How to Enhance the Diagnosis of Early Stages of Chronic Obstructive Pulmonary Disease (COPD)? The Role of Mobile Spirometry in COPD Screening and Diagnosis—A Systematic Review
Abstract
:Highlights
- Portable spirometers are only slightly less efficient in diagnosing COPD than traditional spirometers
- The highest COPD prevalence was demonstrated when well-selected high-risk patients were tested
- Portable spirometers are useful in the early diagnosis of COPD
- Portable spirometers enable bedside COPD diagnosis
Abstract
1. Introduction
- To estimate COPD prevalence diagnosed with a portable spirometer in high-risk patients and compare it with the disease prevalence reported in the studies that used conventional spirometers;
- To evaluate strategies of proactive approaches to identify COPD in high-risk individuals.
2. Materials and Methods
2.1. General Study Design
2.2. Definitions
2.2.1. Types of Screening
2.2.2. Types of Spirometers
- Portable spirometers—small/pocket devices, easily moved from room to room (also desktop spirometers), often connected to a smartphone, which can measure basic spirometric parameters (at least FEV1, FVC, and FEV1/FVC).
- Conventional spirometers: a certified spirometer used in the pulmonary test laboratory that cannot be moved easily, usually used in the same office.
2.3. Search Strategy
2.4. Selection Criteria
- Population: subjects aged ≥ 35 years with a history of smoking (≥10 pack-years).
- Comparison: n/a.
- Outcome: prevalence of irreversible airway obstruction (i.e., airflow limitation not reversible after inhaled bronchodilator).
- Study design: cross-sectional/cohort studies.
2.5. Study Selection
2.6. Data Extraction
- Studies in which both pre- and post-bronchodilator spirometry were performed with a portable spirometer (Group A, Table 1);
- Studies in which both pre- and post-bronchodilator spirometry were performed with a conventional spirometer (Group B, Table 2);
- Articles in which baseline spirometry was performed with a portable spirometer (or a portable device, for instance COPD-6), but the confirmatory spirometry was performed with a conventional spirometer (Group C, Table 3).
2.7. Statistical Analysis
3. Results
3.1. Overview of Included Publications
3.1.1. Risk of Bias
3.1.2. Symptomatic Patients
3.1.3. Setting
3.2. Portable Spirometers
3.3. Conventional Spirometers
3.4. Baseline Testing with a Portable/COPD-6 Device, Confirmatory Spirometry with a Conventional Spirometer
3.5. Incidence of COPD
4. Discussion
4.1. Principal Findings
4.2. Methodology
4.3. Strong Points of the Study
4.4. Potential Confounding Aspects and Limitations of the Study
4.5. Comparison with Other Studies
4.6. Benefits of Portable Spirometers
4.7. Minimal Standards of Portable Spirometers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adeloye, D.; Song, P.; Zhu, Y.; Campbell, H.; Sheikh, A.; Rudan, I. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: A systematic review and modelling analysis. Lancet Respir. Med. 2022, 10, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Agusti, A.; Calverley, P.M.; Celli, B.; Coxson, H.O.; Edwards, L.D.; Lomas, D.A.; MacNee, W.; Miller, B.E.; Rennard, S.; Silverman, E.K. Characterisation of COPD heterogeneity in the ECLIPSE cohort. Respir. Res. 2010, 11, 122. [Google Scholar] [CrossRef] [PubMed]
- Bednarek, M.; Maciejewski, J.; Wozniak, M.; Kuca, P.; Zielinski, J. Prevalence, severity and underdiagnosis of COPD in the primary care setting. Thorax 2008, 63, 402–407. [Google Scholar] [CrossRef]
- Chronic Obstructive Pulmonary Disease (COPD). World Health Organisation. Updated 16 March 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd) (accessed on 14 June 2023).
- Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease: Updated 2023. Available online: https://www.goldcopd.org (accessed on 14 June 2023).
