The Growing Understanding of the Pituitary Implication in the Pathogenesis of Long COVID-19 Syndrome: A Narrative Review
Abstract
:Highlights
- COVID-19 may lead to sequelae extending beyond the acute phase of infection, characterized by fatigue and cognitive impairments, forming a novel pathological entity known as Post COVID-19 Syndrome.
- These sequelae resemble antehypophyseal deficiencies, particularly corticotrop and somatotrop deficiencies, suggesting involvement of the hypothalamo-hypophyseal axis in COVID-19-related long-term symptoms.
- This review underscores the importance of investigating the endocrine system, particularly the pituitary gland, in comprehending and addressing the long-term consequences of COVID-19
- Recognition of similarities between COVID-19 sequelae and antehypophyseal deficiencies suggests potential implications for targeted diagnostic and therapeutic interventions aimed at addressing hypothalamo-hypophyseal axis abnormalities in affected individuals.
Abstract
1. Introduction
2. COVID-19 and Hypothalamic–Pituitary Diseases
2.1. Pituitary Apoplexy
2.2. Hypophysitis
2.3. Syndrome of Inappropriate Antidiuretic Hormone Secretion and Arginine Vasopressin Deficiency
2.4. Central Diabetes Insipidus
2.5. Hypothalamic Lesions
3. Hypopituitarism and Post COVID-19 Syndrome
3.1. Mechanisms of Entry and Spread Pathway of SARS-CoV-2 in Pituitary Gland
- -
- Retrograde neuronal pathway via the nasopharyngeal epithelium and the olfactory nerve.
- -
- Hematogenous pathway, either by crossing the blood–brain barrier or directly through the median eminence at the base of the hypothalamus [63].
3.2. Pathophysiology of Hypopituitarism
4. Corticotropin Deficiency
4.1. Limitations in the Exploration of Corticotrope Insufficiencies
4.2. Pathophysiological Mechanisms of Corticotrope Deficiency in the Post COVID-19 Syndrome
4.2.1. Corticotrope Impairment Secondary to Corticosteroid Therapy
4.2.2. Corticotrope Impairment Secondary to Acth Antibodies
5. Somatotropin Deficiency
5.1. Pathophysiological Mechanisms of Somatotrope Deficiency in the Post COVID-19 Syndrome
5.1.1. SARS-CoV-2 Secondary Hypophysitis
5.1.2. Giustina Effect
6. Thyrotropic Deficiency
7. Gonadotrope Deficiency
Pathophysiological Mechanisms of Gonadotropic Deficiency in Post COVID-19 Syndrome
8. Lactotrope Deficiency and Hyperprolactinemia
Pathophysiological Mechanisms of Hyperprolactinemia in the Post COVID-19 Syndrome
9. Vaccination against SARS-CoV-2 and Hypopituitarism
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Fernandes, Q.; Inchakalody, V.P.; Merhi, M.; Mestiri, S.; Taib, N.; Moustafa Abo El-Ella, D.; Bedhiafi, T.; Raza, A.; Al-Zaidan, L.; Mohsen, O.M.; et al. Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines. Ann. Med. 2022, 54, 524–540. [Google Scholar] [CrossRef]
- WHO. WHO COVID-19 Dashboard 2023. Available online: https://covid19.who.int/ (accessed on 18 August 2023).
- Senapati, S.; Banerjee, P.; Bhagavatula, S.; Kushwaha, P.P.; Kumar, S. Contributions of human ACE2 and TMPRSS2 in determining host-pathogen interaction of COVID-19. J. Genet. 2021, 100, 12. [Google Scholar] [CrossRef]
- Capatina, C.; Poiana, C.; Fleseriu, M. Pituitary and SARS CoV-2: An unremitting conundrum. Best Pract. Res. Clin. Endocrinol. Metab. 2023, 37, 101752. [Google Scholar] [CrossRef]
- Li, M.Y.; Li, L.; Zhang, Y.; Wang, X.S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty 2020, 9, 45. [Google Scholar] [CrossRef]
- Puig-Domingo, M.; Marazuela, M.; Yildiz, B.O.; Giustina, A. COVID-19 and endocrine and metabolic diseases. An updated statement from the European Society of Endocrinology. Endocrine 2021, 72, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Li, J.; Zhang, Z.; Guo, S.; Wang, Q.; An, X.; Chang, H. COVID-19: Systemic pathology and its implications for therapy. Int. J. Biol. Sci. 2022, 18, 386–408. [Google Scholar] [CrossRef] [PubMed]
- Frara, S.; Allora, A.; Castellino, L.; di Filippo, L.; Loli, P.; Giustina, A. COVID-19 and the pituitary. Pituitary 2021, 24, 465–481. [Google Scholar] [CrossRef] [PubMed]
