Changes in Serum Immunoglobulin G Subclasses during the Treatment of Patients with Chronic Obstructive Pulmonary Disease with Infectious Exacerbations
Abstract
:Highlights
- The levels of IgG1, IgG2, IgG3, and IgG4 are reduced in patients with COPD with acute infectious exacerbations.
- IgG3 levels are related to the severity of COPD.
- IgGs are important in follow-up studies to assess COPD exacerbations.
- This study could be a suggestion for conducting future studies using immunotherapy to treat COPD.
Abstract
1. Introduction
2. Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Safiri, S.; Carson-Chahhoud, K.; Noori, M.; Nejadghaderi, S.A.; Sullman, M.J.M.; Ahmadian Heris, J.; Ansarin, K.; Mansournia, M.A.; Collins, G.S.; Kolahi, A.-A.; et al. Burden of Chronic Obstructive Pulmonary Disease and Its Attributable Risk Factors in 204 Countries and Territories, 1990–2019: Results from the Global Burden of Disease Study 2019. BMJ 2022, 378, e069679. [Google Scholar] [CrossRef] [PubMed]
- Adeloye, D.; Chua, S.; Lee, C.; Basquill, C.; Papana, A.; Theodoratou, E.; Nair, H.; Gasevic, D.; Sridhar, D.; Campbell, H.; et al. Global Health Epidemiology Reference Group (GHERG). Global and Regional Estimates of COPD Prevalence: Systematic Review and Meta-Analysis. J. Glob. Health 2015, 5, 020415. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.D.; Shibuya, K.; Rao, C.; Mathers, C.D.; Hansell, A.L.; Held, L.S.; Schmid, V.; Buist, S. Chronic Obstructive Pulmonary Disease: Current Burden and Future Projections. Eur. Respir. J. 2006, 27, 397–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regional COPD Working Group. COPD Prevalence in 12 Asia-Pacific Countries and Regions: Projections Based on the COPD Prevalence Estimation Model. Respirology 2003, 8, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Viniol, C.; Vogelmeier, C.F. Exacerbations of COPD. Eur. Respir. Rev. 2018, 27, 170103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurst, J.R.; Skolnik, N.; Hansen, G.J.; Anzueto, A.; Donaldson, G.C.; Dransfield, M.T.; Varghese, P. Understanding the Impact of Chronic Obstructive Pulmonary Disease Exacerbations on Patient Health and Quality of Life. Eur. J. Intern. Med. 2020, 73, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Pachon, E.; Baeza-Martinez, C.; Ruiz-Alcaraz, S.; Grau-Delgado, J. Prediction of Three-Month Readmission Based on Haematological Parameters in Patients with Severe COPD Exacerbation. Adv. Respir. Med. 2021, 89, 501–504. [Google Scholar] [CrossRef] [PubMed]
- Sykes, A.; Mallia, P.; Johnston, S.L. Diagnosis of Pathogens in Exacerbations of Chronic Obstructive Pulmonary Disease. Proc. Am. Thorac. Soc. 2007, 4, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Murphy, T.F. Infection in the Pathogenesis and Course of Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2008, 359, 2355–2365. [Google Scholar] [CrossRef] [PubMed]