- Fu, S.N.; Yu, W.C.; Wong, C.K.; Lam, M.C.-H. Prevalence of undiagnosed airflow obstruction among people with a history of smoking in a primary care setting. Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11, 2391–2399. [Google Scholar] [CrossRef] [PubMed]
- Shipman, C.; White, S.; Gysels, M.; White, P. Access to care in advanced COPD: Factors that influence contact with general practice services. Prim. Care Respir. J. 2009, 18, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Bridevaux, P.O.; Gerbase, M.W.; Probst-Hensch, N.M.; Schindler, C.; Gaspoz, J.-M.; Rochat, T. Long-term decline in lung function, utilisation of care and quality of life in modified GOLD stage 1 COPD. Thorax 2008, 63, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Wedzicha, J.A.; Brill, S.E.; Allinson, J.P.; Donaldson, G.C. Mechanisms and impact of the frequent exacerbator phenotype in chronic obstructive pulmonary disease. BMC Med. 2013, 11, 181. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; D’Urzo, A.D.; Donohue, J.F.; Kerwin, E.M. Weighing the evidence for pharmacological treatment interventions in mild COPD; a narrative perspective. Respir. Res. 2019, 20, 141. [Google Scholar] [CrossRef] [PubMed]
- Boros, P.W.; Maciejewski, A.; Nowicki, M.M.; Wesołowski, S. Comparability of portable and desktop spirometry: A randomized, parallel assignment, open-label clinical trial. Adv. Respir. Med. 2022, 90, 60–67. [Google Scholar] [CrossRef]
- Kupczyk, M.; Hofman, A.; Kołtowski, Ł.; Kuna, P.; Łukaszyk, M.; Buczyłko, K.; Bodzenta-Łukaszyk, A.; Nastałek, P.; Soliński, M.; Dąbrowiecki, P. Home self-monitoring in patients with asthma using a mobile spirometry system. J. Asthma. 2021, 58, 505–511. [Google Scholar] [CrossRef]
- Hatziagorou, E.; Sopiadou, A.; Kogias, C.; Gioulvanidou, M.; Chrysochoou, E.; Kalaitzopoulou, I.; Peftoulidou, P.; Tsanakas, J. Feasibility of telehealth spirometry for patients with cystic fibrosis in a regional setting. Eur. Respir. J. 2022, 60 (Suppl. S66), 2628. [Google Scholar] [CrossRef]
- Berlinski, A.; Leisenring, P.; Willis, L.; King, S. Home Spirometry in Children with Cystic Fibrosis. Bioengineering 2023, 10, 242. [Google Scholar] [CrossRef] [PubMed]
- Sgalla, G.; Mari, P.V.; Richeldi, L. Home spirometry to assess efficacy of pirfenidone in progressive unclassifiable interstitial lung disease: Better the devil you know than the devil you don’t. Ann. Transl. Med. 2020, 8, 1615. [Google Scholar] [CrossRef] [PubMed]
- Sheshadri, A.; Makhnoon, S.; Alousi, A.M.; Bashoura, L.; Andrade, R.; Miller, C.J.; Stolar, K.R.; Arain, M.H.; Noor, L.; Balagani, A.; et al. Home-Based Spirometry Telemonitoring After Allogeneic Hematopoietic Cell Transplantation: Mixed Methods Evaluation of Acceptability and Usability. JMIR Form. Res. 2022, 6, e29393. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, X.; Wang, X.; Yu, N.; Wang, W. Accuracy of portable spirometers in the diagnosis of chronic obstructive pulmonary disease A meta-analysis. NPJ Prim. Care Respir. Med. 2022, 32, 15. [Google Scholar] [CrossRef] [PubMed]
- Sami, R.; Omidi, A.; Sadegh, R. Validity and Reliability of COPD-6 Device for Detecting Chronic Obstructive Pulmonary Disease in High-Risk Individuals. Tanaffos 2020, 19, 201–207. [Google Scholar] [PubMed]
- Chen, S.; Li, X.; Wang, Z.; Zhou, Y.; Zhao, D.; Zhao, Z.; Liu, S.; Ran, P. Validity of the Handheld Expiratory Flowmeter for COPD Screening in the Primary Care Setting of China. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 2039–2047. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- U.S. Preventive Services Task Force. Chronic Obstructive Pulmonary Disease: Screening, Updated 10 May 2022. Available online: https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/chronic-obstructive-pulmonary-disease-screening (accessed on 27 February 2024).