- Mastromauro, C.; Blasetti, A.; Primavera, M.; Ceglie, L.; Mohn, A.; Chiarelli, F.; Giannini, C. Peculiar characteristics of new-onset Type 1 Diabetes during COVID-19 pandemic. Ital. J. Pediatr. 2022, 48, 26. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Yen-Ting Chen, T.; Wang, S.I.; Hung, Y.M.; Chen, H.Y.; Wei, C.J. Risk of autoimmune diseases in patients with COVID-19: A retrospective cohort study. EClinicalMedicine 2023, 56, 101783. [Google Scholar] [CrossRef] [PubMed]
- Gorchane, A.; Ach, T.; Sahli, J.; Abdelkrim, A.B.; Mallouli, M.; Bellazreg, F.; Hachfi, W.; Chaieb, C.M.; Ach, K. Uncovering the alarming rise of diabetic ketoacidosis during COVID-19 pandemic: A pioneer African study and review of literature. Front. Endocrinol. 2023, 14, 1234256. [Google Scholar] [CrossRef]
- Lania, A.; Sandri, M.T.; Cellini, M.; Mirani, M.; Lavezzi, E.; Mazziotti, G. Thyrotoxicosis in patients with COVID-19: The THYRCOV study. Eur. J. Endocrinol. 2020, 183, 381–387. [Google Scholar] [CrossRef]
- Muller, I.; Cannavaro, D.; Dazzi, D.; Covelli, D.; Mantovani, G.; Muscatello, A.; Ferrante, E.; Orsi, E.; Resi, V.; Longari, V.; et al. SARS-CoV-2-related atypical thyroiditis. Lancet Diabetes Endocrinol. 2020, 8, 739–741. [Google Scholar] [CrossRef]
- Tee, L.Y.; Harjanto, S.; Rosario, B.H. COVID-19 complicated by Hashimoto’s thyroiditis. Singap. Med. J. 2021, 62, 265. [Google Scholar] [CrossRef]
- Taieb, A.; Sawsen, N.; Asma, B.A.; Ghada, S.; Hamza, E.; Yosra, H. A rare case of grave’s disease after SARS-CoV-2 vaccine: Is it an adjuvant effect? Eur. Rev. Med. Pharmacol. Aci. 2022, 26, 2627–2630. [Google Scholar]
- Chen, T.; Wu, D.; Chen, H.; Yan, W.; Yang, D.; Chen, G.; Ma, K.; Xu, D.; Yu, H.; Wang, H.; et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ 2020, 368, m1091. [Google Scholar] [CrossRef]
- Tan, T.; Khoo, B.; Mills, E.G.; Phylactou, M.; Patel, B.; Eng, P.C. Association between high serum total cortisol concentrations and mortality from COVID-19. Lancet Diabetes Endocrinol. 2020, 8, 659–660. [Google Scholar] [CrossRef] [PubMed]
- Yavropoulou, M.P.; Filippa, M.G.; Mantzou, A.; Ntziora, F.; Mylona, M.; Tektonidou, M.G.; Vlachogiannis, N.; Paraskevis, D.; Kaltsas, G.A.; Chrousos, G.P.; et al. Alterations in cortisol and interleukin-6 secretion in patients with COVID-19 suggestive of neuroendocrine-immune adaptations. Endocrine 2022, 75, 317–327. [Google Scholar] [CrossRef]
- Ahmadi, I.; Estabraghnia Babaki, H.; Maleki, M.; Jarineshin, H.; Kaffashian, M.R.; Hassaniazad, M.; Kenarkoohi, A.; Ghanbarnejad, A.; Falahi, S.; Jahromi, K.M.; et al. Changes in Physiological Levels of Cortisol and Adrenocorticotropic Hormone upon Hospitalization Can Predict SARS-CoV-2 Mortality: A Cohort Study. Int. J. Endocrinol. 2022, 2022, 4280691. [Google Scholar] [CrossRef]
- Kumar, R.; Guruparan, T.; Siddiqi, S.; Sheth, R.; Jacyna, M.; Naghibi, M.; Vrentzou, E. A case of adrenal infarction in a patient with COVID 19 infection. BJR Case Rep. 2020, 6, 20200075. [Google Scholar] [CrossRef]
- Elkhouly, M.M.N.; Elazzab, A.A.; Moghul, S.S. Bilateral adrenal hemorrhage in a man with severe COVID-19 pneumonia. Radiol. Case Rep. 2021, 16, 1438–1442. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, J.; Cohen, M.; Zapater, J.L.; Eisenberg, Y. Primary Adrenal Insufficiency After COVID-19 Infection. AACE Clin. Case Rep. 2022, 8, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, L.; Bertacca, C.; Centenari, C.; Merusi, I.; Parolo, E.; Ragazzo, V.; Tarabella, V. Orchiepididymitis in a Boy With COVID-19. Pediatr. Infect. Dis. J. 2020, 39, e200–e202. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Huang, X.; Yi, Z.; Deng, Q.; Jiang, N.; Feng, C.; Zhou, Q.; Sun, B.; Chen, W.; Guo, R. Ultrasound Imaging Findings of Acute Testicular Infection in Patients with Coronavirus Disease 2019: A Single-Center-Based Study in Wuhan, China. J. Ultrasound Med. Off. J. Am. Inst. Ultrasound Med. 2021, 40, 1787–1794. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, J.; Ren, J.; Zhao, Y.; Chen, J.; Chen, X. Effect of COVID-19 on Male Reproductive System—A Systematic Review. Front. Endocrinol. 2021, 12, 677701. [Google Scholar] [CrossRef] [PubMed]