- Bathoorn, E. Airways Inflammation and Treatment during Acute Exacerbations of COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2008, 3, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Said, A.; Esmail, M.; Naiem, E.; Zaki, Z.; Raouf, R. Clinical Outcomes of Chronic Obstructive Pulmonary Disease Phenotypes. One Center Prospective Study. Adv. Respir. Med. 2021, 89, 369–377. [Google Scholar] [CrossRef]
- Bhat, T.A.; Panzica, L.; Kalathil, S.G.; Thanavala, Y. Immune Dysfunction in Patients with Chronic Obstructive Pulmonary Disease. Ann. Am. Thorac. Soc. 2015, 12 (Suppl. S2), S169–S175. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.-C.; Jalalvand, F.; Thegerström, J.; Riesbeck, K. The Interplay Between Immune Response and Bacterial Infection in COPD: Focus Upon Non-Typeable Haemophilus Influenzae. Front. Immunol. 2018, 9, 2530. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Park, S.; Hwang, Y.I.; Jang, S.H.; Jung, K.S.; Sim, Y.S.; Kim, C.H.; Kim, C.; Kim, D.G. Immunoglobulin G Subclass Deficiencies in Adult Patients with Chronic Airway Diseases. J. Korean Med. Sci. 2016, 31, 1560–1565. [Google Scholar] [CrossRef]
- McCullagh, B.N.; Comellas, A.P.; Ballas, Z.K.; Newell, J.D.; Zimmerman, M.B.; Azar, A.E. Antibody Deficiency in Patients with Frequent Exacerbations of Chronic Obstructive Pulmonary Disease (COPD). PLoS ONE 2017, 12, e0172437. [Google Scholar] [CrossRef] [Green Version]
- Leitao Filho, F.S.; Won Ra, S.; Mattman, A.; Schellenberg, R.S.; Fishbane, N.; Criner, G.J.; Woodruff, P.G.; Lazarus, S.C.; Albert, R.; Connett, J.E.; et al. Serum IgG and risk of exacerbations and hospitalizations in chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2017, 140, 1164–1167. [Google Scholar] [CrossRef] [Green Version]
- Cowan, J.; Mulpuru, S.; Aaron, S.; Alvarez, G.; Giulivi, A.; Corrales-Medina, V.; Thiruganasambandamoorthy, V.; Thavorn, K.; Mallick, R.; Cameron, D.W. Study Protocol: A Randomized, Double-Blind, Parallel, Two-Arm, Placebo Control Trial Investigating the Feasibility and Safety of Immunoglobulin Treatment in COPD Patients for Prevention of Frequent Recurrent Exacerbations. Pilot Feasibility Stud. 2018, 4, 135. [Google Scholar] [CrossRef] [Green Version]
- Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 2017, 195, 557–582. [Google Scholar] [CrossRef] [Green Version]
- Huyen, N.T.T.; Hanh, C.T. Rate of readmission for acute exacerbation chronic obstructive pulmonary disease and associated risk factors. J. Med. Res. 2021, 137, 158–168. [Google Scholar] [CrossRef]
- Kim, V.; Aaron, S.D. What Is a COPD Exacerbation? Current Definitions, Pitfalls, Challenges and Opportunities for Improvement. Eur. Respir. J. 2018, 52, 1801261. [Google Scholar] [CrossRef]
