Pathogenic Role and Antibiotic Resistance of Methicillin-Resistant Staphylococcus aureus (MRSA) Strains Causing Severe Community-Acquired Pneumonia in Vietnamese Children
Abstract
:Highlights
- Methicillin-resistant Staphylococcus aureus (MRSA) plays a greatly important role as the second leading cause of severe community-acquired pneumonia (CAP) in Vietnamese children;
- All isolates of MRSA are resistant to many antibiotics and sensitive to vancomycin and linezolid.
- MRSA agents should be considered for empiric antibiotic therapy for severe CAP in children because of the role of MRSA in the disease;
- It is necessary to have a rational antibiotic use strategy to prevent vancomycin resistance in the future.
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design
2.3. Statistical Analyses
2.4. Ethics Approval
3. Results
3.1. Isolation Rate and Demographic, Clinical, and Subclinical Characteristics
3.2. Antibiotic Resistance and Minimum Inhibitory Concentration
4. Discussion
4.1. Isolation Rate and Demographic, Clinical, and Subclinical Characteristics
4.2. Antibiotic Resistance and Minimum Inhibitory Concentration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Droz, N.; Hsia, Y.; Ellis, S.; Dramowski, A.; Sharland, M.; Basmaci, R. Bacterial pathogens and resistance causing community acquired paediatric bloodstream infections in low- and middle-income countries: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control. 2019, 8, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ensinck, G.; Lazarte, G.; Ernst, A.; Romagnoli, A.; López Papucci, S.; Aletti, A.; Chiossone, A.; Pigozzi, F.; Sguassero, Y. Community-acquired methicillin-resistant Staphylococcus aureus pneumonia in a children’s hospital. Our ten-year experience. Arch. Argent. Pediatr. 2021, 119, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Lawal, O.U.; Ayobami, O.; Abouelfetouh, A.; Mourabit, N.; Kaba, M.; Egyir, B.; Abdulgader, S.M.; Shittu, A.O. A 6-Year Update on the Diversity of Methicillin-Resistant Staphylococcus aureus Clones in Africa: A Systematic Review. Front. Microbiol. 2022, 13, 860436. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.G. Where We Are with Community-Associated Staphylococcus aureus Prevention—And in the Meantime, What Do We Tell Our Patients? Clin. Infect. Dis. 2011, 54, 752–754. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Wunderink, R.G. Staphylococcus aureus Pneumonia in the Community. Semin. Respir. Crit. Care Med. 2020, 41, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. In CLSI Supplement M100, 31st ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
- Watkins, R.R.; Holubar, M.; David, M.Z. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus to newer antimicrobial agents. Antimicrob. Agents Chemother. 2019, 63, e01216-19. [Google Scholar] [CrossRef]
- Lade, H.; Joo, H.S.; Kim, J.S. Molecular Basis of Non-β-Lactam Antibiotics Resistance in Staphylococcus aureus. Antibiotics 2022, 11, 1378. [Google Scholar] [CrossRef]