- Holtmann, N.; Edimiris, P.; Andree, M.; Doehmen, C.; Baston-Buest, D.; Adams, O.; Kruessel, J.S.; Bielfeld, A.P. Assessment of SARS-CoV-2 in human semen-a cohort study. Fertil. Steril. 2020, 114, 233–238. [Google Scholar] [CrossRef]
- Ma, L.; Xie, W.; Li, D.; Shi, L.; Ye, G.; Mao, Y.; Xiong, Y.; Sun, H.; Zheng, F.; Chen, A.; et al. Evaluation of sex-related hormones and semen characteristics in reproductive-aged male COVID-19 patients. J. Med. Virol. 2021, 93, 456–462. [Google Scholar] [CrossRef]
- Lebar, V.; Laganà, A.S.; Chiantera, V.; Kunič, T.; Lukanović, D. The Effect of COVID-19 on the Menstrual Cycle: A Systematic Review. J. Clin. Med. 2022, 11, 3800. [Google Scholar] [CrossRef] [PubMed]
- Dhindsa, S.; Zhang, N.; McPhaul, M.J.; Wu, Z.; Ghoshal, A.K.; Erlich, E.C.; Mani, K.; Randolph, J.G.; Edwards, J.R.; Mudd, A.P.; et al. Association of Circulating Sex Hormones with Inflammation and Disease Severity in Patients With COVID-19. JAMA Netw. Open 2021, 4, e2111398. [Google Scholar] [CrossRef]
- Li, K.; Chen, G.; Hou, H.; Liao, Q.; Chen, J.; Bai, H.; Lee, S.; Wang, H.; Li, H.; Cheng, L.; et al. Analysis of sex hormones and menstruation in COVID-19 women of child-bearing age. Reprod. Biomed. Online 2021, 42, 260–267. [Google Scholar] [CrossRef]
- Ding, T.; Wang, T.; Zhang, J.; Cui, P.; Chen, Z.; Zhou, S.; Yuan, S.; Ma, W.; Zhang, M.; Rong, Y.; et al. Analysis of Ovarian Injury Associated With COVID-19 Disease in Reproductive-Aged Women in Wuhan, China: An Observational Study. Front. Med. 2021, 8, 635255. [Google Scholar] [CrossRef]
- Hazzi, C.; Villemure-Poliquin, N.; Nadeau, S.; Champagne, P.O. SARS-CoV-2 Infection, A Risk Factor for Pituitary Apoplexy? A Case Series and Literature Review. Ear Nose Throat J. 2023, 1455613231179714. [Google Scholar] [CrossRef]
- Khidir, R.J.Y.; Ibrahim, B.A.Y.; Adam, M.H.M.; Hassan, R.M.E.; Fedail, A.S.S.; Abdulhamid, R.O.; Mohamed, S.O. Prevalence and outcomes of hyponatremia among COVID-19 patients: A systematic review and meta-analysis. Int. J. Health Sci. 2022, 16, 69–84. [Google Scholar]
- Yavari, A.; Sharifan, Z.; Larijani, B.; Mosadegh Khah, A. Central diabetes insipidus secondary to COVID-19 infection: A case report. BMC Endocr. Disord. 2022, 22, 134. [Google Scholar] [CrossRef]
- Facondo, P.; Maltese, V.; Delbarba, A.; Pirola, I.; Rotondi, M.; Ferlin, A.; Capelli, C. Case Report: Hypothalamic Amenorrhea Following COVID-19 Infection and Review of Literatures. Front. Endocrinol. 2022, 13, 840749. [Google Scholar] [CrossRef]
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022, 22, e102–e107. [Google Scholar] [CrossRef] [PubMed]
- Woodrow, M.; Carey, C.; Ziauddeen, N.; Thomas, R.; Akrami, A.; Lutje, V.; Greenwood, D.C.; Alwan, N.A. Systematic Review of the Prevalence of Long COVID. Open Forum Infect. Dis. 2023, 10, ofad233. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Akanchise, T.; Angelova, A. Potential of Nano-Antioxidants and Nanomedicine for Recovery from Neurological Disorders Linked to Long COVID Syndrome. Antioxidants 2023, 12, 393. [Google Scholar] [CrossRef] [PubMed]
- Akanchise, T.; Angelova, A. Ginkgo Biloba and Long COVID: In Vivo and In Vitro Models for the Evaluation of Nanotherapeutic Efficacy. Pharmaceutics 2023, 15, 1562. [Google Scholar] [CrossRef] [PubMed]
- Urhan, E.; Karaca, Z.; Unuvar, G.K.; Gundogan, K.; Unluhizarci, K. Investigation of pituitary functions after acute coronavirus disease 2019. Endocr. J. 2022, 69, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Nekoua, M.P.; Debuysschere, C.; Vergez, I.; Morvan, C.; Mbani, C.J.; Sane, F.; Alidjinou, E.K.; Hober, D. Viruses and Endocrine Diseases. Microorganisms 2023, 11, 361. [Google Scholar] [CrossRef]
- Lazartigues, E.; Qadir, M.M.F.; Mauvais-Jarvis, F. Endocrine Significance of SARS-CoV-2’s Reliance on ACE2. Endocrinology 2020, 161, bqaa108. [Google Scholar] [CrossRef] [PubMed]
- Steenblock, C.; Toepfner, N.; Beuschlein, F.; Perakakis, N.; Mohan Anjana, R.; Mohan, V.; Mahapatra, N.R.; Bornstei, S.R. SARS-CoV-2 infection and its effects on the endocrine system. Best Pract. Res. Clin. Endocrinol. Metab. 2023, 37, 101761. [Google Scholar] [CrossRef]