- Li, Y.; Xie, L.; Xin, S.; Li, K. Values of Procalcitonin and C-Reactive Proteins in the Diagnosis and Treatment of Chronic Obstructive Pulmonary Disease Having Concomitant Bacterial Infection. Pak. J. Med. Sci. 2017, 33, 566–569. [Google Scholar] [CrossRef]
- Keene, J.D.; Jacobson, S.; Kechris, K.; Kinney, G.L.; Foreman, M.G.; Doerschuk, C.M.; Make, B.J.; Curtis, J.L.; Rennard, S.I.; Barr, R.G.; et al. Biomarkers Predictive of Exacerbations in the SPIROMICS and COPDGene Cohorts. Am. J. Respir. Crit. Care Med. 2017, 195, 473–481. [Google Scholar] [CrossRef]
- Vassiliou, A.; Vitsas, V.; Kardara, M.; Keskinidou, C.; Michalopoulou, P.; Rovina, N.; Dimopoulou, I.; Orfanos, S.E.; Tsoukalas, G.; Koutsoukou, A.; et al. Study of Inflammatory Biomarkers in COPD and Asthma Exacerbations. Adv. Respir. Med. 2020, 88, 558–566. [Google Scholar] [CrossRef]
- Holm, A.M.; Andreassen, S.L.; Christensen, V.L.; Kongerud, J.; Almås, Ø.; Auråen, H.; Henriksen, A.H.; Aaberge, I.S.; Klingenberg, O.; Rustøen, T. Hypogammaglobulinemia and Risk of Exacerbation and Mortality in Patients with COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2020, 15, 799–807. [Google Scholar] [CrossRef] [Green Version]
- Unninayar, D.; Abdallah, S.J.; Cameron, D.W.; Cowan, J. Polyvalent Immunoglobulin as a Potential Treatment Option for Patients with Recurrent COPD Exacerbations. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 545–552. [Google Scholar] [CrossRef]
- Vidarsson, G.; Dekkers, G.; Rispens, T. IgG Subclasses and Allotypes: From Structure to Effector Functions. Front. Immunol. 2014, 5, 520. [Google Scholar] [CrossRef] [Green Version]
- REYNOLDS, H.Y. Immunoglobulin G and Its Function in the Human Respiratory Tract. Mayo Clin. Proc. 1988, 63, 161–174. [Google Scholar] [CrossRef]
- Leitao Filho, F.S.; Ra, S.W.; Mattman, A.; Schellenberg, R.S.; Criner, G.J.; Woodruff, P.G.; Lazarus, S.C.; Albert, R.; Connett, J.E.; Han, M.K.; et al. Canadian Respiratory Research Network (CRRN). Serum IgG Subclass Levels and Risk of Exacerbations and Hospitalizations in Patients with COPD. Respir. Res. 2018, 19, 30. [Google Scholar] [CrossRef] [Green Version]
- Popa, V. Airway Obstruction in Adults with Recurrent Respiratory Infections and IgG Deficiency. Chest 1994, 105, 1066–1072. [Google Scholar] [CrossRef]
- O’Keeffe, S.; Gzel, A.; Drury, R.; Cullina, M.; Greally, J.; Finnegan, P. Immunoglobulin G Subclasses and Spirometry in Patients with Chronic Obstructive Pulmonary Disease. Eur. Respir. J. 1991, 4, 932–936. [Google Scholar] [CrossRef]
- Lee, H.; Kovacs, C.; Mattman, A.; Hollander, Z.; Chen, V.; Ng, R.; Leung, J.M.; Sin, D.D. The Impact of IgG Subclass Deficiency on the Risk of Mortality in Hospitalized Patients with COPD. Respir. Res. 2022, 23, 141. [Google Scholar] [CrossRef]