- Bobrowska, A.; Murton, M.; Seedat, F.; Visintin, C.; Mackie, A.; Steele, R.; Marshall, J. Targeted screening in the UK: A narrow concept with broad application. Lancet Reg. Health Eur. 2022, 16, 100353. [Google Scholar] [CrossRef]
- Sliwiński, P.; Górecka, D.; Jassem, E.; Pierzchała, W. Polish respiratory society guidelines for chronic obstructive pulmonary disease. Pneumonol. Alergol. Pol. 2014, 82, 227–263. (In Polish) [Google Scholar] [CrossRef]
- Moola, S.; Munn, Z.; Tufanaru, C.; Aromataris, E.; Sears, K.; Sfetc, R.; Currie, M.; Lisy, K.; Qureshi, R.; Mattis, P.; et al. Chapter 7: Systematic Reviews of Etiology and Risk. In JBI Manual for Evidence Synthesis; Aromataris, E., Munn, Z., Eds.; JBI: Adelaide, Australia, 2020; Available online: https://Synthesismanual.Jbi.Global (accessed on 6 March 2024).
- Kotz, D.; Nelemans, P.; van Schayck, C.P.; Wesseling, G.J. External validation of a COPD diagnostic questionnaire. Eur. Respir. J. 2008, 31, 298–303. [Google Scholar] [CrossRef]
- Kart, L.; Akkoyunlu, M.E.; Bayram, M.; Yakar, F.; Özçelik, H.K.; Karaköse, F.; Sezer, M. COPD: An underdiagnosed disease at hospital environment. Wien. Klin. Wochenschr. 2014, 126, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Al Omari, M.; Khassawneh, B.Y.; Khader, Y.; Dauod, A.S.; Bergus, G. Prevalence of chronic obstructive pulmonary disease among adult male cigarettes smokers: A community-based study in Jordan. Int. J. Chron. Obstruct. Pulmon. Dis. 2014, 9, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Qin, L.; Tanoue, L.; Hu, A.; Jia, X.; Luo, H.; Chen, Y.; Chen, P.; Peng, H. Effects of one-hour training course and spirometry on the ability of physicians to diagnose and treat chronic obstructive pulmonary disease. PLoS ONE 2015, 10, e0117348. [Google Scholar] [CrossRef] [PubMed]
- Franssen, F.M.; Soriano, J.B.; Roche, N.; Bloomfield, P.H.; Brusselle, G.; Fabbri, L.M.; García-Rio, F.; Kearney, M.T.; Kwon, N.; Lundbäck, B.; et al. Lung Function Abnormalities in Smokers with Ischemic Heart Disease. Am. J. Respir. Crit. Care Med. 2016, 194, 568–576. [Google Scholar] [CrossRef]
- Represas-Represas, C.; Fernández-Villar, A.; Ruano-Raviña, A.; Priegue-Carrera, A.; Botana-Rial, M. Screening for Chronic Obstructive Pulmonary Disease: Validity and Reliability of a Portable Device in Non-Specialized Healthcare Settings. PLoS ONE 2016, 11, e0145571. [Google Scholar] [CrossRef] [PubMed]
- Al Lami, F.; Salim, Z. Prevalence and determinants of chronic obstructive pulmonary disease among a sample of adult smokers in Baghdad, Iraq, 2014. East Mediterr. Health J. 2017, 23, 67–72. [Google Scholar] [CrossRef]
- Mamary, A.J.; Stewart, J.I.; Kinney, G.L.; Hokanson, J.E.; Shenoy, K.; Dransfield, M.T.; Foreman, M.G.; Vance, G.B.; Criner, G.J. Race and Gender Disparities are Evident in COPD Underdiagnoses Across all Severities of Measured Airflow Obstruction. Chronic. Obstr. Pulm. Dis. 2018, 5, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Mycroft, K.; Korczynski, P.; Jankowski, P.; Kutka, M.; Zelazna, O.; Zagaja, M.; Wozniczko, K.; Szafranska, U.; Koltowski, L.; Opolski, G.; et al. Active screening for COPD among hospitalized smokers—A feasibility study. Ther. Adv. Chronic. Dis. 2020, 11, 2040622320971111. [Google Scholar] [CrossRef]