- Han, T.; Kang, J.; Li, G.; Ge, J.; Gu, J. Analysis of 2019-nCoV receptor ACE2 expression in different tissues and its significance study. Ann. Transl. Med. 2020, 8, 1077. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.T.; Zhou, F.; Xie, W.Q.; Wang, S.; Yao, H.; Liu, Y.T.; Gao, L.; Wu, Z.B. A potential impact of SARS-CoV-2 on pituitary glands and pituitary neuroendocrine tumors. Endocrine 2021, 72, 340–348. [Google Scholar] [CrossRef]
- Pal, R.; Banerjee, M. COVID-19 and the endocrine system: Exploring the unexplored. J. Endocrinol. Investig. 2020, 43, 1027–1031. [Google Scholar] [CrossRef]
- Fitzek, A.; Gerling, M.; Püschel, K.; Saeger, W. Post-mortem histopathology of pituitary and adrenals of COVID-19 patients. Leg. Med. 2022, 57, 102045. [Google Scholar] [CrossRef] [PubMed]
- Taieb, A.; Asma, B.A.; Mounira, E.E. Evidences that SARS-CoV-2 Vaccine-Induced apoplexy may not be solely due to ASIA or VITT syndrome’, Commentary on Pituitary apoplexy and COVID-19 vaccination: A case report and literature review. Front. Endocrinol. 2023, 14, 1111581. [Google Scholar] [CrossRef]
- Nonglait, P.L.; Naik, R.; Raizada, N. Hypophysitis after COVID-19 Infection. Indian J. Endocrinol. Metab. 2021, 25, 255–256. [Google Scholar]
- Sheikh, A.B.; Javaid, M.A.; Sheikh, A.A.E.; Shekhar, R. Central adrenal insufficiency and diabetes insipidus as potential endocrine manifestations of COVID-19 infection: A case report. Pan. Afr. Med. J. 2021, 38, 222. [Google Scholar]
- Gorbova, N.Y.; Vladimirova, V.P.; Rozhinskaya, L.Y.; Belaya, Z.Y. Hypophysitis and reversible hypopituitarism developed after COVID-19 infection—A clinical case report. Probl. Endokrinol. 2022, 68, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.; Gunawardena, S.; Goenka, A.; Ey, E.; Kumar, G. Post COVID-19 Lymphocytic Hypophysitis: A Rare Presentation. Child Neurol. Open 2022, 9, 2329048x221103051. [Google Scholar] [CrossRef] [PubMed]
- Misgar, R.A.; Rasool, A.; Wani, A.I.; Bashir, M.I. Central diabetes insipidus (Infundibuloneuro hypophysitis): A late complication of COVID-19 infection. J. Endocrinol. Investig. 2021, 44, 2855–2856. [Google Scholar] [CrossRef]
- Falhammar, H.; Tornvall, S.; Höybye, C. Pituitary Apoplexy: A Retrospective Study of 33 Cases from a Single Center. Front. Endocrinol. 2021, 12, 656950. [Google Scholar] [CrossRef]
- Langlois, F.; Varlamov, E.V.; Fleseriu, M. Hypophysitis, the Growing Spectrum of a Rare Pituitary Disease. J. Clin. Endocrinol. Metab. 2021, 107, 10–28. [Google Scholar] [CrossRef]
- Hirsch, J.S.; Uppal, N.N.; Sharma, P.; Khanin, Y.; Shah, H.H.; Malieckal, D.A.; Bellucci, A.; Sachdeva, M.; Rondon-Berrios, H.; Jhaveri, K.D.; et al. Prevalence and outcomes of hyponatremia and hypernatremia in patients hospitalized with COVID-19. Nephrol. Dial. Transplant. 2021, 36, 1135–1138. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.Y.; Satish, R.L.; Herr, D.R. ACE2, Circumventricular Organs and the Hypothalamus, and COVID-19. Neuromol. Med. 2022, 24, 363–373. [Google Scholar] [CrossRef]
- Iadecola, C.; Anrather, J.; Kamel, H. Effects of COVID-19 on the Nervous System. Cell 2020, 183, 16–27.e1. [Google Scholar] [CrossRef]
- Haidar, M.A.; Shakkour, Z.; Reslan, M.A.; Al-Haj, N.; Chamoun, P.; Habashy, K.; Kaafarani, H.; Shahjouei, S.; Farran, S.H.; Shaito, A.; et al. SARS-CoV-2 involvement in central nervous system tissue damage. Neural Regen. Res. 2022, 17, 1228–1239. [Google Scholar]
- Capelli, S.; Caroli, A.; Barletta, A.; Arrigoni, A.; Napolitano, A.; Pezzetti, G.; Longhi, L.G.; Zangari, R.; Lorini, F.L.; Sessa, M.; et al. MRI evidence of olfactory system alterations in patients with COVID-19 and neurological symptoms. J. Neurol. 2023, 270, 1195–1206. [Google Scholar] [CrossRef]
- Aliberti, L.; Gagliardi, I.; Rizzo, R.; Bortolotti, D.; Schiuma, G.; Franceschetti, P.; Gafà, R.; Borgatti, L.; Cavallo, M.A.; Zatelli, M.C.; et al. Pituitary apoplexy and COVID-19 vaccination: A case report and literature review. Front. Endocrinol. 2022, 13, 1035482. [Google Scholar] [CrossRef]