- Wu, X.; Yu, H.; He, L.Y.; Wang, C.Q.; Xu, H.M.; Zhao, R.Q.; Jing, C.M.; Chen, Y.H.; Chen, J.; Deng, J.K.; et al. A multicentric study on clinical characteristics and antibiotic sensitivity in children with methicillin-resistant Staphylococcus aureus infection. Chin. J. Pediatr. 2020, 58, 628–634. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Tran, H.T.; Truong, H.T.; Nguyen, V.T.; Graham, S.M.; Marais, B.J. Paediatric use of antibiotics in children with community acquired pneumonia: A survey from Da Nang, Vietnam. J. Paediatr. Child Health 2019, 55, 1329–1334. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.T.; Tran, H.T.; Fitzgerald, D.A.; Graham, S.M.; Marais, B.J. Antibiotic use in children hospitalised with pneumonia in Central Vietnam. Arch. Dis. Child. 2020, 105, 713–719. [Google Scholar] [CrossRef]
- WHO. Pocket Book of Hospital Care for Children—Guidelines for the Management of Common Childhood Illnesses, 2nd ed.; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Harris, M.; Clark, J.; Coote, N.; Fletcher, P.; Harnden, A.; McKean, M.; Thomson, A.; British Thoracic Society Standards of Care, C. British Thoracic Society guidelines for the management of community acquired pneumonia in children: Update 2011. Thorax 2011, 66 (Suppl. 2), ii1–ii23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murdoch, D.R.; Morpeth, S.C.; Hammitt, L.L.; Driscoll, A.J.; Watson, N.L.; Baggett, H.C.; Brooks, W.A.; Deloria Knoll, M.; Feikin, D.R.; Kotloff, K.L.; et al. Microscopic Analysis and Quality Assessment of Induced Sputum From Children With Pneumonia in the PERCH Study. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2017, 64, S271–S279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran Quang, K.; Tran Do, H.; Pham Hung, V.; Nguyen Vu, T.; Tran Xuan, B.; Larsson, M.; Duong-Quy, S.; Nguyen-Thi-Dieu, T. Study on the co-infection of children with severe community-acquired pneumonia. Pediatr. Int. Off. J. Jpn. Pediatr. Soc. 2022, 64, e14853. [Google Scholar] [CrossRef] [PubMed]
- Marcelo, C.S.; Paulo, J.C.M.; Renato, T.S. Pneumonia in children. In Kendig’s Disorders of the Respiratory Tract in Children, 9th ed.; Wilmott, R.W., Ed.; Elsevier: Philadelphia, PA, USA, 2018; pp. 1597–1644. [Google Scholar]
- Wahl, B.; O’Brien, K.L.; Greenbaum, A.; Majumder, A.; Liu, L.; Chu, Y.; Lukšić, I.; Nair, H.; McAllister, D.A.; Campbell, H.; et al. Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: Global, regional, and national estimates for 2000-15. Lancet Glob. Health 2018, 6, e744–e757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marangu, D.; Zar, H.J. Childhood pneumonia in low-and-middle-income countries: An update. Paediatr. Respir. Rev. 2019, 32, 3–9. [Google Scholar] [CrossRef]
- Doudoulakakis, A.G.; Bouras, D.; Drougka, E.; Kazantzi, M.; Michos, A.; Charisiadou, A.; Spiliopoulou, I.; Lebessi, E.; Tsolia, M. Community-associated Staphylococcus aureus pneumonia among Greek children: Epidemiology, molecular characteristics, treatment, and outcome. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2016, 35, 1177–1185. [Google Scholar] [CrossRef]
- Chi, H.; Huang, Y.C.; Liu, C.C.; Chang, K.Y.; Huang, Y.C.; Lin, H.C.; Chang, L.Y.; Ho, Y.H.; Tsao, K.C.; Mu, J.J.; et al. Characteristics and etiology of hospitalized pediatric community-acquired pneumonia in Taiwan. J. Formos. Med. Assoc. 2020, 119, 1490–1499. [Google Scholar] [CrossRef]
- Hanson, L.A.; Korotkova, M.; Lundin, S.; Haversen, L.; Silfverdal, S.-A.; Mattsby-Baltzer, I.; Strandvik, B.; Telemo, E. The Transfer of Immunity from Mother to Child. Ann. N. Y. Acad. Sci. 2003, 987, 199–206. [Google Scholar] [CrossRef]
