stroke clot analogs. J. Neurointerv. Surg. 2019, 11, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Chueh, J.Y.; Wakhloo, A.K.; Hendricks, G.H.; Silva, C.F.; Weaver, J.P.; Gounis, M.J. Mechanical characterization of thromboemboli in acute ischemic stroke and laboratory embolus analogs. AJNR Am. J. Neuroradiol. 2011, 32, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Darcourt, J.; Messina, P.; Bozsak, F.; Cognard, C.; Doyle, K. Characterising acute ischaemic stroke thrombi: Insights from histology, imaging and emerging impedance-based technologies. Stroke Vasc. Neurol. 2022, 7, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Van der Marel, K.; Chueh, J.-Y.; Brooks, O.W.; King, R.M.; Marosfoi, M.G.; Langan, E.T.; Carniato, S.L.; Gounis, M.J.; Nogueira, R.G.; Puri, A.S. Quantitative assessment of device-clot interaction for stent retriever thrombectomy. J. Neurointerv. Surg. 2016, 8, 1278–1282. [Google Scholar] [CrossRef]
- Wenger, K.J.; Berkefeld, J.; Wagner, M. Flat panel detector computed tomography for the interaction between contrast-enhanced thrombi and stent retrievers in stroke therapy: A pilot study. Clin. Neuroradiol. 2014, 24, 251–254. [Google Scholar] [CrossRef]
- Simons, N.; Mitchell, P.; Dowling, R.; Gonzales, M.; Yan, B. Thrombus composition in acute ischemic stroke: A histopathological study of thrombus extracted by endovascular retrieval. J. Neuroradiol. 2015, 42, 86–92. [Google Scholar] [CrossRef]
- Hund, H.; Boodt, N.; Arrarte Terreros, N.; Taha, A.; Marquering, H.A.; van Es, A.C.G.M.; Bokkers, R.P.H.; Lycklama à Nijeholt, G.J.; Majoie, C.B.L.M.; Dippel, D.W.J.; et al. Quantitative thrombus characteristics on thin-slice computed tomography improve prediction of thrombus histopathology: Results of the MR CLEAN Registry. Eur. Radiol. 2022, 32, 7811–7823. [Google Scholar] [CrossRef]
- Benson, J.C.; Fitzgerald, S.T.; Kadirvel, R.; Johnson, C.; Dai, D.; Karen, D.; Kallmes, D.F.; Brinjikji, W. Clot permeability and histopathology: Is a clot’s perviousness on CT imaging correlated with its histologic composition? J. Neurointerv. Surg. 2020, 12, 38–42. [Google Scholar] [CrossRef]
- Berndt, M.; Friedrich, B.; Maegerlein, C.; Moench, S.; Hedderich, D.; Lehm, M.; Zimmer, C.; Straeter, A.; Poppert, H.; Wunderlich, S.; et al. Thrombus Permeability in Admission Computed Tomographic Imaging Indicates Stroke Pathogenesis Based on Thrombus Histology. Stroke 2018, 49, 2674–2682. [Google Scholar] [CrossRef]
- Dutra, B.G.; Tolhuisen, M.L.; Alves, H.C.B.R.; Treurniet, K.M.; Kappelhof, M.; Yoo, A.J.; Jansen, I.G.H.; Dippel, D.W.J.; van Zwam, W.H.; van Oostenbrugge, R.J.; et al. Thrombus Imaging Characteristics and Outcomes in Acute Ischemic Stroke Patients Undergoing Endovascular Treatment. Stroke 2019, 50, 2057–2064. [Google Scholar] [CrossRef]
- Pilato, F.; Valente, I.; Alexandre, A.M.; Calandrelli, R.; Scarcia, L.; D’Argento, F.; Lozupone, E.; Arena, V.; Pedicelli, A. Correlation between Thrombus Perviousness and Distal Embolization during Mechanical Thrombectomy in Acute Stroke. Diagnostics 2023, 13, 431. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.M.M.; Dankbaar, J.W.; Treurniet, K.M.; Horsch, A.D.; Roos, Y.B.; Kappelle, L.J.; Niessen, W.J.; Majoie, C.B.; Velthuis, B.; Marquering, H.A.; et al. Permeable Thrombi Are Associated with Higher Intravenous Recombinant Tissue-Type Plasminogen Activator Treatment Success in Patients with Acute Ischemic Stroke. Stroke 2016, 47, 2058–2065. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Zhu, Y.; Deng, J.; Li, Y.; Li, M.; Lu, H.; Zhao, Y. Visualization of Thrombus Enhancement on Thin-Slab Maximum Intensity Projection of CT Angiography: An Imaging Sign for Predicting Stroke Source and Thrombus Compositions. Radiology 2021, 298, 374–381. [Google Scholar] [CrossRef]
- He, G.; Deng, J.; Lu, H.; Wei, L.; Zhao, Y.; Zhu, Y.; Li, Y. Thrombus enhancement sign on CT angiography is associated with the first pass effect of stent retrievers. J. Neurointerv. Surg. 2023, 15, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Liebeskind, D.S.; Sanossian, N.; Yong, W.H.; Starkman, S.; Tsang, M.P.; Moya, A.L.; Zheng, D.D.; Abolian, A.M.; Kim, D.; Ali, L.K.; et al. CT and MRI early vessel signs reflect clot composition in acute stroke. Stroke 2011, 42, 1237–1243. [Google Scholar] [CrossRef]