- Mussa, B.M.; Srivastava, A.; Verberne, A.J.M. COVID-19 and Neurological Impairment: Hypothalamic Circuits and Beyond. Viruses 2021, 13, 498. [Google Scholar] [CrossRef]
- Frara, S.; Loli, P.; Allora, A.; Santini, C.; di Filippo, L.; Mortini, P.; Fleseriu, M.; Giustina, A. COVID-19 and hypopituitarism. Rev. Endocr. Metab. Disord. 2022, 23, 215–231. [Google Scholar] [CrossRef] [PubMed]
- Leow, M.K.; Kwek, D.S.; Ng, A.W.; Ong, K.C.; Kaw, G.J.; Lee, L.S. Hypocortisolism in survivors of severe acute respiratory syndrome (SARS). Clin. Endocrinol. 2005, 63, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Sun, S.; Zhang, J.; Zhu, H.; Xu, Y.; Ma, Q.; McNutt, M.A.; Korteweg, C.; Gu, J. Endocrine cells of the adenohypophysis in severe acute respiratory syndrome (SARS). Biochem. Cell Biol. Biochim. Biol. Cell. 2010, 88, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Gonen, M.S.; De Bellis, A.; Durcan, E.; Bellastella, G.; Cirillo, P.; Scappaticcio, L.; Longo, M.; Bircan, B.E.; Sahin, S.; Sulu, C.; et al. Assessment of Neuroendocrine Changes and Hypothalamo-Pituitary Autoimmunity in Patients with COVID-19. Horm. Metab. Res. Horm. Stoffwechselforschung Horm. Metab. 2022, 54, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Krishnappa, B.; Shah, R.; Memon, S.S.; Diwaker, C.; Lila, A.R.; Patil, V.A.; Shah, N.S.; Bandgar, T.R. Glucocorticoid therapy as first-line treatment in primary hypophysitis: A systematic review and individual patient data meta-analysis. Endocr. Connect. 2023, 12, e220311. [Google Scholar] [CrossRef] [PubMed]
- Chiloiro, S.; Capoluongo, E.D.; Tartaglione, T.; Giampietro, A.; Bianchi, A.; Giustina, A.; Pontecorvi, A.; Marinis, L.D. The Changing Clinical Spectrum of Hypophysitis. Trends Endocrinol. Metab. TEM 2019, 30, 590–602. [Google Scholar] [CrossRef] [PubMed]
- Vakhshoori, M.; Heidarpour, M.; Bondariyan, N.; Sadeghpour, N.; Mousavi, Z. Adrenal Insufficiency in Coronavirus Disease 2019 (COVID-19)-Infected Patients without Preexisting Adrenal Diseases: A Systematic Literature Review. Int. J. Endocrinol. 2021, 2021, 2271514. [Google Scholar] [CrossRef] [PubMed]
- Reznik, Y.; Barat, P.; Bertherat, J.; Bouvattier, C.; Castinetti, F.; Chabre, O.; Chanson, P.; Cortet, C.; Delemer, B.; Goichot, B.; et al. SFE/SFEDP adrenal insufficiency French consensus: Introduction and handbook. Ann. Endocrinol. 2018, 79, 1–22. [Google Scholar] [CrossRef]
- Ospina, N.S.; Al Nofal, A.; Bancos, I.; Javed, A.; Benkhadra, K.; Kapoor, E.; Lteif, A.N.; Natt, N.; Murad, M.H. ACTH Stimulation Tests for the Diagnosis of Adrenal Insufficiency: Systematic Review and Meta-Analysis. J. Clin. Endocrinol. Metab. 2016, 101, 427–434. [Google Scholar] [CrossRef]
- Soule, S.G.; Fahie-Wilson, M.; Tomlinson, S. Failure of the short ACTH test to unequivocally diagnose long-standing symptomatic secondary hypoadrenalism. Clin. Endocrinol. 1996, 44, 137–140. [Google Scholar] [CrossRef]
- Barrande, G.; Thomopoulos, P.; Luton, J.P. Failure of synthcen to diagnose corticotropin insufficiency. Ann. Endocrinol. 1998, 59, 27–30. [Google Scholar]
- Alzahrani, A.S.; Mukhtar, N.; Aljomaiah, A.; Aljamei, H.; Bakhsh, A.; Alsudani, N.; Elsayed, T.; Alrashidi, N.; Fadel, R.; Alqahtani, E.; et al. The Impact of COVID-19 Viral Infection on the Hypothalamic-Pituitary-Adrenal Axis. Endocr. Pract. Off. J. Am. Coll. Endocrinol. Am. Assoc. Clin. Endocrinol. 2021, 27, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Das, L.; Dutta, P.; Walia, R.; Mukherjee, S.; Suri, V.; Puri, G.D.; Mahajan, V.; Malhotra, P.; Chaudhary, S.; Gupta, R.; et al. Spectrum of Endocrine Dysfunction and Association with Disease Severity in Patients With COVID-19: Insights From a Cross-Sectional, Observational Study. Front. Endocrinol. 2021, 12, 645787. [Google Scholar] [CrossRef] [PubMed]
- Clarke, S.A.; Phylactou, M.; Patel, B.; Mills, E.G.; Muzi, B.; Izzi-Engbeaya, C.; Choudhury, S.; Khoo, B.; Meeran, K.; Comninos, A.N.; et al. Normal Adrenal and Thyroid Function in Patients Who Survive COVID-19 Infection. J. Clin. Endocrinol. Metab. 2021, 106, 2208–2220. [Google Scholar] [CrossRef] [PubMed]