- Orimadegun, A.E.; Myer, L. Sex-specific prevalence and trends in acute respiratory infection episodes among children less than 5 years in Nigeria. Niger. J. Clin. Pract. 2019, 22, 1590–1599. [Google Scholar] [CrossRef]
- Jain, S.; Williams, D.J.; Arnold, S.R.; Ampofo, K.; Bramley, A.M.; Reed, C.; Stockmann, C.; Anderson, E.J.; Grijalva, C.G.; Self, W.H.; et al. Community-acquired pneumonia requiring hospitalization among U.S. children. N. Engl. J. Med. 2015, 372, 835–845. [Google Scholar] [CrossRef] [Green Version]
- Jonnalagadda, S.; Rodríguez, O.; Estrella, B.; Sabin, L.L.; Sempértegui, F.; Hamer, D.H. Etiology of severe pneumonia in Ecuadorian children. PloS ONE 2017, 12, e0171687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, W.; Shi, T.; Chen, K.; Xue, J.; Wang, Y.; Yu, J.; Zhao, G.; Tian, J.; Zhang, T. Risk Factors for Severe Community-aquired Pneumonia Among Children Hospitalized with CAP Younger Than 5 Years of Age. Pediatr. Infect. Dis. J. 2019, 38, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Frush, J.M.; Zhu, Y.; Edwards, K.M.; Grijalva, C.G.; Thomsen, I.P.; Self, W.H.; Jain, S.; Anderson, E.J.; Ampofo, K.; Pavia, A.T.; et al. Prevalence of Staphylococcus aureus and Use of Antistaphylococcal Therapy in Children Hospitalized with Pneumonia. J. Hosp. Med. 2018, 13, 848–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, S.N.; Bachur, R.G.; Simel, D.L.; Neuman, M.I. Does This Child Have Pneumonia?: The Rational Clinical Examination Systematic Review. JAMA 2017, 318, 462–471. [Google Scholar] [CrossRef]
- Hirsch, A.W.; Monuteaux, M.C.; Neuman, M.I.; Bachur, R.G. Estimating Risk of Pneumonia in a Prospective Emergency Department Cohort. J. Pediatr. 2019, 204, 172–176.e1. [Google Scholar] [CrossRef]
- Rees, C.A.; Basnet, S.; Gentile, A.; Gessner, B.D.; Kartasasmita, C.B.; Lucero, M.; Martinez, L.; O’Grady, K.F.; Ruvinsky, R.O.; Turner, C.; et al. An analysis of clinical predictive values for radiographic pneumonia in children. BMJ Glob. Health 2020, 5, e2708. [Google Scholar] [CrossRef]
- Bradley, J.S.; Byington, C.L.; Shah, S.S.; Alverson, B.; Carter, E.R.; Harrison, C.; Kaplan, S.L.; Mace, S.E.; McCracken, G.H., Jr.; Moore, M.R.; et al. The Management of Community-Acquired Pneumonia in Infants and Children Older Than 3 Months of Age: Clinical Practice Guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin. Infect. Dis. 2011, 53, e25–e76. [Google Scholar] [CrossRef] [Green Version]
- Blanc, J.; Locatelli, I.; Rarau, P.; Mueller, I.; Genton, B.; Boillat-Blanco, N.; Gehri, M.; Senn, N. Retrospective study on the usefulness of pulse oximetry for the identification of young children with severe illnesses and severe pneumonia in a rural outpatient clinic of Papua New Guinea. PLoS ONE 2019, 14, e0213937. [Google Scholar] [CrossRef]
- Esposito, S.; Bianchini, S.; Gambino, M.; Madini, B.; Di Pietro, G.; Umbrello, G.; Presicce, M.L.; Ruggiero, L.; Terranova, L.; Principi, N. Measurement of lipocalin-2 and syndecan-4 levels to differentiate bacterial from viral infection in children with community-acquired pneumonia. BMC Pulm. Med. 2016, 16, 103. [Google Scholar] [CrossRef] [Green Version]
