Association between the Static and Dynamic Lung Function and CT-Derived Thoracic Skeletal Muscle Measurements–A Retrospective Analysis of a 12-Month Observational Follow-Up Pilot Study
Highlights
- Different progression patterns in both lung function parameters and thoracic muscle were observed between sexes during a 12-month follow-up.
- A low inspiratory capacity/total lung capacity ratio at baseline was associated with an increased inter- and intra-muscular fat area at follow-up.
- The main finding suggests further consideration for sex-based differences in dynamic and static lung volumes when assessing COPD progression along thoracic skeletal muscle mass.
- Inspiratory capacity/total lung capacity can potentially be used as a predictive factor for muscle fat infiltration.
Abstract
:1. Introduction
- (1)
- To observe changes in demographic data, static and dynamic lung function parameters, and skeletal muscle over a 12 month period.
- (2)
- To explore whether there are changes in body composition measurements including SMA, SMI, SMD, IMFA, and IMFD, as well as changes in dynamic (the forced expiratory volume in one second (FEV1) and the FEV1 to forced vital capacity (FEV1/FVC) ratio) and static lung measures (total lung capacity (TLC), residual volume (RV), the inspiratory capacity to TLC ratio (IC/TLC), and the transfer factor for carbon monoxide (TLCO)).
- (3)
- To investigate whether dynamic or static lung volumes at baseline are associated with changes in body composition measures after adjusting for sex, age, weight, height, and exacerbation frequency.
2. Materials and Methods
2.1. Study Design and Population
2.2. Comorbidities
2.3. Lung Function
2.4. High-Resolution Computed Tomography
2.5. Body Composition
2.6. Statistical Analysis
2.7. Ethical Approval
3. Results
3.1. Follow-Up Stratified by Sex
3.2. Unadjusted Linear Regression: 12-Month Changes in Thoracic Muscle Measurements
3.3. Adjusted Linear Regression: Thoracic Muscle Measurements
3.4. Waste Analysis
4. Discussion
4.1. A 12-Month Follow-Up: Lung Function and Thoracic Muscle Measurements
4.2. Sex-Associated Changes in Lung Function and Skeletal Muscle Measurements
4.3. Lung Function Parameters as a Predictor for Changes in Thoracic Muscle Measurements
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Patient Characteristics for Total Populations
(a) | ||||||
---|---|---|---|---|---|---|
Patient Characteristics | 2014 | 2015 | p-Values | |||
Study population, n | 35 | 35 | ||||
Males | 18 | 18 | ||||
Age (years), median | ||||||
Females | 61.0 (32.0; 75.0) | 62.0 (33.0; 76.0) | ||||
Males | 69.0 (60.0; 82.0) | 70.0 (61.0; 83.0) | ||||
Weight (kg) | ||||||
Females | 72.4 (63.3; 81.4) | 71.7 (63.2; 80.3) | ||||
Males | 81.5 (73.6; 89.4) | 82.3 (73.9; 90.8) | ||||
Height, (cm) | ||||||
Females | 166.6 (163.4; 169.9) | 166.8 (163.7; 169.9) | ||||
Males | 171.4 (168.4; 174.4) | 171.6 (168.3; 174.9) | ||||
BMI (kg/m2) | 26.8 (24.9; 28.7) | 26.8 (24.8; 28.8) | 0.32 | |||
Current smokers, n | 12 (54.5) | 10 (45.5) | ||||
Previous smokers, n | 23 (47.9) | 25 (52.1) | 0.61 | |||
Packyears, median | 35.0 (10.0; 88.0) | 35.0 (5.0; 80.0) | 0.69 | |||
Lung function | ||||||
FEV1 | 64.1 (59.0; 69.3) | 62.6 (57.4; 67.7) | 0.67 | |||
FEV1/FVC | 55.5 (52.4; 58.7) | 55.1 (51.8; 58.3) | 0.84 | |||
TLC, median | 114.6 (67.6; 144.3) | 111.0 (78.8; 145.8) | 0.98 | |||
IC | 96.2 (87.5; 104.8) | 101.8 (94.8; 108.7) | 0.33 | |||
IC/TLC | 0.4 (0.3; 0.4) | 0.4 (0.4; 0.4) | 0.40 | |||
RV (%) | 150.5 (136.2; 164.7) | 151.1 (138.3; 163.9) | 0.95 | |||
TLCO (%) | 57.4 (51.4; 63.3) | 54.2 (49.3; 59.2) | 0.43 | |||
mMRC, median | 1 (0; 3) | 1 (0; 4) | 0.82 | |||
COPD traits | ||||||
Exacerbations/year, median | 1.6 (0.9; 2.4) | 1.4 (0.7; 2.1) | 0.66 | |||
≥2 exacerbations/year, n | 12 (52.2) | 11 (47.8) | ||||
Emphysema, n | 31 (49.2) | 32 (50.8) | ||||
Type of comorbidities, n * | ||||||
Bronchiectasis | 21 (45.7) | 25 (54.3) | ||||
Hypertension | 14 (42.4) | 19 (57.6) | ||||
Hypercholesterolemia | 10 (38.5) | 16 (61.5) | ||||
Arthrosis | 10 (43.5) | 13 (56.5) | ||||
Osteoporosis | 10 (47.6) | 11 (52.4) | ||||
(b) | ||||||
Females | Males | |||||
Patient Characteristics | Baseline | Follow-Up | p | Baseline | Follow-Up | p |
n (%) | 17 (50.0) | 17 (50.0) | 18 (50.0) | 18 (50.0) | ||
Age (years) | 61.0 (32.0; 75.0) | 62.0 (33.0; 76.0) | 0.41 | 70.2 (67.4; 73.0) | 71.2 (68.4; 74.0) | 0.62 |