- Sunada, N.; Honda, H.; Nakano, Y.; Yamamoto, K.; Tokumasu, K.; Sakurada, Y.; Matsuda, Y.; Hasegawa, T.; Otsuka, Y.; Obika, M.; et al. Hormonal trends in patients suffering from long COVID symptoms. Endocr. J. 2022, 69, 1173–1181. [Google Scholar] [CrossRef]
- Klein, J.; Wood, J.; Jaycox, J.; Lu, P.; Dhodapkar, R.M.; Gehlhausen, J.R.; Tabachnikova, A.; Tabacof, L.; Malik, A.A.; Kamath, K.; et al. Distinguishing features of Long COVID identified through immune profiling. medRxiv 2022, preprint. [Google Scholar] [CrossRef]
- Ach, T.; Ben Haj Slama, N.; Gorchane, A.; Ben Abdelkrim, A.; Garma, M.; Ben Lasfar, N.; Bellazreg, F.; Debbabi, W.; Hachfi, W.; Chaieb, M.C.; et al. Explaining Long Covid: A pioneer cross sectional study supporting the endocrine hypothesis. J. Endocr. Soc. 2024, 8, bvae003. [Google Scholar] [CrossRef] [PubMed]
- Jensterle, M.; Herman, R.; Janež, A.; Mahmeed, W.A.; Al-Rasadi, K.; Al-Alawi, K.; Banach, M.; Banerjee, Y.; Ceriello, A.; Cesur, M.; et al. The Relationship between COVID-19 and Hypothalamic-Pituitary-Adrenal Axis: A Large Spectrum from Glucocorticoid Insufficiency to Excess-The CAPISCO International Expert Panel. Int. J. Mol. Sci. 2022, 23, 7326. [Google Scholar] [CrossRef]
- Berton, A.M.; Prencipe, N.; Giordano, R.; Ghigo, E.; Grottoli, S. Systemic steroids in patients with COVID-19: Pros and contras, an endocrinological point of view. J. Endocrinol. Investig. 2021, 44, 873–875. [Google Scholar] [CrossRef]
- Pérez-Torres, D.; Díaz-Rodríguez, C.; Armentia-Medina, A. Anti-ACTH antibodies in critically ill Covid-19 patients: A potential immune evasion mechanism of SARS-CoV-2. Med. Intensiv. 2022, 46, 472–474. [Google Scholar] [CrossRef]
- Wheatland, R. Molecular mimicry of ACTH in SARS—Implications for corticosteroid treatment and prophylaxis. Med. Hypotheses 2004, 63, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Baykan, E.K.; Baykan, A.R.; Utlu, M.; Deve, E.; Yildiz, F.; Birdal, C.; Ozdemir, Y.; Aslan, M.H.; Altinkaynak, K. Growth hormone level in COVID-19 patients. N. Clin. Istanb. 2022, 9, 470–475. [Google Scholar]
- Prencipe, N.; Marinelli, L.; Varaldo, E.; Cuboni, D.; Berton, A.M.; Bioletto, F.; Bona, C.; Gasco, V.; Grottoli, S. Isolated anterior pituitary dysfunction in adulthood. Front. Endocrinol. 2023, 14, 1100007. [Google Scholar] [CrossRef] [PubMed]
- Giustina, A.; Mazziotti, G. Impaired growth hormone secretion associated with low glucocorticoid levels: An experimental model for the Giustina effect. Endocrine 2014, 47, 354–356. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhou, W.; Xu, W. Thyroid Function Analysis in 50 Patients with COVID-19: A Retrospective Study. Thyroid Off. J. Am. Thyroid Assoc. 2021, 31, 8–11. [Google Scholar] [CrossRef]
- Lui, D.T.W.; Tsoi, K.H.; Lee, C.H.; Cheung, C.Y.Y.; Fong, C.H.Y.; Lee, A.C.H.; Tam, A.R.; Pang, P.; Ho, T.Y.; Law, C.Y.; et al. A prospective follow-up on thyroid function, thyroid autoimmunity and long COVID among 250 COVID-19 survivors. Endocrine 2023, 80, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Iwasa, T.; Matsuzaki, T.; Yano, K.; Irahara, M. Gonadotropin-Inhibitory Hormone Plays Roles in Stress-Induced Reproductive Dysfunction. Front. Endocrinol. 2017, 8, 62. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alarfaj, S.J.; Al-Akeel, R.K.; Faidah, H.; El-Bouseary, M.M.; Sabatier, J.; Waard, M.D.; El-Masry, T.A.; Batiha, G.E. Long COVID and risk of erectile dysfunction in recovered patients from mild to moderate COVID-19. Sci. Rep. 2023, 13, 5977. [Google Scholar] [CrossRef]
- Cai, Z.; Zhong, J.; Jiang, Y.; Zhang, J. Associations between COVID-19 infection and sex steroid hormones. Front. Endocrinol. 2022, 13, 940675. [Google Scholar] [CrossRef]
- Moreno-Perez, O.; Merino, E.; Alfayate, R.; Torregrosa, M.E.; Andres, M.; Leon-Ramirez, J.M.; Boix, V.; Gil, J.; Pico, A.; COVID19-ALC Research Group. Male pituitary-gonadal axis dysfunction in post-acute COVID-19 syndrome-Prevalence and associated factors: A Mediterranean case series. Clin. Endocrinol. 2022, 96, 353–362. [Google Scholar] [CrossRef]