- Tran, D.; Lim, M.; Vogrin, S.; Jayaram, L. Point of Care Portable Spirometry in the Diagnosis and Treatment of Inpatients with Chronic Obstructive Pulmonary Disease. Lung 2020, 198, 143–150. [Google Scholar] [CrossRef]
- Jaen-Moreno, M.J.; Feu, N.; Del Pozo, G.I.; Gómez, C.; Carrión, L.; Chauca, G.M.; Guler, I.; Montiel, F.J.; Sánchez, M.D.; Alcalá, J.A.; et al. Chronic obstructive pulmonary disease in severe mental illness: A timely diagnosis to advance the process of quitting smoking. Eur. Psychiatry 2021, 64, e22. [Google Scholar] [CrossRef] [PubMed]
- Stav, D.; Raz, M. Prevalence of chronic obstructive pulmonary disease among smokers aged 45 and up in Israel. Isr. Med. Assoc. J. 2007, 9, 800–802. [Google Scholar] [PubMed]
- Yawn, B.; Mannino, D.; Littlejohn, T.; Ruoff, G.; Emmett, A.; Raphiou, I.; Crater, G. Prevalence of COPD among symptomatic patients in a primary care setting. Curr. Med. Res. Opin. 2009, 25, 2671–2677. [Google Scholar] [CrossRef] [PubMed]
- Makinson, A.; Hayot, M.; Eymard-Duvernay, S.; Quesnoy, M.; Raffi, F.; Thirard, L.; Bonnet, F.; Tattevin, P.; Abgrall, S.; Quantin, X.; et al. High prevalence of undiagnosed COPD in a cohort of HIV-infected smokers. Eur. Respir. J. 2015, 45, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Patel, T.; Hillier, L.M.; Milligan, J. Office-Based Case Finding for Chronic Obstructive Pulmonary Disease in Older Adults in Primary Care. Can. Respir. J. 2016, 2016, 1083270. [Google Scholar] [CrossRef] [PubMed]
- Sansores, R.H.; Velázquez-Uncal, M.; Pérez-Bautista, O.; Falfan-Valencia, R.; Villalba-Caloca, J.; Ramírez-Venegas, A. Prevalence of chronic obstructive pulmonary disease in asymptomatic smokers. Int. J. Chron. Obstruct. Pulmon. Dis. 2015, 10, 2357–2363. [Google Scholar] [CrossRef] [PubMed]
- Labor, M.; Vrbica, Ž.; Gudelj, I.; Labor, S.; Plavec, D. Diagnostic accuracy of a pocket screening spirometer in diagnosing chronic obstructive pulmonary disease in general practice: A cross sectional validation study using tertiary care as a reference. BMC Fam. Pract. 2016, 17, 112. [Google Scholar] [CrossRef] [PubMed]
- Su, K.C.; Ko, H.K.; Chou, K.T.; Hsiao, Y.-H.; Su, V.Y.-F.; Perng, D.-W.; Kou, Y.R. An accurate prediction model to identify undiagnosed at-risk patients with COPD: A cross-sectional case-finding study. NPJ Prim. Care Respir. Med. 2019, 29, 22. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.I.; Kim, Y.; Rhee, C.K.; Kim, D.K.; Park, Y.B.; Yoo, K.H.; Jung, K.-S.; Lee, C.Y. Cut-off value of FEV1/FEV6 to determine airflow limitation using handheld spirometry in subjects with risk of chronic obstructive pulmonary disease. Korean J. Intern. Med. 2021, 36, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Yangui, F.; Touil, A.; Antit, S.; Zakhama, L.; Charfi, M.R. COPD prevalence in smokers with stable ischemic heart disease: A cross-sectional study in Tunisia. Respir. Med. 2021, 179, 106335. [Google Scholar] [CrossRef]