- Moldoveanu, B.; Otmishi, P.; Jani, P.; Walker, J.; Sarmiento, X.; Guardiola, J.; Saad, M.; Yu, J. Inflammatory Mechanisms in the Lung. J. Inflamm. Res. 2009, 2, 1–11. [Google Scholar]
- Miravitlles, M.; Anzueto, A. Role of Infection in Exacerbations of Chronic Obstructive Pulmonary Disease. Curr. Opin. Pulm. Med. 2015, 21, 278–283. [Google Scholar] [CrossRef]
- Schroeder, H.W.; Cavacini, L. Structure and Function of Immunoglobulins. J. Allergy Clin. Immunol. 2010, 125, S41–S52. [Google Scholar] [CrossRef] [Green Version]
- Picard, C.; Al-Herz, W.; Bousfiha, A.; Picard, C.; Al-Herz, W.; Bousfiha, A.; Casanova, J.L.; Chatila, T.; Conley, M.E.; Gaspar, H.B. Primary Immunodeficiency Diseases: An Update on the Classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency. J. Clin. Immunol. 2015, 35, 696–726. [Google Scholar] [CrossRef] [Green Version]
- Damelang, T.; Rogerson, S.J.; Kent, S.J.; Chung, A.W. Role of IgG3 in Infectious Diseases. Trends Immunol. 2019, 40, 197–211. [Google Scholar] [CrossRef]
- Motley, M.P.; Diago-Navarro, E.; Banerjee, K.; Inzerillo, S.; Fries, B.C. The Role of IgG Subclass in Antibody-Mediated Protection against Carbapenem-Resistant Klebsiella Pneumoniae. MBio 2020, 11, e02059-20. [Google Scholar] [CrossRef]
- Giuntini, S.; Granoff, D.M.; Beernink, P.T.; Ihle, O.; Bratlie, D.; Michaelsen, T.E. Human IgG1, IgG3, and IgG3 Hinge-Truncated Mutants Show Different Protection Capabilities against Meningococci Depending on the Target Antigen and Epitope Specificity. Clin. Vaccine Immunol. 2016, 23, 698–706. [Google Scholar] [CrossRef]
Indices | Patients (n = 97) | Control Group (n = 30) | p |
---|---|---|---|
Age: ± SD, (min–max), years | 72.3 ± 8.1 (52–87) | 64.2 ± 7.4 (51–76) | >0.05 |
Gender: n (%):
| 94 (96.9%) 3 (3.1%) | 28 (93.3%) 2 (6.7%) | >0.05 >0.05 |
FEV1: ± SD, %pred FVC: ± SD, %pred FEV1/FVC: ± SD, % | 44.5 ± 21.4 76.2 ± 26.8 44.9 ± 11.1 | 94.2 ± 7.8 95.8 ± 5.7 77.9 ± 6.5 | <0.01 <0.01 <0.01 |
Obstructive severity (GOLD 2017) n (%):
| 6 (6.2%) 30 (30.9%) 33 (34%) 28 (28.9%) | NA | NA |
Smoking status:
| 86 (88.6%) 18.4 ± 9.2 (10.5–30.0) | Non-smoker | NA |
Duration of the COPD disease: ± SD, (min–max), years | 6.8 ± 4.7 (1–20) | NA | NA |
Severity of exacerbation (GOLD 2017): n (%)
| 46 (47.4%) 9 (9.3%) 42 (43.3%) | NA | NA |
Complete blood count:
| 12.8 ± 6.9 4.5 ± 0.66 249.1 ± 96.3 | 7.3 ± 2.4 4.2 ± 0.4 223.5 ± 36.2 | <0.01 >0.05 >0.05 |
Arterial blood gas test:
| 94 ± 47.7 50.5 ± 19.1 93.3 ± 8.1 7.36 ± 0.09 | 98.7 ± 1.2 37.8 ± 2.5 97.4 ± 2.3 7.42 ± 0.03 | <0.05 <0.01 <0.05 >0.05 |
Complications: n (%)
| 51 (52.6%) 24 (24.7%) | NA | NA |
Result of sputum bacterial culture: n (%)
| 27 (27.8%) 10 (10.3%) 4 (4.1%) 4 (4.1%) 6 (6.2) 3 (3.1) 70 (72.2%) | NA | NA |
Serum inflammatory markers: Median (Q1–Q3)