- Luay Kamil, A.; Al-Kawaz, U.M.; Al-Essawe, E.M. Gonadotropin and Sex Steroid Hormones in Males with Post Covid-19 Infection. Wiad. Lek. 2022, 75, 2222–2225. [Google Scholar] [CrossRef]
- Sousa, G.M.; Oliveira, R.C.; Pereira, M.M.; Paraná, R.; Sousa-Atta, M.L.; Atta, A.M. Autoimmunity in hepatitis C virus carriers: Involvement of ferritin and prolactin. Autoimmun. Rev. 2011, 10, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Collazos, J.; Ibarra, S.; Martínez, E.; Mayo, J. Serum prolactin concentrations in patients infected with human immunodeficiency virus. HIV Clin. Trials 2002, 3, 133–138. [Google Scholar] [CrossRef]
- De Bellis, A.; Colao, A.; Pivonello, R.; Savoia, A.; Battaglia, M.; Ruocco, G.; Tirelli, G.; Lombardi, G.; Bellastella, A.; Bizzarro, A. Antipituitary antibodies in idiopathic hyperprolactinemic patients. Ann. N. Y. Acad. Sci. 2007, 1107, 129–135. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Butnariu, M.; Batiha, G.E. The crucial role of prolactin-lactogenic hormone in Covid-19. Mol. Cell. Biochem. 2022, 477, 1381–1392. [Google Scholar] [CrossRef]
- Kumar, B.; Gopalakrishnan, M.; Garg, M.K.; Purohit, P.; Banerjee, M.; Sharma, P.; Khichar, S.; Kothari, N.; Bhatia, P.; Nag, V.L.; et al. Endocrine Dysfunction among Patients with COVID-19: A Single-center Experience from a Tertiary Hospital in India. Indian J. Endocrinol. Metab. 2021, 25, 14–19. [Google Scholar] [PubMed]
- Ranabir, S.; Baruah, M.P. Pituitary apoplexy. Indian J. Endocrinol. Metab. 2011, 15 (Suppl. 3), S188–S196. [Google Scholar]
- Taieb, A.; Mounira, E.E. Pilot Findings on SARS-CoV-2 Vaccine-Induced Pituitary Diseases: A Mini Review from Diagnosis to Pathophysiology. Vaccines 2022, 10, 2004. [Google Scholar] [CrossRef] [PubMed]
- Michelen, M.; Manoharan, L.; Elkheir, N.; Cheng, V.; Dagens, A.; Hastie, C.; O’Hara, M.; Suett, J.; Dahmash, D.; Bugaeva, P.; et al. Characterising long COVID: A living systematic review. BMJ Glob. Health 2021, 6, e005427. [Google Scholar] [CrossRef] [PubMed]
- Ach, T.; El Euch, M. The need to shed light on potential insidious SARS-CoV-2 post-vaccination pituitary lesions. Therapie 2023, 78, 456–457. [Google Scholar] [CrossRef] [PubMed]
Type of Lesions | Authors | Year | Country | Results | Study Description |
---|---|---|---|---|---|
Pituitary apoplexy | Hazzi et al. [32] | 2023 | Canada | 14 cases | Literature review |
Syndrome of Inappropriate ADH secretion | Khidir et al. [33] | 2022 | Sudan | 36% of Hyponatremia | Meta-analysis |
Hypophysitis | Capatina et al. [4] | 2023 | Romania | Not precise | Several cases reported but widely underestimated according to the authors [44,45,46,47,48] |
Isolated central diabetes insipidus | Yavari et al. [34] | 2022 | Iran | 1 case | Literature review |
Hypothalamitis | Facondo et al. [35] | 2022 | Italy | 5 cases | Literature review |
Authors | Year | Country | Patients | Results | Interpretations |
---|---|---|---|---|---|
Alzahrani et al. [75] | 2021 | Saudi Arabia | 28 | Corticotrope deficiency: 28.6% | During the infection No stimulation test |
Gu WT et al. [46] | 2021 | China | 114 | Reduction in ACTH levels based on the severity of the infection | During the infection No stimulation test |
Das et al. [76] | 2021 | India | 84 | Reduction in ACTH levels based on the severity of the infection | During the infection No stimulation test |
Gonen et al. [67] | 2022 | Turkey | 49 | Corticotrope deficiency: 8.2% | During the infection ST |
Clark et al. [77] | 2021 | United Kingdom | 70 | No corticotrope deficiency | Post-infection ST |
Uhran et al. [41] | 2022 | Turkey | 43 | Corticotrope deficiency: 16.2 % | Post-infection ST |
9.3% | Glucagon stimulation test | ||||
Sunada et al. [78] | 2022 | Japan | 186 | Decrease in the ACTH/cortisol ratio | Post-infection Suggests a decrease in the reactivity of the hypothalamo–adrenal axis |
Klein et al. [79] | - | United States | 215 | Low cortisol levels associated with normal ACTH | Post-infection Corticotropic Involvement in the fatigue of Long COVID-19 |