- Thorn, J.; Tilling, B.; Lisspers, K.; Jörgensen, L.; Stenling, A.; Stratelis, G. Improved prediction of COPD in at-risk patients using lung function pre-screening in primary care: A real-life study and cost-effectiveness analysis. Prim. Care Respir. J. 2012, 21, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Ching, S.M.; Pang, Y.K.; Price, D.; Cheong, A.; Lee, P.; Irmi, I.; Faezah, H.; Ruhaini, I.; Chia, Y. Detection of airflow limitation using a handheld spirometer in a primary care setting. Respirology 2014, 19, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Lee, C.M.; Park, J.Y.; Park, S.-H.; Jang, S.H.; Jung, K.-S.; Yoo, K.H.; Park, Y.B.; Rhee, C.K.; Kim, D.K.; et al. Active case finding strategy for chronic obstructive pulmonary disease with handheld spirometry. Medicine 2016, 95, e5683. [Google Scholar] [CrossRef]
- Korczyński, P.; Górska, K.; Jankowski, P.; Kosiński, J.; Kudas, A.; Sułek, K.; Jankowska, M.; Jaśkiewicz, K.; Krenke, R. Public spirometry campaign in chronic obstructive pulmonary disease screening—Hope or hype? Adv. Respir. Med. 2017, 8, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Abramson, M.J.; Zwar, N.A.; Russell, G.M.; Holland, A.E.; Bonevski, B.; Mahal, A.; Phillips, K.; Eustace, P.; Paul, E.; et al. Diagnosing COPD and supporting smoking cessation in general practice: Evidence-practice gaps. Med. J. Aust. 2018, 208, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Cheng, S.L.; Wang, H.C.; Hsu, W.-H.; Lee, K.-Y.; Perng, D.-W.; Lin, H.-I.; Lin, M.-S.; Tsai, J.-R.; Wang, C.-C.; et al. Novel App-Based Portable Spirometer for the Early Detection of COPD. Diagnostics 2021, 11, 785. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Dinnes, J.; Deeks, J.; Kirby, J.; Roderick, P. A methodological review of how heterogeneity has been examined in systematic reviews of diagnostic test accuracy. Health Technol. Assess. 2005, 9, 1–113. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods 2010, 1, 97–111. [Google Scholar] [CrossRef]
- Schnieders, E.; Ünal, E.; Winkler, V.; Dambach, P.; Louis, V.R.; Horstick, O.; Neuhann, F.; Deckert, A. Performance of alternative COPD case-finding tools: A systematic review and meta-analysis. Eur. Respir. Rev. 2021, 30, 200350. [Google Scholar] [CrossRef]
- Jankowski, P.; Górska, K.; Mycroft, K.; Korczyński, P.; Soliński, M.; Kołtowski, Ł.; Krenke, R. The use of a mobile spirometry with a feedback quality assessment in primary care setting—A nationwide cross-sectional feasibility study. Respir. Med. 2021, 184, 106472. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; You, X.; Liu, T.; Wang, L.; Yin, Z.; Liu, Y.; Ye, C.; Yang, T.; Huang, M.; Li, H.; et al. Cost-effectiveness analysis of COPD screening programs in primary care for high-risk patients in China. NPJ Prim. Care Respir. Med. 2021, 31, 28. [Google Scholar] [CrossRef] [PubMed]
First Author, Year of Publication | Country/ Region | Spirometer (Manufacturer) | Participants: n (%F) | Population (Prevalence of Comorbidities: DM%; HTN%) | Inclusion Criteria: Age; PY | Age, Years (Mean: SD) | PY (Mean: SD) | Setting | FEV1/FVC Cut off Value for Airway Obstruction | % Newly Diagnosed COPD | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Kotz, 2008 [25] | The Netherlands | Vitalograph 2120 (Vitalograph) | 676 (41.3) | GP (ND) | 40–70; ≥10 | 52.3 (7.3) | 40.4 (19.3) | ND | 0.7 | 41.1 1 |