Weight (kg) | 72.4 (63.3; 81.4) | 71.7 (63.2; 80.3) | 0.92 | 81.5 (73.6; 89.4) | 82.3 (73.9; 90.8) | 0.89 |
Height (cm) | 166.6 (163.4; 169.9) | 166.8 (163.7; 169.9) | 0.94 | 171.4 (168.4; 174.4) | 171.6 (168.3; 174.9) | 0.92 |
BMI (kg/m2) | 26.0 (23.0; 29.0) | 25.8 (22.8; 28.8) | 0.91 | 27.6 (25.3; 29.9) | 27.8 (25.3; 30.3) | 0.91 |
<18.5 (kg/m2) | 1 (50.0) | 1 (50.0) | 0 (0.0) | 0 (0.0) | ||
18.5 to 24.9 (kg/m2) | 9 (50.0) | 9 (50.0) | 5 (45.5) | 6 (54.5) | ||
25 to 29.9 (kg/m2) | 2 (40.0) | 3 (60.0) | 7 (53.8) | 6 (46.2) | ||
30 to 34.9 (kg/m2) | 3 (50.0) | 3 (50.0) | 4 (50.0) | 4 (50.0) | ||
<35 (kg/m2) | 2 (66.7) | 1 (33.3) | 2 (50.0) | 2 (50.0) | ||
Smokers, n (%) | ||||||
Current | 7 (58.3) | 5 (41.7) | 5 (50.0) | 5 (50.0) | ||
Previous | 10 (45.5) | 12 (54.5) | 13 (50.0) | 13 (50.0) | ||
Packyear, median | 30.0 (10.0; 53.0) | 31.5 (10.0; 55.0) | 40.0 (10.0; 88.0) | 43.0 (5.0; 80.0) | 0.92 | |
Lung function | ||||||
FEV1 (%) | 67.8 (61.0; 74.5) | 67.1 (61.0; 73.2) | 0.89 | 60.7 (53.1; 68.3) | 58.3 (50.5; 66.1) | 0.66 |
FEV1/FVC | 57.4 (52.9; 61.9) | 57.2 (53.3; 61.1) | 0.94 | 53.7 (49.3; 58.2) | 53.0 (47.9; 58.1) | 0.84 |
TLC (%) | 117.8 (80.4; 144.3) | 116.3 (93.4; 145.8) | 0.64 | 105.3 (97.2; 113.3) | 107.4 (99.4; 115.4) | 0.72 |
IC (%) | 109.6 (98.3; 121.0) | 110.5 (100.8; 120.1) | 0.92 | 83.5 (73.4; 93.5) | 93.5 (85.0; 102.0) | 0.14 |
IC/TLC ratio | 0.4 (0.4; 0.5) | 0.4 (0.4; 0.5) | 0.84 | 0.3 (0.3; 0.4) | 0.4 (0.3; 0.4) | 0.32 |
RV (%) | 155.6 (135.4; 175.7) | 153.3 (136.0; 170.5) | 0.87 | 145.6 (125.2; 166.0) | 149.0 (129.7; 168.2) | 0.82 |
TLCO (%) | 54.7 (47.2; 62.2) | 56.2 (47.9; 64.5) | 0.80 | 59.9 (50.6; 69.1) | 52.4 (46.8; 58.0) | 0.18 |
mMRC, median | 1 (0; 3) | 1 (0; 2) | 0.92 | 1 (0; 3) | 1 (0; 4) | 0.84 |
COPD traits | ||||||
Exacerbations/year, median | 0.0 (0.0; 6.0) | 0.0 (0.0; 4.0) | 0.61 | 1.5 (0.0; 11.0) | 1.0 (0.0; 9.0) | 0.31 |
≥2 exacerbations/year, n | 3 (42.9) | 4 (57.1) | 9 (56.3) | 7 (43.8) | ||
Emphysema, n (%) | 15 (48.4) | 16 (51.6) | 16 (50.0) | 16 (50.0) | ||
Type of comorbidities, n * | ||||||
Bronchiectasis | 10 (45.5) | 12 (54.5) | 11 (45.8) | 13 (54.2) | ||
Hypertension | 6 (42.9) | 8 (57.1) | 8 (42.1) | 11 (57.9) | ||
Hypercholesterolemia | 4 (28.6) | 10 (71.4) | 6 (50.0) | 6 (50.0) | ||
Arthrosis | 5 (41.7) | 7 (58.3) | 5 (45.5) | 6 (54.5) | ||
Osteoporosis | 6 (50.0) | 6 (50.0) | 4 (44.4) | 5 (55.6) | ||
(c) | ||||||
Patient Characteristics | 2015 Included | 2015 Excluded | p-Values | |||
Study population | 35 | 22 | ||||
Males, n | 18 (47.4) | 8 (36.4) | 0.27 | |||
Age (years), median | ||||||
Females | 62.0 (33.0; 76.0) | 63.9 (60.6; 67.1) | 0.39 | |||
Males | 70.0 (61.0; 83.0) | 68.1 (58.5; 77.7) | 0.43 | |||
Weight (kg) | ||||||
Females | 71.7 (63.2; 80.3) | 73.1 (64.6; 81.6) | 0.82 | |||
Males | 82.3 (73.9; 90.8) | 90.4 (73.0; 107.8) | 0.37 | |||
Height, (cm) | ||||||
Females | 166.8 (163.7; 169.9) | 166.8 (163.7; 169.9) | 0.36 | |||
Males | 171.6 (168.3; 174.9) | 176.6 (171.6; 181.7) | 0.11 | |||
BMI, (kg/m2) | 26.8 (24.8; 28.8) | 27.8 (24.8; 30.8) | 0.57 | |||
Current smokers, n | 10 (45.5) | 6 (27.3) | ||||
Previous smokers, n | 25 (52.1) | 15 (68.2) | ||||
Never smoker, n | 0 | 1 | ||||
Packyears, median | 35.0 (5.0; 80.0) | 35.6 (15.0; 86.5) | 0.97 | |||
Lung function | ||||||
FEV1, | 62.6 (57.4; 67.7) | 60.2 (50.4; 70.0) | 0.64 | |||
FEV1/FVC | 55.1 (51.8; 58.3) | 54.4 (47.3; 61.6) | 0.86 | |||
TLC, median | 111.0 (78.8; 145.8) | 126.6 (77.5; 146.7) | 0.06 | |||
IC %, | 101.8 (94.8; 108.7) | 95.9 (84.0; 107.7) | 0.37 | |||
IC/TLC | 0.40 (0.37; 0.42) | 0.34 (0.30; 0.38) | 0.03 | |||
RV% | 151.1 (138.3; 163.9) | 177.8 (153.6; 202.0) | 0.04 | |||
TLCO | 54.2 (49.3; 59.2) | 45.3 (37.8; 52.8) | 0.05 | |||
mMRC, median | 1 (0; 4) | 2 (0; 4) | 0.23 | |||
COPD traits | ||||||
Exacerbations/year, median | 1.4 (0.7; 2.1) | 1 (0; 8) | ||||
≥2 exacerbations/year, n | 11 (47.8) | 7 (31.8) | ||||
Emphysema, n | 32 (50.8) | 17 (77.3) | ||||
Type of comorbidities, n * | ||||||
Bronchiectasis | 25 (54.3) | 15 (68.2) | ||||
Hypertension | 19 (57.6) | 13 (59.1) | ||||
Hypercholesterolemia | 16 (61.5) | 12 (54.5) | ||||
Arthrosis | 13 (56.5) | 12 (54.5) | ||||
Osteoporosis | 11 (52.4) | 6 (27.3) |
Appendix A.2. Thoracic Muscle
Females | Males | |||||
---|---|---|---|---|---|---|
Baseline | Follow-Up | p | Baseline | Follow-Up | p | |
SMA (cm2) | 139.4 (127.8; 150.9) | 131.9 (120.8; 142.9) | 0.36 | 193.5 (179.3; 207.8) | 189.5 (176.2; 202.7) | 0.68 |