- Thu, T.A.; Rahman, M.; Coffin, S.; Harun-Or-Rashid, M.; Sakamoto, J.; Hung, N.V. Antibiotic use in Vietnamese hospitals: A multicenter point-prevalence study. Am. J. Infect. Control. 2012, 40, 840–844. [Google Scholar] [CrossRef]
- Nga, D.T.T.; Chuc, N.T.; Hoa, N.P.; Hoa, N.Q.; Nguyen, N.T.; Loan, H.T.; Toan, T.K.; Phuc, H.D.; Horby, P.; Van Yen, N.; et al. Antibiotic sales in rural and urban pharmacies in northern Vietnam: An observational study. BMC Pharmacol. Toxicol. 2014, 15, 6. [Google Scholar] [CrossRef] [Green Version]
- Perlroth, J.; Kuo, M.; Tan, J.; Bayer, A.S.; Miller, L.G. Adjunctive use of rifampin for the treatment of Staphylococcus aureus infections: A systematic review of the literature. Arch. Intern. Med. 2008, 168, 805–819. [Google Scholar] [CrossRef] [PubMed]
- Kateete, D.P.; Bwanga, F.; Seni, J.; Mayanja, R.; Kigozi, E.; Mujuni, B.; Ashaba, F.K.; Baluku, H.; Najjuka, C.F.; Källander, K.; et al. CA-MRSA and HA-MRSA coexist in community and hospital settings in Uganda. Antimicrob. Resist. Infect. Control. 2019, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Adedeji, A.; Weller, T.M.; Gray, J.W. MRSA in children presenting to hospitals in Birmingham, UK. J. Hosp. Infect. 2007, 65, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Kejela, T.; Dekosa, F. High prevalence of MRSA and VRSA among inpatients of Mettu Karl Referral Hospital, Southwest Ethiopia. Trop. Med. Int. Health TM IH 2022, 27, 735–741. [Google Scholar] [CrossRef]
- Ghahremani, M.; Jazani, N.H.; Sharifi, Y. Emergence of vancomycin-intermediate and -resistant Staphylococcus aureus among methicillin-resistant S. aureus isolated from clinical specimens in the northwest of Iran. J. Glob. Antimicrob. Resist. 2018, 14, 4–9. [Google Scholar] [CrossRef]
- May, E.R.; Kinyon, J.M.; Noxon, J.O. Nasal carriage of Staphylococcus schleiferi from healthy dogs and dogs with otitis, pyoderma or both. Vet. Microbiol. 2012, 160, 443–448. [Google Scholar] [CrossRef]
- Vrbovská, V.; Sedláček, I.; Zeman, M.; Švec, P.; Kovařovic, V.; Šedo, O.; Laichmanová, M.; Doškař, J.; Pantůček, R. Characterization of Staphylococcus intermedius Group Isolates Associated with Animals from Antarctica and Emended Description of Staphylococcus delphini. Microorganisms 2020, 8, 204. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Severe CAP Caused by MRSA (n = 32) n, (%) | Severe CAP Caused by MSSA (n = 9) n, (%) | Severe CAP Caused by Other Agents (n = 193) n, (%) | p1 Value | p2 Value | |
---|---|---|---|---|---|---|
Age | Median, IQR (months) | 14 (7–27) | 10 (9–30) | 17 (10–30) | 0.603 | 0.306 |
<2 years | 24 (75.0) | 5 (55.6) | 116 (60.1) | 0.433 | 0.436 | |
2–5 years | 7 (21.9) | 3 (33.3) | 66 (34.2) | |||
>5 years | 1 (3.1) | 1 (11.1) | 11 (5.7) | |||
Sex | Male | 25 (78.1) | 5 (55.6) | 119 (61.7) | 0.177 | 0.164 |
Symptoms and signs | Fever | 32 (100) | 9 (100) | 193 (100) | NA | NA |
Cough | 32 (100) | 9 (100) | 193 (100) | NA | NA | |
Vomiting | 5 (15.6) | 1(11.1) | 24 (12.4) | 0.735 | 0.702 | |
Diarrhea | 4 (12.5) | 2 (22.2) | 32 (16.6) | 0.439 | 0.819 | |
Tachypnea | 30 (93.8) | 7 (77.8) | 172 (89.1) | 0.154 | 0.832 | |
Chest indrawing | 18 (56.3) | 3 (33.3) | 118 (61.1) | 0.224 | 0.240 | |
Accessory muscle used | 11 (34.4) | 0 | 64 (33.2) | 0.04 | 0.430 | |