- Choi, M.H.; Park, G.H.; Lee, J.S.; Lee, S.E.; Lee, S.-J.; Kim, J.-H.; Hong, J.M. Erythrocyte Fraction within Retrieved Thrombi Contributes to Thrombolytic Response in Acute Ischemic Stroke. Stroke 2018, 49, 652–659. [Google Scholar] [CrossRef]
- Kim, S.K.; Yoon, W.; Kim, T.S.; Kim, H.S.; Heo, T.W.; Park, M.S. Histologic Analysis of Retrieved Clots in Acute Ischemic Stroke: Correlation with Stroke Etiology and Gradient-Echo MRI. AJNR Am. J. Neuroradiol. 2015, 36, 1756–1762. [Google Scholar] [CrossRef]
- Bourcier, R.; Duchmann, Z.; Sgreccia, A.; Desal, H.; Carità, G.; Desilles, J.P.; Lapergue, B.; Consoli, A. Diagnostic Performances of the Susceptibility Vessel Sign on MRI for the Prediction of Macroscopic Thrombi Features in Acute Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2020, 29, 105245. [Google Scholar] [CrossRef]
- Horie, N.; Shobayashi, K.; Morofuji, Y.; Sadakata, E.; Iki, Y.; Matsunaga, Y.; Kanamoto, T.; Tateishi, Y.; Izumo, T.; Anda, T.; et al. Impact of Mechanical Thrombectomy Device on Thrombus Histology in Acute Embolic Stroke. World Neurosurg. 2019, 132, e418–e422. [Google Scholar] [CrossRef]
- Di Meglio, L.; Derraz, I.; Solonomenjanahary, M.; Daly, D.; Chodraui Filho, S.; Ben Maacha, M.; Labreuche, J.; Desal, H.; Consoli, A.; Lapergue, B.; et al. Two-layered susceptibility vessel sign is associated with biochemically quantified thrombus red blood cell content. Eur. J. Neurol. 2020, 27, 1264–1271. [Google Scholar] [CrossRef]
- Fujimoto, M.; Salamon, N.; Mayor, F.; Yuki, I.; Takemoto, K.; Vinters, H.V.; Viñuela, F. Characterization of Arterial Thrombus Composition by Magnetic Resonance Imaging in a Swine Stroke Model. Stroke 2013, 44, 1463–1465. [Google Scholar] [CrossRef]
- Janot, K.; Oliveira, T.R.; Fromont-Hankard, G.; Annan, M.; Filipiak, I.; Barantin, L.; Guibon, R.; Duffy, S.; Gilvarry, M.; Cottier, J.-P.; et al. Quantitative estimation of thrombus-erythrocytes using MRI. A phantom study with clot analogs and analysis by statistic regression models. J. Neurointerv. Surg. 2020, 12, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, S.D.; Liu, J.; Boffa, M.B.; Drangova, M. Simultaneous R2* and quantitative susceptibility mapping measurement enables differentiation of thrombus hematocrit and age: An in vitro study at 3 T. J. Neurointerv. Surg. 2019, 11, 1155–1161. [Google Scholar] [CrossRef]
- Bretzner, M.; Lopes, R.; McCarthy, R.; Corseaux, D.; Auger, F.; Gunning, G.; Beauval, N.; Bongiovanni, A.; Tardivel, M.; Cordonnier, C.; et al. Texture parameters of R2* maps are correlated with iron concentration and red blood cells count in clot analogs: A 7-T micro-MRI study. J. Neuroradiol. 2020, 47, 306–311. [Google Scholar] [CrossRef]
- Uchida, Y.; Kan, H.; Kano, Y.; Onda, K.; Sakurai, K.; Takada, K.; Ueki, Y.; Matsukawa, N.; Hillis, A.E.; Oishi, K. Longitudinal Changes in Iron and Myelination within Ischemic Lesions Associate with Neurological Outcomes: A Pilot Study. Stroke 2024, 55, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Olive-Gadea, M.; Crespo, C.; Granes, C.; Hernandez-Perez, M.; Pérez de la Ossa, N.; Laredo, C.; Urra, X.; Carlos Soler, J.; Soler, A.; Puyalto, P.; et al. Deep Learning Based Software to Identify Large Vessel Occlusion on Noncontrast Computed Tomography. Stroke 2020, 51, 3133–3137. [Google Scholar] [CrossRef] [PubMed]
- Hanning, U.; Sporns, P.B.; Psychogios, M.N.; Jeibmann, A.; Minnerup, J.; Gelderblom, M.; Schulte, K.; Nawabi, J.; Broocks, G.; Meyer, L.; et al. Imaging-based prediction of histological clot composition from admission CT imaging. J. Neurointerv. Surg. 2021, 13, 1053–1057. [Google Scholar] [CrossRef]
- Qiu, W.; Kuang, H.; Nair, J.; Assis, Z.; Najm, M.; McDougall, C.; McDougall, B.; Chung, K.; Wilson, A.T.; Goyal, M.; et al. Radiomics-Based Intracranial Thrombus Features on CT and CTA Predict Recanalization with Intravenous Alteplase in Patients with Acute Ischemic Stroke. AJNR Am. J. Neuroradiol. 2019, 40, 39–44. [Google Scholar] [CrossRef]