SMI (cm2/m2) | 50.1 (46.3; 53.9) | 47.5 (43.7; 51.2) | 0.33 | 65.7 (61.7; 69.6) | 64.4 (60.5; 68.2) | 0.64 |
SMD (HU) | 39.1 (36.8; 41.5) | 37.0 (34.7; 39.2) | 0.21 | 39.9 (37.5; 42.4) | 38.6 (36.0; 41.2) | 0.47 |
IMFA (cm2) | 23.4 (17.1; 29.7) | 21.9 (16.0; 27.8) | 0.74 | 28.4 (22.2; 34.5) | 25.9 (19.8; 32.0) | 0.59 |
IMFD (HU) | −77.1 (−80.1; −74.2) | −73.6 (−77.7; −69.4) | 0.17 | −73.9 (−76.3; −71.4) | −68.7 (−71.1; −66.2) | 0.01 |
Appendix A.3. Univariate Linear Regression
ΔSMA (cm2) | ΔIMFA | |||||||
---|---|---|---|---|---|---|---|---|
Estimate | CI | p | Estimate | CI | p | |||
FEV1(%) | −0.05 | −0.21 | 0.11 | 0.51 | −0.10 | −0.24 | 0.05 | 0.19 |
FEV1/FVC | 0.02 | −0.24 | 0.28 | 0.86 | −0.16 | −0.34 | 0.02 | 0.08 |
TLC (%) | −0.10 | −0.23 | 0.04 | 0.15 | 0.13 | 0.01 | 0.25 | 0.03 |
IC/TLC ratio | −16.31 | −38.90 | 6.27 | 0.15 | −21.99 | −47.12 | 3.15 | 0.08 |
RV (%) | −0.02 | −0.07 | 0.04 | 0.48 | 0.06 | 0.01 | 0.10 | 0.02 |
TLCO % | 0.01 | −0.13 | 0.14 | 0.92 | −0.10 | −0.22 | 0.02 | 0.10 |
Age (years) | 0.24 | 0.04 | 0.44 | 0.02 | −0.15 | −0.33 | 0.04 | 0.12 |
Weight (kg) | −0.05 | −0.17 | 0.08 | 0.43 | −0.03 | −0.19 | 0.14 | 0.75 |
Height (m) | −24.54 | −49.36 | 0.29 | 0.05 | −12.14 | −40.06 | 15.78 | 0.38 |
Sex female vs. male | 3.46 | −1.08 | 8.01 | 0.13 | −0.94 | −5.38 | 3.50 | 0.67 |
Exacerbations/year | 0.76 | −0.47 | 2.00 | 0.22 | 0.31 | −0.73 | 1.34 | 0.55 |
ΔSMI | ΔIMFI | |||||||
Estimate | CI | p | Estimate | CI | p | |||
FEV1 (%) | −0.02 | −0.07 | 0.04 | 0.52 | −0.04 | −0.09 | 0.02 | 0.16 |
FEV1/FVC | 0.01 | −0.08 | 0.10 | 0.87 | −0.06 | −0.12 | 0.01 | 0.07 |
TLC (%) | −0.03 | −0.08 | 0.02 | 0.18 | 0.05 | 0.00 | 0.09 | 0.04 |
IC/TLC ratio | −5.69 | −13.62 | 2.25 | 0.15 | −7.99 | −16.98 | 0.99 | 0.08 |
RV (%) | −0.01 | −0.03 | 0.01 | 0.54 | 0.02 | 0.00 | 0.04 | 0.02 |
TLCO % | 0.01 | −0.04 | 0.05 | 0.81 | −0.03 | −0.08 | 0.01 | 0.13 |
Age (years) | 0.08 | 0.01 | 0.15 | 0.02 | −0.05 | −0.11 | 0.02 | 0.14 |
Weight (kg) | −0.01 | −0.05 | 0.03 | 0.58 | −0.01 | −0.07 | 0.05 | 0.80 |
Height (m) | −5.94 | −14.75 | 2.87 | 0.18 | −3.51 | −13.72 | 6.71 | 0.49 |
Sex female vs. male | 1.37 | −0.18 | 2.92 | 0.08 | −0.24 | −1.81 | 1.32 | 0.75 |
Exacerbations/year | 0.28 | −0.13 | 0.69 | 0.18 | 0.10 | −0.25 | 0.46 | 0.56 |
ΔSMD | ΔIMFD | |||||||
Estimate | CI | p | Estimate | CI | p | |||
FEV1(%) | −0.02 | −0.10 | 0.05 | 0.49 | −0.04 | −0.16 | 0.08 | 0.51 |
FEV1/FVC | 0.03 | −0.10 | 0.17 | 0.59 | −0.02 | −0.19 | 0.16 | 0.86 |
TLC (%) | −0.07 | −0.12 | −0.01 | 0.02 | −0.03 | −0.14 | 0.07 | 0.52 |
IC/TLC ratio | −3.94 | −14.55 | 6.67 | 0.46 | −6.79 | −25.65 | 12.07 | 0.47 |
RV (%) | −0.02 | −0.04 | 0.01 | 0.22 | −0.00 | −0.04 | 0.04 | 0.91 |
TLCO % | 0.02 | −0.06 | 0.10 | 0.60 | −0.03 | −0.11 | 0.06 | 0.51 |
Age (years) | 0.11 | 0.02 | 0.19 | 0.02 | 0.05 | −0.16 | 0.26 | 0.66 |
Weight (kg) | −0.00 | −0.08 | 0.08 | 0.95 | 0.02 | −0.07 | 0.12 | 0.62 |
Height (m) | −6.99 | −27.68 | 13.70 | 0.50 | 12.98 | −13.06 | 39.02 | 0.32 |
Sex female vs. male | 0.81 | −1.57 | 3.20 | 0.49 | 1.60 | −1.67 | 4.88 | 0.33 |
Exacerbations/year | 0.28 | −0.18 | 0.74 | 0.22 | 0.61 | 0.13 | 1.09 | 0.01 |
Appendix A.4. Interaction Analysis
Difference in SMA | Difference in SMI | Difference in SMD | Difference in IMFA | Difference in IMFI | Difference in IMFD | ||
---|---|---|---|---|---|---|---|
FEV1 (%) | FEV1##age | −0.02 (−0.05; −0.001, p = 0.039) | −0.01 (−0.02; −0.0004, p = 0.040) | ||||
FEV1##weight | −0.01 (−0.01; −0.002, p = 0.008) | ||||||
Sex##weight | 0.16 (0.01; 0.32, p = 0.04) | ||||||
Weight##exa | 0.06 (0.01; 0.10, p = 0.02) | ||||||
FEV1/FVC | FEV1/FVC##weight | −0.01 (−0.02; −0.002, p = 0.02) | |||||
Age##exa | 0.02 (0.001; 0.03, p = 0.04) | ||||||
Sex##weight | 0.17 (0.02; 0.32, p = 0.03) | ||||||
WeightI##exa | 0.06 (0.01; 0,10, p = 0.01) | ||||||
TLC (%) | TLC##weight | 0.01 (0.002; 0014, p = 0.01) | 0.003 (0.001; 0.005, p = 0.013) | −0.01 (−0.01; −0.0004, p = 0.04) | |||
Sex##weight | 0.17 (0.03; 0.31, p =0.02) | ||||||
Height##exa | 16.4 (1.49; 31.3, p = 0.03) | ||||||
Weight##exa | 0.06 (0.01; 0.10, p = 0.01) | ||||||
IC/TLC | IC/TLC##age | −1.38 (−2.76; −0.004, p = 0.049) | −0.54 (−1.04; −0.04, p = 0.035) | 1.68 (0.61; 2.76, p = 0.003) |
References
- WHO Chronic Obstructive Pulmonary Disease (COPD). Available online: https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd) (accessed on 12 February 2024).