| 22.6 (3.5–62.24) (0.05–0.66) | 3.4 (2.1–5.7) NA | <0.01 NA |
Outcome of treatment:
| 67 (69.1%) 30 (30.9%) | NA |
Ig (mg/dL) | CRP (mg/dL) | PCT (ng/mL) | ||
---|---|---|---|---|
r | p | r | p | |
IgG | 0.13 | 0.20 | −0.08 | 0.46 |
IgG1 | 0.018 | 0.865 | −0.05 | 0.60 |
IgG2 | 0.193 | 0.059 | 0.119 | 0.244 |
IgG3 | −0.127 | 0.214 | −0.254 | 0.012 |
IgG4 | 0.198 | 0.051 | −0.119 | 0.242 |
Concentration (mg/dL) | T1 (1) (n = 97) | T2 (2) (n = 67) | Control (3) (n = 30) | p |
---|---|---|---|---|
IgG Median (Q1–Q3) | 1119.3 (350.5–6242.2) | 1150.6 (269.6–4519.8) | 2032.2 (1062.5–5325.8) | p1;2 > 0.05 p 1;3 < 0.001 p 2;3 < 0.001 |
IgG1 Median (Q1–Q3) | 367.8 (474.1–679.8) | 351.6 (507.3–680.3) | 889.8 (1293.6–1749.8) | p 1;2 = 0.239 p 1;3 < 0.001 p 2;3 < 0.001 |
IgG2 Median (Q1–Q3) | 313.4 (490.4–715.4) | 296.7 (469.5–743.0) | 401.9 (474.0–547.0) | p 1;2 = 0.931 p 1;3 = 0.304 p 2;3 = 0.725 |
IgG3 Median (Q1–Q3) | 25.5 (28.0–155.3) | 23.5 (55.9–174.6) | 112.0 (131.6–154.9) | p 1;2 = 0.012 p 1;3 = 0.002 p 2;3 = 0.03 |
IgG4 Median (Q1–Q3) | 31.2 (52.9–96.1) | 22.1 (46.3–103.8) | 68.5 (92.0–115.0) | p 1;2 = 0.934 p 1;3 = 0.01 p 2;3 = 0.004 |
Classification | IgG1 (mg/dL) Median (Q1–Q3) | IgG2 (mg/dL) Median (Q1–Q3) | IgG3 (mg/dL) Median (Q1–Q3) | IgG4 (mg/dL) Median (Q1–Q3) | |
---|---|---|---|---|---|
Fever | No (n = 71) | 362.0 (471.7–671.5) | 271.9 (462.7–690.1) | 25.6 (29.8–161.2) | 30.7 (52.3–95.9) |
Yes (n = 26) | 368.4 (489.5–803.0) | 456.6 (588.1–838.9) | 24.7 (26.4–139.2) | 31.6 (60.5–118.8) | |
p * | 0.742 | 0.046 | 0.255 | 0.415 | |
Duration of the COPD | <5 years (n = 39) | 381.6 (476.8–671.5) | 338.5 (526.8–690.1) | 25.6 (36.1–155.3) | 35.2 (58.3–102.1) |
≥5 years (n = 58) | 355.9 (474.1- 745.0) | 271.9 (467.8–788.8) | 25.1 (27.4–158.9) | 24.2 (51.4–95.9) | |
p * | 0.707 | 0.649 | 0.535 | 0.681 | |
Number of COPD exacerbations | <2 times per year (n = 6) | 391.1 (417.5–469.7) | 146.5 (426.2–472.3) | 25.1 (38.9–88.5) | 25.0 (38.4–70.0) |
≥2 times per year (n = 91) | 362.0 (483.2–690.9) | 313.4 (540.6–717.8) | 25.5 (28.0–158.9) | 31.2 (57.6–96.9) | |
p * | 0.686 | 0.072 | 0.515 | 0.222 | |
Severity of exacerbation | Non-life-threatening (n = 55) | 379.2 (471.7–703.4) | 282.2 (456.0–634.0) | 25.6 (29.5–161.2) | 28.5 (47.1–77.8) |
Life-threatening (n = 42) | 360.5 (493.9–671.5) | 370.9 (597.9–788.8) | 24.6 (26.8–155.3) | 33.7 (69.0–135.6) | |
p * | 0.99 | 0.508 | 0.023 | 0.347 | |
Respiratory failure | Yes (n = 51) | 350.6 (466.0–653.8) | 282.2 (456.3–573.0) | 25.1 (27.6–152.9) | 29.1 (48.0–75.9) |
No (n = 46) | 386.4 (595.9–1014.2) | 327.3 (488.3–706.7) | 25.6 (101.7–160.5) | 32.9 (64.4–108.6) | |
p * | 0.010 | 0.273 | 0.351 | 0.111 | |
White blood cells | Normal (n = 44) | 382.3 (472.9–743.6) | 313.5 (475.7–625.7) | 25.7 (36.1–188.7) | 29.0 (52.6–93.7) |
