Volatile Organic Compound Identification-Based Tuberculosis Screening among TB Suspects: A Diagnostic Accuracy Study
Abstract
:Highlights
- The test kit showed significantly high sensitivity and specificity as reliability indicators for a potential non-invasive, rapid, cost-effective technique that uses the volatile biomarkers in exhaled breath for the identification of tuberculosis.
- Volatile organic compounds are evidently strong contenders for being potential tuberculosis biomarkers.
- The diagnostic accuracy of the Tuberculosis Breath Analyzer was found to be high for TB detection.
- The performance of the tested Tuberculosis Breath Analyzer was found to be comparable in efficiency to that of the TrueNat assay.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Size
2.3. Study Tools
- A study instrument for eliciting socio-demographic attributes of the clients, namely, age, gender, marital status, occupation, religion, ethnicity, socio-economic status etc.
- TSI3000I Breath Analyzer for Index Testing and the TrueNat/CBNAAT Essay
2.4. Inclusion Criteria
2.5. Exclusion Criteria
2.6. Implementation Plan
2.7. Point-Of-Care (POC) Breath Test
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2022; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Thakur, G.; Thakur, S.; Thakur, H. Status and challenges for tuberculosis control in India—Stakeholders’ perspective. Indian J. Tuberc. 2020, 68, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Central TB Division, Directorate General of Health Services Ministry of Health with Family Welfare, RNTCP, National Strategic Plan for Tuberculosis Elimination 2017–2025. Available online: https://tbcindia.gov.in/WriteReadData/NSP%20Draft%2020.02.2017%201 (accessed on 7 June 2023).
- World Health Organization. Global Tuberculosis Report 2021: Supplementary Material. [Internet]. World Health Organization: Geneva, Switzerland, 2021. Available online: https://www.who.int/teams/global-tuberculosis-programme/TB-reports/global-tuberculosis-report-2021 (accessed on 25 March 2022).
- Ministry of Health & Family Welfare—Government of India. Revised National Tuberculosis Control Programme National Strategic Plan for Tuberculosis Elimination 2017–2025. India TB Report; 2021. Available online: https://tbcindia.gov.in/WriteReadData/National%20Strategic%20Plan%202017-25.pdf (accessed on 13 June 2023).
- Ismail, I.M.; Madhukeshwar, A.K.; Naik, P.R.; Nayarmoole, B.M.; Satyanarayana, S. Magnitude and reasons for gaps in tuberculosis diagnostic testing and treatment initiation: An operational research study from Dakshina Kannada, South India. J. Epidemiol. Glob. Health 2020, 10, 326. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Cataneo, R.N.; Condos, R.; Erickson, G.A.R.; Greenberg, J.; La Bombardi, V.; Munawar, M.I.; Tietje, O. Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis 2007, 87, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Bean, H.D.; Wargo, M.J.; Leclair, L.W.; Hill, J.E. Detecting bacterial lung infections: In vivo evaluation of in vitro volatile fingerprints. J. Breath Res. 2013, 7, 016003. [Google Scholar] [CrossRef] [PubMed]
- Buszewski, B.; Kęsy, M.; Ligor, T.; Amann, A. Human exhaled air analytics: Biomarkers of diseases. Biomed. Chromatogr. 2007, 21, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Cataneo, R.N.; Cummin, A.R.; Gagliardi, A.J.; Gleeson, K.; Greenberg, J.; Maxfield, R.A.; Rom, W.N. Detection of lung cancer with volatile markers in the breath. Chest 2003, 123, 2115–2123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlou, A.; Turner, A. Sniffing out the truth: Clinical diagnosis using the electronic nose. Clin. Chem. Lab. Med. 2000, 38, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Basa-Dalay, V.; Blais, J.; Bothamley, G.; Chaturvedi, A.; Modi, K.D.; Pandya, M.; Natividad, M.P.; Patel, U.; Ramraje, N.N.; et al. Point-of-care breath test for biomarkers of active pulmonary tuberculosis. Tuberculosis 2012, 92, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Scheme, N.T. Ministry of Health and Family Welfare, Government of India. Available online: https://reports.nikshay.in/ (accessed on 11 March 2022).