- Benincasa, G.; DeMeo, D.L.; Glass, K.; Silverman, E.K.; Napoli, C. Epigenetics and pulmonary diseases in the horizon of precision medicine: A review. Eur. Respir. J. 2021, 57, 2003406. [Google Scholar] [CrossRef] [PubMed]
- Agustí, A.; Celli, B.R.; Criner, G.J.; Halpin, D.; Anzueto, A.; Barnes, P.; Bourbeau, J.; Han, M.K.; Martinez, F.J.; Montes de Oca, M.; et al. Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. Eur. Respir. J. 2023, 61, 2300239. [Google Scholar] [CrossRef] [PubMed]
- Christenson, S.A.; Smith, B.M.; Bafadhel, M.; Putcha, N. Chronic obstructive pulmonary disease. Lancet 2022, 399, 2227–2242. [Google Scholar] [CrossRef] [PubMed]
- Galbán, C.J.; Han, M.K.; Boes, J.L.; Chughtai, K.A.; Meyer, C.R.; Johnson, T.D.; Galbán, S.; Rehemtulla, A.; Kazerooni, E.A.; Martinez, F.J.; et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat. Med. 2012, 18, 1711–1715. [Google Scholar] [CrossRef] [PubMed]
- Ostridge, K.; Wilkinson, T.M. Present and future utility of computed tomography scanning in the assessment and management of COPD. Eur. Respir. J. 2016, 48, 216–228. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.L.; Diaz, A.A.; Ross, J.C.; San Jose Estepar, R.; Zhou, L.; Regan, E.A.; Eckbo, E.; Muralidhar, N.; Come, C.E.; Cho, M.H.; et al. Quantitative computed tomography measures of pectoralis muscle area and disease severity in chronic obstructive pulmonary disease. A cross-sectional study. Ann. Am. Thorac. Soc. 2014, 11, 326–334. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.N.; Diaz, A.A.; Rutten, E.; Lutz, S.M.; Harmouche, R.; San Jose Estepar, R.; Kinney, G.; Hokanson, J.E.; Gower, B.A.; Wouters, E.F.M.; et al. Chest computed tomography-derived low fat-free mass index and mortality in COPD. Eur. Respir. J. 2017, 50, 1701134. [Google Scholar] [CrossRef]
- Park, M.J.; Cho, J.M.; Jeon, K.N.; Bae, K.S.; Kim, H.C.; Choi, D.S.; Na, J.B.; Choi, H.C.; Choi, H.Y.; Kim, J.E.; et al. Mass and fat infiltration of intercostal muscles measured by CT histogram analysis and their correlations with COPD severity. Acad. Radiol. 2014, 21, 711–717. [Google Scholar] [CrossRef]
- Moon, S.W.; Lee, S.H.; Woo, A.; Leem, A.Y.; Lee, S.H.; Chung, K.S.; Kim, E.Y.; Jung, J.Y.; Kang, Y.A.; Park, M.S.; et al. Reference values of skeletal muscle area for diagnosis of sarcopenia using chest computed tomography in Asian general population. J. Cachexia Sarcopenia Muscle 2022, 13, 955–965. [Google Scholar] [CrossRef]
- Schols, A.M.; Broekhuizen, R.; Weling-Scheepers, C.A.; Wouters, E.F. Body composition and mortality in chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 2005, 82, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Marquis, K.; Debigaré, R.; Lacasse, Y.; LeBlanc, P.; Jobin, J.; Carrier, G.; Maltais, F. Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2002, 166, 809–813. [Google Scholar] [CrossRef]
- Guo, J.; Huang, X.; Dou, L.; Yan, M.; Shen, T.; Tang, W.; Li, J. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments. Signal Transduct. Target. Ther. 2022, 7, 391. [Google Scholar] [CrossRef]
- Byun, M.K.; Cho, E.N.; Chang, J.; Ahn, C.M.; Kim, H.J. Sarcopenia correlates with systemic inflammation in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 669–675. [Google Scholar] [CrossRef]
- Henrot, P.; Dupin, I.; Schilfarth, P.; Esteves, P.; Blervaque, L.; Zysman, M.; Gouzi, F.; Hayot, M.; Pomiès, P.; Berger, P. Main Pathogenic Mechanisms and Recent Advances in COPD Peripheral Skeletal Muscle Wasting. Int. J. Mol. Sci. 2023, 24, 6454. [Google Scholar] [CrossRef]
- da Silva, S.M.; Paschoal, I.A.; De Capitani, E.M.; Moreira, M.M.; Palhares, L.C.; Pereira, M.C. COPD phenotypes on computed tomography and its correlation with selected lung function variables in severe patients. Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11, 503–513. [Google Scholar] [CrossRef]
- Chen, H.; Li, Z.; Dong, L.; Wu, Y.; Shen, H.; Chen, Z. Lipid metabolism in chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2019, 14, 1009–1018. [Google Scholar] [CrossRef]
- Gosker, H.R.; Langen, R.C.; Simons, S.O. Role of acute exacerbations in skeletal muscle impairment in COPD. Expert. Rev. Respir. Med. 2021, 15, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Cebollero, P.; Zambom-Ferraresi, F.; Hernández, M.; Hueto, J.; Cascante, J.; Anton, M.M. Inspiratory fraction as a marker of skeletal muscle dysfunction in patients with COPD. Rev. Port. Pneumol. 2017, 23, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Kovacs, P.; Guiu-Jurado, E. Genetics of Body Fat Distribution: Comparative Analyses in Populations with European, Asian and African Ancestries. Genes 2021, 12, 841. [Google Scholar] [CrossRef] [PubMed]