Crackles | 28 (87.5) | 7 (77.8) | 173 (89.6) | 0.466 | 0.429 | |
Wheezing | 16 (50.0) | 2 (22.2) | 114 (59.1) | 0.138 | 0.075 | |
SpO2 ≤ 94% | 19 (79.2) a | 4 (66.7) b | 106 (67.9) c | 0.517 | 0.343 | |
WBC count | Mean ± SD (×103/mm3) | 13.56 ± 6.44 | 9.87 ± 5.14 | 14.33 ± 5.87 | 0.223 | 0.123 |
>15,000/mm3 | 9 (28.1) | 2 (22.2) | 84 (43.5) | 0.724 | 0.048 | |
CRP | Median, IQR (mg/L) | 12.5 (3.2–21.8) | 12.3 (11.1–21.0) | 12.5 (3.8–35.7) | 0.897 | 0.567 |
>10 mg/L | 18 (58.1) a | 7 (77.8) b | 102 (55.1) c | 0.282 | 0.394 |
Antibiotics | MSSA (n = 9) | MRSA (n = 32) | p | ||||
---|---|---|---|---|---|---|---|
S n (%) | I n (%) | R n (%) | S n (%) | I n (%) | R n (%) | ||
Penicillin | 1 (11.1) | 0 | 8 (88.9) | 0 | 0 | 32 (100) | 0.056 |
Clindamycin | 5 (55.6) | 1 (11.1) | 3 (33.3) | 4 (12.5) | 1 (3.1) | 27 (84.4) | 0.009 |
Erythromycin | 6 (66.7) | 0 | 3 (33.3) | 4 (12.5) | 3 (9.4) | 25 (78.1) | 0.003 |
Gentamicin | 4 (44.4) | 0 | 5 (55.6) | 14 (43.8) | 0 | 18 (56.3) | 0.970 |
Ciprofloxacin | 8 (88.9) | 1 (11.1) | 0 | 21 (65.6) | 0 | 11 (34.4) | 0.028 |
Levofloxacin | 9 (100) | 0 | 0 | 21 (65.6) | 0 | 11 (34.4) | 0.040 |
Chloramphenicol | 8 (88.9) | 0 | 1 (11.1) | 28 (87.5) | 0 | 4 (12.5) | 0.910 |
Vancomycin | 9 (100) | 0 | 0 | 32 (100) | 0 | 0 | NA |
Linezolid | 9 (100) | 0 | 0 | 32 (100) | 0 | 0 | NA |
Rifampin | 9 (100) | 0 | 0 | 32 (100) | 0 | 0 | NA |
Antibiotics | Number of Isolates at MIC Values (mg/L) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.12 | 0.18 | 0.25 | 0.38 | 0.5 | 0.75 | 1 | 2 | 4 | 5 | 8 | 16 | 32 | |
Penicillin | 2 | 39 | |||||||||||
Clindamycin | 9 | 2 | 20 | 8 | 2 | ||||||||
Erythromycin | 10 | 3 | 28 | ||||||||||
Gentamicin | 18 | 23 | |||||||||||
Ciprofloxacin | 2 | 27 | 1 | 4 | 7 | ||||||||
Levofloxacin | 30 | 11 | |||||||||||
Chloramphenicol | 36 | 5 | |||||||||||
Vancomycin | 2 | 15 | 11 | 9 | 4 | ||||||||
Linezolid | 41 | ||||||||||||
Rifampin | 41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, K.Q.; Nguyen, T.T.D.; Pham, V.H.; Pham, Q.M.; Tran, H.D. Pathogenic Role and Antibiotic Resistance of Methicillin-Resistant Staphylococcus aureus (MRSA) Strains Causing Severe Community-Acquired Pneumonia in Vietnamese Children. Adv. Respir. Med. 2023, 91, 135-145. https://doi.org/10.3390/arm91020012
Tran KQ, Nguyen TTD, Pham VH, Pham QM, Tran HD. Pathogenic Role and Antibiotic Resistance of Methicillin-Resistant Staphylococcus aureus (MRSA) Strains Causing Severe Community-Acquired Pneumonia in Vietnamese Children. Advances in Respiratory Medicine. 2023; 91(2):135-145. https://doi.org/10.3390/arm91020012
Chicago/Turabian StyleTran, Khai Quang, Thuy Thi Dieu Nguyen, Van Hung Pham, Quan Minh Pham, and Hung Do Tran. 2023. "Pathogenic Role and Antibiotic Resistance of Methicillin-Resistant Staphylococcus aureus (MRSA) Strains Causing Severe Community-Acquired Pneumonia in Vietnamese Children" Advances in Respiratory Medicine 91, no. 2: 135-145. https://doi.org/10.3390/arm91020012
APA StyleTran, K. Q., Nguyen, T. T. D., Pham, V. H., Pham, Q. M., & Tran, H. D. (2023). Pathogenic Role and Antibiotic Resistance of Methicillin-Resistant Staphylococcus aureus (MRSA) Strains Causing Severe Community-Acquired Pneumonia in Vietnamese Children. Advances in Respiratory Medicine, 91(2), 135-145. https://doi.org/10.3390/arm91020012