- TeknoScan Systems Inc. Teknoscan. Available online: https://teknoscan.com/ (accessed on 5 February 2023).
- Bossuyt, P.M.; Irwig, L.; Craig, J.; Glasziou, P. Comparative accuracy: Assessing new tests against existing diagnostic pathways. BMJ 2006, 332, 1089–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engbaek, K.; Heuck, C.; Moody, A.H. Manual of Basic Techniques for a Health Laboratory. World Health Organization. 20 September 2003. Available online: https://apps.who.int/iris/bitstream/handle/10665/42295/9241545305.pdf?sequence=1 (accessed on 11 March 2022).
- Ministry of Health & Family Welfare-Government of India. Revised National TB Control Programme, Technical and Operational Guidelines for Tuberculosis Control in India. 2016. Available online: https://tbcindia.gov.in/index1.php?sublinkid=4573&level=2&lid=3177&lang=1 (accessed on 11 March 2022).
- Bajtarevic, A.; Ager, C.; Pienz, M.; Klieber, M.; Schwarz, K.; Ligor, M.; Ligor, T.; Filipiak, W.; Denz, H.; Fiegl, M.; et al. Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 2009, 9, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacPherson, P.; Steingart, K.; Garner, P.; Medley, N. WHO Consolidated Guidelines on Tuberculosis Module 2: Screening–Systematic Screening for Tuberculosis Disease; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Ruszkiewicz, D.M.; Sanders, D.; O’Brien, R.; Hempel, F.; Reed, M.J.; Riepe, A.C.; Bailie, K.; Brodrick, E.; Darnley, K.; Ellerkmann, R.; et al. Diagnosis of COVID-19 by analysis of breath with gas chromatography-ion mobility spectrometry—A feasibility study. Eclinicalmedicine 2020, 29, 100609. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. High Priority Target Product Profiles for New Tuberculosis Diagnostics: Report of a Consensus Meeting, 28–29 April 2014, Geneva, Switzerland; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Nathavitharana, R.R.; Yoon, C.; MacPherson, P.; Dowdy, D.W.; Cattamanchi, A.; Somoskovi, A.; Broger, T.; Ottenhoff, T.H.M.; Arinaminpathy, N.; Lonnroth, K.; et al. Guidance for studies evaluating the accuracy of tuberculosis triage tests. J. Infect. Dis. 2019, 220, S116–S125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Foundation for Innovative, New Diagnostics, DX Pipeline Status. Available online: https://www.finddx.org/dx-pipeline-status/ (accessed on 11 March 2022).