Ach et al. [80] | 2023 | Tunisia | 64 | The proportion of corticotrope-deficient individuals is higher among Long COVID-19 patients (G2) compared to recovered COVID-19 patients (G1) (G1: 6.3% vs. G2: 28.1%) | Post-infection ITTCorticotropic involvement in Long COVID-19 |
Authors | Year | Country | Patients | Results | Interpretations |
---|---|---|---|---|---|
Gu WT et al. [46] | 2021 | China | 114 | GH levels similar to the control group. | During the infection No stimulation test |
Baykan et al. [85] | 2022 | Turkey | 456 | Low levels of GH and IGF-1 in severe forms. | During the infection No stimulation test |
Sunada et al. [78] | 2022 | Japan | 186 | Lower levels of GH in post-infectious patients experiencing fatigue. | Post-infection No stimulation test |
Uhran et al. [41] | 2022 | Turkey | 43 | Somatotrop deficiency: 46.5%. | Post-infection Glucagon stimulation test |
Ach et al. [80] | 2023 | Tunisia | 64 | The proportion of somatotrope-deficient individuals is higher among Long COVID-19 patients (G2) compared to recovered COVID-19 patients (G1). (G1: 31.3% vs. G2: 59.4%) | Post-infection ITTSomatotropic involvement in Long COVID-19 |
Authors | Year | Country | Patients | Results | Interpretations |
---|---|---|---|---|---|
Das et al. [76] | 2021 | India | 84 | Thyrotropic deficiency: 28.5% | During infection |
Chen et al. [88] | 2021 | China | 50 | Thyrotropic deficiency: 6% | During infection |
Clark et al. [77] | 2021 | United Kingdom | 70 | No thyrotropic deficiency | Post-infection |
Uhran et al. [41] | 2022 | Turkey | 43 | No thyrotropic deficiency | Post-infection |
Lui et al. [89] | 2023 | China | 250 | No thyrotropic deficiency | Post-infection |
Authors | Year | Country | Patients | Results | Interpretations |
---|---|---|---|---|---|
Das et al. [76] | 2021 | India | 84 | Gonadotropic deficit: 58.3% in severe forms. | During infection |
Cai et al. [92] | 2022 | China | 3369 | No significant changes in sex hormones except for an elevation of LH. | During infection Meta-analysis |
Moreno-Perez et al. [93] | 2021 | Spain | 143 | Gonadotropic deficiency: 22.3%. | Post-infection |
Al kuraishy et al. [91] | 2022 | Iraq | 39 | Lower levels of LH and testosterone compared to controls. | Post-infection Cohort of 39 Long COVID-19 patients with erectile dysfunction |
Kamil et al. [94] | 2022 | Iraq | 50 | Persistent gonadotropic deficit in 30% of patients. | Post-infection Follow-up of 50 patients over 1 year. |
Authors | Year | Country | Patients | Results | Interpretations |
---|---|---|---|---|---|
Das et al. [76] | 2021 | India | 84 | Hyperprolactinemia: 42.1% | During infection |
Cai et al. [92] | 2022 | China | 3369 | No modification in prolactin levels | During infection Meta-analysis |
Kumar et al. [99] | 2021 | India | 235 | Hyperprolactinemia: 8.5% | During infection |
Moreno-Perez et al. [93] | 2021 | Spain | 143 | Hyperprolactinemia: 8.3% | Post-infection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taieb, A.; Nassim, B.H.S.; Asma, G.; Jabeur, M.; Ghada, S.; Asma, B.A. The Growing Understanding of the Pituitary Implication in the Pathogenesis of Long COVID-19 Syndrome: A Narrative Review. Adv. Respir. Med. 2024, 92, 96-109. https://doi.org/10.3390/arm92010013
Taieb A, Nassim BHS, Asma G, Jabeur M, Ghada S, Asma BA. The Growing Understanding of the Pituitary Implication in the Pathogenesis of Long COVID-19 Syndrome: A Narrative Review. Advances in Respiratory Medicine. 2024; 92(1):96-109. https://doi.org/10.3390/arm92010013
Chicago/Turabian StyleTaieb, Ach, Ben Haj Slama Nassim, Gorchane Asma, Methnani Jabeur, Saad Ghada, and Ben Abdelkrim Asma. 2024. "The Growing Understanding of the Pituitary Implication in the Pathogenesis of Long COVID-19 Syndrome: A Narrative Review" Advances in Respiratory Medicine 92, no. 1: 96-109. https://doi.org/10.3390/arm92010013
APA StyleTaieb, A., Nassim, B. H. S., Asma, G., Jabeur, M., Ghada, S., & Asma, B. A. (2024). The Growing Understanding of the Pituitary Implication in the Pathogenesis of Long COVID-19 Syndrome: A Narrative Review. Advances in Respiratory Medicine, 92(1), 96-109. https://doi.org/10.3390/arm92010013