- Frank, A.P.; de Souza Santos, R.; Palmer, B.F.; Clegg, D.J. Determinants of body fat distribution in humans may provide insight about obesity-related health risks. J. Lipid Res. 2019, 60, 1710–1719. [Google Scholar] [CrossRef] [PubMed]
- van der Werf, A.; Langius, J.A.E.; de van der Schueren, M.A.E.; Nurmohamed, S.A.; van der Pant, K.; Blauwhoff-Buskermolen, S.; Wierdsma, N.J. Percentiles for skeletal muscle index, area and radiation attenuation based on computed tomography imaging in a healthy Caucasian population. Eur. J. Clin. Nutr. 2018, 72, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Derstine, B.A.; Holcombe, S.A.; Goulson, R.L.; Ross, B.E.; Wang, N.C.; Sullivan, J.A.; Su, G.L.; Wang, S.C. Quantifying Sarcopenia Reference Values Using Lumbar and Thoracic Muscle Areas in a Healthy Population. J. Nutr. Health Aging 2017, 21, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Derstine, B.A.; Holcombe, S.A.; Ross, B.E.; Wang, N.C.; Su, G.L.; Wang, S.C. Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci. Rep. 2018, 8, 11369. [Google Scholar] [CrossRef] [PubMed]
- Derstine, B.A.; Holcombe, S.A.; Ross, B.E.; Wang, N.C.; Su, G.L.; Wang, S.C. Optimal body size adjustment of L3 CT skeletal muscle area for sarcopenia assessment. Sci. Rep. 2021, 11, 279. [Google Scholar] [CrossRef] [PubMed]
- Weinreich, U.M.; Thomsen, L.P.; Bielaska, B.; Jensen, V.H.; Vuust, M.; Rees, S.E. The effect of comorbidities on COPD assessment: A pilot study. Int. J. Chron. Obstruct. Pulmon. Dis. 2015, 10, 429–438. [Google Scholar] [CrossRef]
- Vestbo, J.; Hurd, S.S.; Agustí, A.G.; Jones, P.W.; Vogelmeier, C.; Anzueto, A.; Barnes, P.J.; Fabbri, L.M.; Martinez, F.J.; Nishimura, M.; et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med. 2013, 187, 347–365. [Google Scholar] [CrossRef] [PubMed]
- ICD 10. Available online: https://icd.who.int/browse10/2019/en (accessed on 15 July 2023).
- Stanojevic, S.; Kaminsky, D.A.; Miller, M.R.; Thompson, B.; Aliverti, A.; Barjaktarevic, I.; Cooper, B.G.; Culver, B.; Derom, E.; Hall, G.L.; et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur. Respir. J. 2022, 60, 2101499. [Google Scholar] [CrossRef]
- Ozola-Zalite, I.; Mark, E.B.; Gudauskas, T.; Lyadov, V.; Olesen, S.S.; Drewes, A.M.; Pukitis, A.; Frokjaer, J.B. Reliability and validity of the new VikingSlice software for computed tomography body composition analysis. Eur. J. Clin. Nutr. 2019, 73, 54–61. [Google Scholar] [CrossRef]
- Aubrey, J.; Esfandiari, N.; Baracos, V.E.; Buteau, F.A.; Frenette, J.; Putman, C.T.; Mazurak, V.C. Measurement of skeletal muscle radiation attenuation and basis of its biological variation. Acta Physiol. 2014, 210, 489–497. [Google Scholar] [CrossRef]
- Jo, Y.S.; Kim, S.K.; Park, S.J.; Um, S.J.; Park, Y.B.; Jung, K.S.; Kim, D.K.; Yoo, K.H. Longitudinal change of FEV(1) and inspiratory capacity: Clinical implication and relevance to exacerbation risk in patients with COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2019, 14, 361–369. [Google Scholar] [CrossRef]
- Park, J.; Lee, C.H.; Lee, Y.J.; Park, J.S.; Cho, Y.J.; Lee, J.H.; Lee, C.T.; Yoon, H.I. Longitudinal changes in lung hyperinflation in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Celli, B.R.; Decramer, M.; Lystig, T.; Kesten, S.; Tashkin, D.P. Longitudinal inspiratory capacity changes in chronic obstructive pulmonary disease. Respir. Res. 2012, 13, 66. [Google Scholar] [CrossRef] [PubMed]
- Cortopassi, F.; Celli, B.; Divo, M.; Pinto-Plata, V. Longitudinal changes in handgrip strength, hyperinflation, and 6-minute walk distance in patients with COPD and a control group. Chest 2015, 148, 986–994. [Google Scholar] [CrossRef]
- Aalstad, L.T.; Hardie, J.A.; Espehaug, B.; Thorsen, E.; Bakke, P.S.; Eagan, T.M.L.; Frisk, B. Lung hyperinflation and functional exercise capacity in patients with COPD—A three-year longitudinal study. BMC Pulm. Med. 2018, 18, 187. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, A.L.; Nery, L.E.; Villaça, D.S.; Machado, T.Y.; Oliveira, C.C.; Paes, A.T.; Neder, J.A. Inspiratory fraction and exercise impairment in COPD patients GOLD stages II–III. Eur. Respir. J. 2006, 28, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, P.; Guenette, J.A.; Langer, D.; Laviolette, L.; Mainguy, V.; Maltais, F.; Ribeiro, F.; Saey, D. Pathogenesis of hyperinflation in chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2014, 9, 187–201. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, D.E.; Webb, K.A.; Neder, J.A. Lung hyperinflation in COPD: Applying physiology to clinical practice. COPD Res. Pract. 2015, 1, 4. [Google Scholar] [CrossRef]
- Ammous, O.; Feki, W.; Lotfi, T.; Khamis, A.M.; Gosselink, R.; Rebai, A.; Kammoun, S. Inspiratory muscle training, with or without concomitant pulmonary rehabilitation, for chronic obstructive pulmonary disease (COPD). Cochrane Database Syst. Rev. 2023, 1, Cd013778. [Google Scholar] [CrossRef]