Increase (n = 53) | 350.0 (482.9–668.1) | 313.4 (549.8–768.5) | 25.1 (27.5–139.2) | 33.7 (57.6–96.9) | |
p * | 0.417 | 0.535 | 0.223 | 0.589 | |
Sputum bacterial culture | Negative (n = 70) | 379.2 (478.7–703.4) | 313.4 (490.1–717.6) | 25.6 (30.7–158.9) | 33.7 (58.6–96.9) |
Positive (n = 27) | 269.3 (469.7–662.1) | 282.2 (524.5–700.9) | 24.3 (25.9–139.2) | 17.2 (44.3–96.1) | |
p * | 0.759 | 0.169 | 0.483 | 0.068 | |
Obstructive severity | GOLD 1 (n = 6) | 418.2 (470.2–745.0) | 190.2 (484.5–573.0) | 25.1 (27.8–152.9) | 35.2 (59.5–77.8) |
GOLD 2 (n = 30) | 339.9 (442.8–690.9) | 313.4 (544.1–715.4) | 25.5 (40.6–158.9) | 27.4 (64.1–115.1) | |
GOLD 3 (n = 33) | 367.8 (474.1–653.8) | 282.2 (449.3–605.7) | 24.3 (25.6–154.8) | 31.0 (42.2–67.0) | |
GOLD 4 (n = 28) | 382.9 (528.2–687.4) | 400.3 (575.8–778.6) | 26.6 (29.2 – 167.0) | 36.7 (73.6–96.4) | |
p ** | 0.734 | 0.228 | 0.588 | 0.359 | |
Treatment outcome | Good (n = 67) | 379.2 (482.9–690.9) | 290.4 (485.4–645.7) | 25.6 (53.5–178.7) | 29.1 (51.4–91.3) |
Death (n = 30) | 360.5 (434.7–669.0) | 328.1 (573.1–788.8) | 24.6 (26.2–31.7) | 33.7 (64.1–106.7) | |
p * | 0.389 | 0.751 | 0.613 | 0.287 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ba Ta, T.; Tran Viet, T.; Xuan Nguyen, K.; Hai Nguyen, C.; Ngoc Vu, H.; Dinh Le, T.; Tien Nguyen, S.; Khac Dong, H.; Kim Thi Pham, N.; Ngoc Dao, B. Changes in Serum Immunoglobulin G Subclasses during the Treatment of Patients with Chronic Obstructive Pulmonary Disease with Infectious Exacerbations. Adv. Respir. Med. 2022, 90, 500-510. https://doi.org/10.3390/arm90060056
Ba Ta T, Tran Viet T, Xuan Nguyen K, Hai Nguyen C, Ngoc Vu H, Dinh Le T, Tien Nguyen S, Khac Dong H, Kim Thi Pham N, Ngoc Dao B. Changes in Serum Immunoglobulin G Subclasses during the Treatment of Patients with Chronic Obstructive Pulmonary Disease with Infectious Exacerbations. Advances in Respiratory Medicine. 2022; 90(6):500-510. https://doi.org/10.3390/arm90060056
Chicago/Turabian StyleBa Ta, Thang, Tien Tran Viet, Kien Xuan Nguyen, Cong Hai Nguyen, Hoan Ngoc Vu, Tuan Dinh Le, Son Tien Nguyen, Hung Khac Dong, Nhung Kim Thi Pham, and Bang Ngoc Dao. 2022. "Changes in Serum Immunoglobulin G Subclasses during the Treatment of Patients with Chronic Obstructive Pulmonary Disease with Infectious Exacerbations" Advances in Respiratory Medicine 90, no. 6: 500-510. https://doi.org/10.3390/arm90060056
APA StyleBa Ta, T., Tran Viet, T., Xuan Nguyen, K., Hai Nguyen, C., Ngoc Vu, H., Dinh Le, T., Tien Nguyen, S., Khac Dong, H., Kim Thi Pham, N., & Ngoc Dao, B. (2022). Changes in Serum Immunoglobulin G Subclasses during the Treatment of Patients with Chronic Obstructive Pulmonary Disease with Infectious Exacerbations. Advances in Respiratory Medicine, 90(6), 500-510. https://doi.org/10.3390/arm90060056