- Hofmeister, J.; Bernava, G.; Rosi, A.; Vargas, M.I.; Carrera, E.; Montet, X.; Burgermeister, S.; Poletti, P.-A.; Platon, A.; Lovblad, K.-O.; et al. Clot-Based Radiomics Predict a Mechanical Thrombectomy Strategy for Successful Recanalization in Acute Ischemic Stroke. Stroke 2020, 51, 2488–2494. [Google Scholar] [CrossRef]
Clot Subtype | Cellular Components | Reperfusion | Correlation with Prognosis |
---|---|---|---|
RBC-rich | High erythrocyte (RBC) content, loose fibrin network | Higher rates with both thrombolysis and mechanical thrombectomy | Favorable prognosis: higher recanalization rates, lower NIHSS scores |
Platelet/WBC-rich | High platelet, neutrophil, and neutrophil extracellular traps (NETs) count and dense fibrin matrix | Lower rates, more challenging to retrieve; dense fibrin resists mechanical force | Poorer prognosis: associated with severe outcomes, higher NIHSS, and mRS scores |
Calcified/aged clots | Calcifications, cholesterol crystals, atherosclerotic components | Lower rates due to strong adhesion to vascular walls and stiffness | Poorer prognosis: difficult to treat and increases the risk of vessel damage |
Imaging Marker | Clot Properties Correlated | Imaging Mechanism |
---|---|---|
Hyperdense artery sign (HAS) | High RBC content, soft thrombi | Observed on non-contrast CT; increased density due to RBC concentration |
Thrombus attenuation increase (TAI) | High RBC content, increased permeability | Observed on CTA; residual blood flow through thrombus highlights RBC-rich clots |
Thrombus enhancement (TE) | High fibrin and platelet content, low RBC content | Observed on CTA; contrast buildup within the thrombus highlights dense fibrin and platelets |
Susceptibility vessel sign (SVS) | High RBC content, low fibrin content | Observed on MRI (T2-weighted GRE); hypointense signal reflects paramagnetic properties of deoxygenated hemoglobin |
T1-weighted and T2-weighted MRI | Differentiates RBC-rich clots (T1: high intensity, T2: low intensity) from fibrin-rich clots (homogeneous signal) | MRI sequences sensitive to hemoglobin and fibrin properties, providing contrast based on thrombus composition |
Quantitative susceptibility mapping (QSM) and R2* mapping | Differentiates thrombi by hematocrit, iron, or lipid content; calcified clots | Derived from MRI; identifies magnetic susceptibility differences due to clot composition |
Fluid-attenuated inversion recovery (FLAIR) | Distinguishes recent ischemic damage; not directly correlated with clot composition | MRI technique suppressing fluid signal to highlight ischemic damage and older infarctions |
Diffusion-weighted imaging (DWI) | Detects acute infarction and hypoperfused tissue; indirect association with thrombi | High sensitivity to ischemia; indirectly linked to clot effects |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Swiss Federation of Clinical Neuro-Societies. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurary, S.T.; LaGrange, D.; Botta, D.; Machi, P.; Wanke, I.; Kurz, F.T.; Lovblad, K.-O. Clot Composition and Pre-Interventional Radiological Characterization for Better Prognosis and Potential Choice of Treatment in Acute Ischemic Strokes. Clin. Transl. Neurosci. 2025, 9, 17. https://doi.org/10.3390/ctn9010017
Gurary ST, LaGrange D, Botta D, Machi P, Wanke I, Kurz FT, Lovblad K-O. Clot Composition and Pre-Interventional Radiological Characterization for Better Prognosis and Potential Choice of Treatment in Acute Ischemic Strokes. Clinical and Translational Neuroscience. 2025; 9(1):17. https://doi.org/10.3390/ctn9010017
Chicago/Turabian StyleGurary, Samuel Tell, Daniela LaGrange, Daniele Botta, Paolo Machi, Isabel Wanke, Felix Tobias Kurz, and Karl-Olof Lovblad. 2025. "Clot Composition and Pre-Interventional Radiological Characterization for Better Prognosis and Potential Choice of Treatment in Acute Ischemic Strokes" Clinical and Translational Neuroscience 9, no. 1: 17. https://doi.org/10.3390/ctn9010017
APA StyleGurary, S. T., LaGrange, D., Botta, D., Machi, P., Wanke, I., Kurz, F. T., & Lovblad, K.-O. (2025). Clot Composition and Pre-Interventional Radiological Characterization for Better Prognosis and Potential Choice of Treatment in Acute Ischemic Strokes. Clinical and Translational Neuroscience, 9(1), 17. https://doi.org/10.3390/ctn9010017