- Casanova, C.; Cote, C.; de Torres, J.P.; Aguirre-Jaime, A.; Marin, J.M.; Pinto-Plata, V.; Celli, B.R. Inspiratory-to-total lung capacity ratio predicts mortality in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2005, 171, 591–597. [Google Scholar] [CrossRef]
- O’Donnell, D.E.; Revill, S.M.; Webb, K.A. Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2001, 164, 770–777. [Google Scholar] [CrossRef]
- Budweiser, S.; Harlacher, M.; Pfeifer, M.; Jörres, R.A. Co-morbidities and hyperinflation are independent risk factors of all-cause mortality in very severe COPD. COPD 2014, 11, 388–400. [Google Scholar] [CrossRef]
- Cardoso, J.; Coelho, R.; Rocha, C.; Coelho, C.; Semedo, L.; Bugalho Almeida, A. Prediction of severe exacerbations and mortality in COPD: The role of exacerbation history and inspiratory capacity/total lung capacity ratio. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 1105–1113. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e302. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef]
- Gea, J.; Pascual, S.; Casadevall, C.; Orozco-Levi, M.; Barreiro, E. Muscle dysfunction in chronic obstructive pulmonary disease: Update on causes and biological findings. J. Thorac. Dis. 2015, 7, E418–E438. [Google Scholar] [CrossRef]
- Maltais, F.; Decramer, M.; Casaburi, R.; Barreiro, E.; Burelle, Y.; Debigaré, R.; Dekhuijzen, P.N.; Franssen, F.; Gayan-Ramirez, G.; Gea, J.; et al. An official American Thoracic Society/European Respiratory Society statement: Update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2014, 189, e15–e62. [Google Scholar] [CrossRef]
- Gea, J.; Agusti, A.; Roca, J. Pathophysiology of muscle dysfunction in COPD. J. Appl. Physiol. 2013, 114, 1222–1234. [Google Scholar] [CrossRef] [PubMed]
- Li, C.W.; Yu, K.; Shyh-Chang, N.; Jiang, Z.; Liu, T.; Ma, S.; Luo, L.; Guang, L.; Liang, K.; Ma, W.; et al. Pathogenesis of sarcopenia and the relationship with fat mass: Descriptive review. J. Cachexia Sarcopenia Muscle 2022, 13, 781–794. [Google Scholar] [CrossRef] [PubMed]
- Burini, R.C.; Anderson, E.; Durstine, J.L.; Carson, J.A. Inflammation, physical activity, and chronic disease: An evolutionary perspective. Sports Med. Health Sci. 2020, 2, 1–6. [Google Scholar] [CrossRef] [PubMed]
- van den Borst, B.; Gosker, H.R.; Koster, A.; Yu, B.; Kritchevsky, S.B.; Liu, Y.; Meibohm, B.; Rice, T.B.; Shlipak, M.; Yende, S.; et al. The influence of abdominal visceral fat on inflammatory pathways and mortality risk in obstructive lung disease. Am. J. Clin. Nutr. 2012, 96, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Pinti, M.V.; Fink, G.K.; Hathaway, Q.A.; Durr, A.J.; Kunovac, A.; Hollander, J.M. Mitochondrial dysfunction in type 2 diabetes mellitus: An organ-based analysis. Am. J. Physiol. Endocrinol. Metab. 2019, 316, E268–E285. [Google Scholar] [CrossRef]
- Schrauwen, P.; Schrauwen-Hinderling, V.; Hoeks, J.; Hesselink, M.K. Mitochondrial dysfunction and lipotoxicity. Biochim. Biophys. Acta 2010, 1801, 266–271. [Google Scholar] [CrossRef]
- Smith, R.L.; Soeters, M.R.; Wüst, R.C.I.; Houtkooper, R.H. Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease. Endocr. Rev. 2018, 39, 489–517. [Google Scholar] [CrossRef]
- Luo, L.; Liu, M. Adipose tissue in control of metabolism. J. Endocrinol. 2016, 231, R77–R99. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Zhao, M.; Nie, Y.; Liu, P.; Zhu, Y.; Zhang, X. Skeletal Muscle Lipid Droplets and the Athlete’s Paradox. Cells 2019, 8, 249. [Google Scholar] [CrossRef]
- Zacharewicz, E.; Hesselink, M.K.C.; Schrauwen, P. Exercise counteracts lipotoxicity by improving lipid turnover and lipid droplet quality. J. Intern. Med. 2018, 284, 505–518. [Google Scholar] [CrossRef]
- Wagner, P.D. Possible mechanisms underlying the development of cachexia in COPD. Eur. Respir. J. 2008, 31, 492–501. [Google Scholar] [CrossRef]
- Kuo, T.; Harris, C.A.; Wang, J.C. Metabolic functions of glucocorticoid receptor in skeletal muscle. Mol. Cell. Endocrinol. 2013, 380, 79–88. [Google Scholar] [CrossRef]
- Dubé, B.P.; Laveneziana, P. Effects of aging and comorbidities on nutritional status and muscle dysfunction in patients with COPD. J. Thorac. Dis. 2018, 10, S1355–S1366. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef]
- Somayaji, R.; Chalmers, J.D. Just breathe: A review of sex and gender in chronic lung disease. Eur. Respir. Rev. 2022, 31, 210111. [Google Scholar] [CrossRef]
- Wells, J.C. Sexual dimorphism of body composition. Best Pract. Res. Clin. Endocrinol. Metab. 2007, 21, 415–430. [Google Scholar] [CrossRef]
- McDonald, M.N. Inventing the wheel: Understanding heterogeneity of response to skeletal muscle dysfunction interventions in women with COPD. Thorax 2023, 78, 219. [Google Scholar] [CrossRef]