- Beccaria, M.; A Bobak, C.; Maitshotlo, B.; Mellors, T.R.; Purcaro, G.; Franchina, F.A.; A Rees, C.; Nasir, M.; Black, A.D.; E Hill, J. Exhaled human breath analysis in active pulmonary tuberculosis diagnostics by comprehensive gas chromatography-mass spectrometry and chemometric techniques. J. Breath Res. 2018, 13, 016005. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Basa-Dalay, V.; Bothamley, G.; Cataneo, R.N.; Lam, P.K.; Natividad, M.P.R.; Schmitt, P.; Wai, J. Breath biomarkers of active pulmonary tuberculosis. Tuberculosis 2010, 90, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Zetola, N.M.; Modongo, C.; Matsiri, O.; Tamuhla, T.; Mbongwe, B.; Matlhagela, K.; Sepako, E.; Catini, A.; Sirugo, G.; Martinelli, E.; et al. Diagnosis of pulmonary tuberculosis and assessment of treatment response through analyses of volatile compound patterns in exhaled breath samples. J. Infect. 2016, 74, 367–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saktiawati, A.M.; Putera, D.D.; Setyawan, A.; Mahendradhata, Y.; van der Werf, T.S. Diagnosis of tuberculosis through breath test: A systematic review. Ebiomedicine 2019, 46, 202–214. [Google Scholar] [CrossRef] [Green Version]
All (n = 334) | ||||
---|---|---|---|---|
Age (mean ± SD), in years | 35.8 (±15.2) | |||
Time to obtain result | 20 (±) seconds | |||
Sex (%) | ||||
Male | 187 (55.99%) | |||
Female | 147 (44.01%) | |||
Positive | Negative | |||
Eligible participants | 139 (41.6%) | 195 (58.4%) | ||
Lesion absent | Lesion present | X-ray not done | ||
Chest X-ray status | 186 (55.68%) | 103 (30.83%) | 45 (13.47%) | |
Positive | Negative | Not known | ||
HIV status | 21 (6.28%) | 212 (63.47%) | 101 (30.23%) | |
Diabetic | Not diabetic | Not known | ||
Diabetic status | 21 (6.28%) | 209 (62.57%) | 104 (31.13%) | |
Current smoker | Past smoker | Never smoked | ||
Smoker status | 34 (10.17%) | 52 (15.56%) | 248 (74.25%) |
Classification According to Breath Test | ||||
---|---|---|---|---|
Positive | Negative | Total | ||
Disease Status | Tuberculosis | TP (133) | FN (6) | 139 |
Healthy Control | FP (17) | TN (178) | 195 | |
Total | 150 | 184 | 334 |
Total TP = 133 FP = 17 FN = 6 TN = 178 | n | Sensitivity (95% CI) | Specificity (95% CI) | PPV | NPV | ROC Area |
---|---|---|---|---|---|---|
334 | 95.7% (90.8–98.4) | 91.3% (86.4–94.8) | 88.7% | 96.7% | 0.935 | |
Age group (15–29) TP = 68 FP = 8 FN = 2 TN = 70 | 148 | 97.1% (90.1–99.7) | 89.7% (80.8–95.5) | 89.5% | 97.2% | 0.934 |
Age group (30–44) TP = 33 FP = 6 FN = 4 TN = 52 | 95 | 89.2% (74.6–97) | 89.7% (78.8–96.1) | 84.6% | 92.9% | 0.894 |
Age group (45–59) TP = 17 FP = 2 FN = 0 TN = 39 | 58 | 100% (80.5–100) | 95.1% (83.5–99.4) | 89.5% | 100% | 0.976 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badola, M.; Agrawal, A.; Roy, D.; Sinha, R.; Goyal, A.; Jeet, N. Volatile Organic Compound Identification-Based Tuberculosis Screening among TB Suspects: A Diagnostic Accuracy Study. Adv. Respir. Med. 2023, 91, 301-309. https://doi.org/10.3390/arm91040024
Badola M, Agrawal A, Roy D, Sinha R, Goyal A, Jeet N. Volatile Organic Compound Identification-Based Tuberculosis Screening among TB Suspects: A Diagnostic Accuracy Study. Advances in Respiratory Medicine. 2023; 91(4):301-309. https://doi.org/10.3390/arm91040024
Chicago/Turabian StyleBadola, Mayank, Anurag Agrawal, Debabrata Roy, Richa Sinha, Avisham Goyal, and Narayan Jeet. 2023. "Volatile Organic Compound Identification-Based Tuberculosis Screening among TB Suspects: A Diagnostic Accuracy Study" Advances in Respiratory Medicine 91, no. 4: 301-309. https://doi.org/10.3390/arm91040024
APA StyleBadola, M., Agrawal, A., Roy, D., Sinha, R., Goyal, A., & Jeet, N. (2023). Volatile Organic Compound Identification-Based Tuberculosis Screening among TB Suspects: A Diagnostic Accuracy Study. Advances in Respiratory Medicine, 91(4), 301-309. https://doi.org/10.3390/arm91040024