- Sharanya, A.; Ciano, M.; Withana, S.; Kemp, P.R.; Polkey, M.I.; Sathyapala, S.A. Sex differences in COPD-related quadriceps muscle dysfunction and fibre abnormalities. Chron. Respir. Dis. 2019, 16, 1479973119843650. [Google Scholar] [CrossRef]
- Dal Negro, R.W.; Bonadiman, L.; Turco, P. Prevalence of different comorbidities in COPD patients by gender and GOLD stage. Multidiscip. Respir. Med. 2015, 10, 24. [Google Scholar] [CrossRef]
- Troosters, T.; Janssens, W.; Demeyer, H.; Rabinovich, R.A. Pulmonary rehabilitation and physical interventions. Eur. Respir. Rev. 2023, 32, 220222. [Google Scholar] [CrossRef]
- Al-Sawaf, O.; Weiss, J.; Skrzypski, M.; Lam, J.M.; Karasaki, T.; Zambrana, F.; Kidd, A.C.; Frankell, A.M.; Watkins, T.B.K.; Martínez-Ruiz, C.; et al. Body composition and lung cancer-associated cachexia in TRACERx. Nat. Med. 2023, 29, 846–858. [Google Scholar] [CrossRef]
- Wouters, E.F.M.; Wouters, B.; Augustin, I.M.L.; Houben-Wilke, S.; Vanfleteren, L.; Franssen, F.M.E. Personalised pulmonary rehabilitation in COPD. Eur. Respir. Rev. 2018, 27, 170125. [Google Scholar] [CrossRef]
- van Bakel, S.I.J.; Gosker, H.R.; Langen, R.C.; Schols, A. Towards Personalized Management of Sarcopenia in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 25–40. [Google Scholar] [CrossRef]
Baseline | 12-Month Follow-Up | |||||||
---|---|---|---|---|---|---|---|---|
Patients Characteristics | Female | Male | Total | p | Female | Male | Total | p |
Follow-up (months) median | 12 (10; 16) | |||||||
n (%) | 17 (48.6) | 18 (51.4) | 35 | 17 (48.6) | 18 (51.4) | 35 | ||
Age (years) | 60.0 (55.2; 64.8) | 70.2 (67.4; 73.0) | 0.00 | 61.2 (56.4; 66.0) | 71.2 (68.4; 74.0) | 0.00 | ||
Weight (kg) | 72.4 (63.3; 81.4) | 81.5 (73.6; 89.4) | 0.14 | 71.7 (63.2; 80.3) | 82.3 (73.9; 90.8) | 0.09 | ||
Height (cm) | 166.6 (163.4; 169.9) | 171.4 (168.4; 174.4) | 0.04 | 166.8 (163.7; 169.9) | 171.6 (168.3; 174.9) | 0.05 | ||
BMI (kg/m2) | 26.0 (23.0; 29.0) | 27.6 (25.3; 29.9) | 26.8 (24.9; 28.7) | 0.41 | 25.8 (22.8; 28.8) | 27.8 (25.3; 30.3) | 26.8 (24.8; 28.8) | 0.32 |
<18.5 (kg/m2) | 1 (100.0) | 0 (0.0) | 1 | 1 (100.0) | 0 (0.0) | 1 | ||
18.5 to 24.9 (kg/m2) | 9 (64.3) | 5 (35.7) | 14 | 9 (60.0) | 6 (40.0) | 15 | ||
25 to 29.9 (kg/m2) | 2 (22.2) | 7 (77.8) | 9 | 3 (33.3) | 6 (66.7) | 9 | ||
30 to 34.9 (kg/m2) | 3 (42.9) | 4 (57.1) | 7 | 3 (42.9) | 4 (57.1) | 7 | ||
<35 (kg/m2) | 2 (50.0) | 2 (50.0) | 4 | 1 (33.3) | 2 (66.7) | 3 | ||
Smokers, n (%) | ||||||||
Current | 7 (58.3) | 5 (41.7) | 12 (54.5) | 5 (50.0) | 5 (50.0) | 10 (45.5) | ||
Previous | 10 (43.5) | 13 (56.5) | 23 (47.9) | 12 (48.0) | 13 (52.0) | 25 (52.1) | ||
Packyear, median | 30.0 (10.0; 53.0) | 40.0 (10.0; 88.0) | 35.0 (10.0; 88.0) | 0.06 | 31.5 (10.0; 55.0) | 43.0 (5.0; 80.0) | 35.0 (5.0; 80.0) | 0.13 |
Lung function | ||||||||
FEV1 (%) | 67.8 (61.0; 74.5) | 60.7 (53.1; 68.3) | 64.1 (59.0; 69.3) | 0.19 | 67.1 (61.0; 73.2) | 58.3 (50.5; 66.1) | 62.6 (57.4; 67.7) | 0.09 |
FEV1/FVC-ratio | 57.4 (52.9; 61.9) | 53.7 (49.3; 58.2) | 55.5 (52.4; 58.7) | 0.26 | 57.2 (53.3; 61.1) | 53.0 (47.9; 58.1) | 55.1 (51.8; 58.3) | 0.21 |
TLC % | 116.4 (109.5; 123.2) | 105.3 (97.2; 113.3) | 114.6 (67.6; 144.3) | 0.05 | 115.1 (107.7; 122.4) | 107.4 (99.4; 115.4) | 111.0 (78.8; 145.8) | 0.18 |
IC % | 109.6 (98.3; 121.0) | 83.5 (73.4; 93.5) | 96.2 (87.5; 104.8) | 0.00 | 110.5 (100.8; 120.1) | 93.5 (85.0; 102.0) | 101.8 (94.8; 108.7) | 0.01 |
IC/TLC % | 40.6 (35.4; 45.7) | 34.9 (30.0; 39.7) | 37.6 (34.2; 41.1) | 0.10 | 41.2 (37.0; 45.4) | 38.0 (33.6; 42.4) | 39.5 (36.6; 42.5) | 0.27 |
RV % | 155.6 (135.4; 175.7) | 145.6 (125.2; 166.0) | 150.5 (136.2; 164.7) | 0.50 | 153.3 (136.0; 170.5) | 149.0 (129.7; 168.2) | 151.1 (138.3; 163.9) | 0.75 |
TLCO % | 54.7 (47.2; 62.2) | 59.9 (50.6; 69.1) | 57.4 (51.4; 63.3) | 0.40 | 56.2 (47.9; 64.5) | 52.4 (46.8; 58.0) | 54.2 (49.3; 59.2) | 0.46 |
COPD-stage, n | ||||||||
Mild | 3 | 2 | 5 | 3 | 3 | 6 | ||
Moderate | 12 | 11 | 23 | 13 | 8 | 21 | ||
Severe | 2 | 5 | 7 | 1 | 7 | 8 | ||
mMRC, median | 1 (0; 3) | 1 (0; 3) | 1 (0; 3) | 0.45 | 1 (0; 2) | 1 (0; 4) | 1 (0; 4) | 0.49 |
COPD traits | ||||||||
Exacerbations/year, median | 0 (0; 6) | 2 (0; 11) | 1.6 (0.9; 2.4) | 0.01 | 0 (0; 4) | 1 (0; 9) | 1.4 (0.7; 2.1) | 0.39 |
≥2 exacerbations/year | 3 (25.0) | 9 (75.0) | 12 (52.2) | 4 (36.4) | 7 (63.6) | 11 (47.8) | ||
Emphysema, n (%) | 15 (48.4) | 16 (51.6) | 31 (49.2) | 16 (50.0) | 16 (50.0) | 32 (50.8) | ||
Type of comorbidities, n (%) * | ||||||||
Bronchiectasis | 10 (47.6) | 11 (52.4) | 21 (45.7) | 12 (48.0) | 13 (52.0) | 25 (54.3) | ||
Hypertension | 6 (42.9) | 8 (57.1) | 14 (42.4) | 8 (42.1) | 11 (57.9) | 19 (57.6) | ||
Hypercholesterolemia | 6 (60.0) | 4 (40.0) | 10 (38.5) | 6 (54.5) | 5 (45.5) | 16 (61.5) | ||
Arthrosis | 5 (50.0) | 5 (50.0) | 10 (43.5) | 7 (53.8) | 6 (46.2) | 13 (56.5) | ||
Osteoporosis | 6 (60.0) | 4 (40.0) | 10 (47.6) | 6 (54.5) | 5 (45.5) | 11 (52.4) |
Baseline | Follow-Up | ||||||||
---|---|---|---|---|---|---|---|---|---|
Female | Male | p | Female | Change in % | Male | Change in % | p | ||
SMA (cm2) | 139.4 (127.8; 150.9) | 193.5 (179.3; 207.8) | <0.01 | SMA change (cm2) | −7.5 (−10.3; −4.7) | −5.4 (−7.3; −3.4) | −4.1 (−7.4; −0.7) | −1.9 (−3.7; −0.1) | 0.13 |
SMI (cm2/m2) | 50.1 (46.3; 53.9) | 65.7 (61.7; 69.6) | <0.01 | SMI change (cm2/m2) | −2.7 (−3.7; −1.7) | −5.4 (−7.3; −3.4) | −1.3 (−2.4; −0.2) | −1.9 (−3.7; −0.1) | 0.08 |
SMD (HU) | 39.1 (36.8; 41.5) | 39.9 (37.5; 42.4) | 0.64 | SMD change (HU) | −2.2 (−3.7; −0.6) | −5.1 (−9.5; −0.8) | −1.3 (−3.0; 0.4) | −3.1 (−7.0; 0.8) | 0.49 |
IMFA (cm2) | 23.4 (17.1; 29.7) | 28.4 (22.2; 34.5) | 0.28 | IMFA change (cm2) | −1.5 (−4.1; 1.1) | −7.4 (−19.2; 4.4) | −2.4 (−5.9; 1.0) | −3.1 (−19.3; 13.2) | 0.67 |
IMFI (cm2/m2) | 8.5 (6.2; 10.7) | 9.5 (7.5; 11.6) | 0.50 | IMFI change (cm2/m2) | −0.5 (−1.5; 0.4) | −7.4 (−19.2; 4.4) | −0.8 (−2.0; 0.4) | −3.1 (−19.3; 13.2) | 0.76 |
IMFD (HU) | −77.1 (−80.1; −74.2) | −73.9 (−76.3; −71.4) | 0.10 | IMFD change (HU) | 3.6 (1.0; 6.1) | 4.7 (1.3; 8.1) | 5.2 (3.3; 7.0) * | 6.9 (4.4; 9.3) * | 0.32 |
Estimate | Estimate | ||||
---|---|---|---|---|---|
ΔSMA (cm2) | FEV1(%) | 0.004 (−0.18; 0.19, p = 0.97) | Δ IMFA (cm2) | FEV1 (%) | −0.13 (−0.29; 0.03, p = 0.11) |
FEV1/FVC | 0.12 (−0.23; 0.47, p = 0.47) | FEV1/FVC | −0.25 (−0.51; 0.02, p = 0.07) | ||
TLC (%) | −0.04 (−0.20; 0.12, p = 0.62) | TLC (%) | 0.16 (−0.04; 0.36, p = 0.12) | ||
IC/TLC | −4.15 (−36.99; 28.68, p = 0.80) | IC/TLC | −35.60 (−69.51; −1.70, p = 0.04) | ||
RV (%) | −0.002 (−0.06; 0.06, p = 0.95) | RV (%) | 0.06 (−0.01; 0.14, p = 0.08) | ||
TLCO % | 0.04 (−0.11; 0.18, p = 0.59) | TLCO % | −0.10 (−0.25; 0.04, p = 0.16) | ||
ΔSMI (cm2/m2) | FEV1 (%) | 0.00 (−0.06; 0.07, p = 0.91) | Δ IMFI (cm2/m2) | FEV1 (%) | −0.05 (−0.10; 0.01, p = 0.10) |
FEV1/FVC | 0.05 (−0.07; 0.17, p = 0.43) | FEV1/FVC | −0.09 (−0.19; 0.01, p = 0.07) | ||
TLC (%) | −0.01 (−0.07; 0.05. p = 0.63) | TLC (%) | 0.06 (−0.02; 0.13, p = 0.12) | ||
IC/TLC | −1.32 (−12.78; 10.13, p = 0.81 | IC/TLC | −12.92 (−25.01; −0.83, p = 0.04) | ||
RV (%) | −0.00 (−0.02; 0.02, p = 0.92) | RV (%) | 0.02 (−0.00; 0.05, p = 0.08) | ||
TLCO % | 0.02 (−0.04; 0.07, p = 0.55) | TLCO % | −0.04 (−0.09; 0.02, p = 0.18) | ||
ΔSMD (HU) | FEV1 (%) | −0.01 (−0.09; 0.07, p = 0.88) | Δ IMFD (HU) | FEV1 (%) | −0.01 (−0.13; 0.12, p = 0.90) |
FEV1/FVC | 0.07 (−0.07; 0.20, p = 0.31) | FEV1/FVC | 0.06 (−0.14; 0.26, p = 0.56) | ||
TLC (%) | −0.06 (−0.13; 0.01, p = 0.11) | TLC (%) | −0.05 (−0.20; 0.10, p = 0.48) | ||
IC/TLC | 0.05 (−13.40; 13.50, p =0.99) | IC/TLC | −0.81 (−22.312; 20.69, p = 0.94) | ||
RV (%) | −0.01 (−0.04; 0.02, p = 0.43) | RV (%) | −0.01 (−0.07; 0.04, p = 0.66) | ||
TLCO % | 0.04 (−0.04; 0.12, p = 0.33) | TLCO % | −0.02 (−0.10; 0.05, p = 0.51) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brath, M.S.G.; Alsted, S.D.; Sahakyan, M.; Mark, E.B.; Frøkjær, J.B.; Rasmussen, H.H.; Østergaard, L.R.; Christensen, R.B.; Weinreich, U.M. Association between the Static and Dynamic Lung Function and CT-Derived Thoracic Skeletal Muscle Measurements–A Retrospective Analysis of a 12-Month Observational Follow-Up Pilot Study. Adv. Respir. Med. 2024, 92, 123-144. https://doi.org/10.3390/arm92020015
Brath MSG, Alsted SD, Sahakyan M, Mark EB, Frøkjær JB, Rasmussen HH, Østergaard LR, Christensen RB, Weinreich UM. Association between the Static and Dynamic Lung Function and CT-Derived Thoracic Skeletal Muscle Measurements–A Retrospective Analysis of a 12-Month Observational Follow-Up Pilot Study. Advances in Respiratory Medicine. 2024; 92(2):123-144. https://doi.org/10.3390/arm92020015
Chicago/Turabian StyleBrath, Mia Solholt Godthaab, Sisse Dyrman Alsted, Marina Sahakyan, Esben Bolvig Mark, Jens Brøndum Frøkjær, Henrik Højgaard Rasmussen, Lasse Riis Østergaard, Rasmus Brath Christensen, and Ulla Møller Weinreich. 2024. "Association between the Static and Dynamic Lung Function and CT-Derived Thoracic Skeletal Muscle Measurements–A Retrospective Analysis of a 12-Month Observational Follow-Up Pilot Study" Advances in Respiratory Medicine 92, no. 2: 123-144. https://doi.org/10.3390/arm92020015
APA StyleBrath, M. S. G., Alsted, S. D., Sahakyan, M., Mark, E. B., Frøkjær, J. B., Rasmussen, H. H., Østergaard, L. R., Christensen, R. B., & Weinreich, U. M. (2024). Association between the Static and Dynamic Lung Function and CT-Derived Thoracic Skeletal Muscle Measurements–A Retrospective Analysis of a 12-Month Observational Follow-Up Pilot Study. Advances in Respiratory Medicine, 92(2), 123-144. https://doi.org/10.3390/arm92020015