2 | Kart, 2013 [26] | Turkey | MIR A23 (MIR) | 648 (61.9) | GP (ND) | >40; ≥10 | 48.3 (9) | ND | HS | 0.7 | 17 |
3 | Al Omari, 2014 [27] | Jordan | FlowscreenCT (eResearch Technology GmbH) | 512 (0) | GP (ND) | >35; >10 | 48.3 (10.2) | 42.7 (10–200) 3 | PC | 0.7 | 6.6 |
4 | Cai, 2015 [28] | China | Portable | 307 (8.8) | GP (ND) | >50; >20 | 61 (7) | 37 (15) | HS | 0.7 | 38.8 4 |
5 | Frannsen, 2016 [29] | Europe | EasyOne (Medical Technologies) | 2730 (14.1) | IHD (25.3; 89.1) | ≥40; ≥10 | ND | ND | OSC | 0.7 | 21.2 |
6 | Represas-Represas, 2016 [30] | Spain | Datospir 120 (Sibelmed) | 362 (38.1) | GP (ND) | >40; ≥10 | 55.4 (9.9) | 35 (19.8) | PC/ PHA/ HS | 0.7 | 31.5 1 |
7 | Al Lami, 2017 [31] | Iraq | Discovery 2 (Futuremed) | 215 (ND) | GP (18.8; 37.8) | >35; >20 | ND | ND | PC | 0.7 | 16.71 |
8 | Mamary, 2018 [32] | USA | EasyOne (Medical Technologies) | 8872 (45.6) | GP (ND) | 45–80; ≥10 | 59.9 (9.1) | 44.5 (25.1) | CSC | 0.7 | 16.3 |
9 | Mycroft, 2020 [33] | Poland | AioCare (HealthUp) | 118 (33.1) | HO (22;92) | ≥40; ≥10 | 66 (59–73) 2 | 30 (20–40) 2 | HS | LLN | 7.6 |
10 | Tran, 2020 [34] | Australia | MicroLab | 33 (42) | HO (21;58) | >40; >10 | 69.3 (6.8) | 48.7 (24.2) | HS | 0.7 | 27.2 1 |
11 | Jaen-Moreno, 2021 [35] | Spain | DatoSpir Touch Easy D (Sibelmed) | 113 (ND) | MENT (13.4; 8.5) | 40–70; ≥10 | 49.4 (6) | 36.6 (18.1) | HS | 0.7 | 23.9 |
First Author, Year of Publication | Country/ Region | Spirometer (Manufacturer) | Participants: n (%F) | Population (Prevalence of Comorbidities: DM%; HTN%) | Inclusion Criteria: Age; PY | Age, Years (Mean: SD) | PY (Mean: (SD) | Setting | FEV1/FVC Cut off Value for Airway Obstruction | % Newly Diagnosed COPD | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Stav, 2007 [36] | Israel | Jaeger, CareFusion | 1058 (25) | GP (ND) | 45–75; ≥20 | ND | ND | ND | 0.7 | 17.2 |
2 | Yawn, 2009 [37] | USA | Biomedical Systems Corporation | 1201 (ND) | GP (ND;41%) | >40; ≥10 | ND | ND | PC | ≤0.7 | 26 1 |
3 | Makinson, 2014 [38] | France | laboratory spirometers | 338 (17) | HIV (ND) | ≥40; ≥20 | 50 (46–53) 2 | 30 (25–38) 2 | HS | 0.7 | 18.9 |
4 | Lee, 2015 [39] | Canada | Winspiro (MIR) | 11 (ND) | GP (22.9;51.2) | ≥75; ≥20 | ND | ND | PC | 0.7 | 36.4 1 |
5 | Sansores, 2015 [40] | Mexico | Sensormedics | 2324 (50.1) | GP (ND) | >40; ≥10 | 51.9 (10.5) | 19.50 (10–33) 2 | PC | LLN | 11.4 1 |
6 | Sansores, 2015 [40] | Mexico | Sensormedics | 637 (52) | GP (ND) | >40; ≥10 | 49.63 (11.3) | 17.00 (8–28) 2 | PC | LLN | 5.7 |
7 | Labor, 2016 [41] | Croatia | Jaeger, CareFusion | 227 (50.6) | GP (ND) | 40–65; ≥20 | 52.5 (6.8) | 37.9 (17.4) | PC | 0.7 | 18.9 |
8 | Su, 2019 [42] | Taiwan | Spiro Medics system 2130 (SensorMedics) | 301 (4.7) | PULMO (ND) | ≥40; ≥20 | 70.7 (13.2) | 45.4 (25.0) | HS | 0.7 | 47.9 1 |
9 | Tran, 2020 [34] | Australia | HypAir Compact+ (Medisoft) | 33 (42.4) | HO (21;58) | >40; >10 | 69.3 (6.8) | 48.7 (24.2) | HS | 0.7 | 27.2 1 |
10 | Hwang, 2021 [43] | South Korea | conventional spirometer | 290 (ND) | GP (ND) | >40; >10 | 63.1 (11.0) | 31.6 (20.0) | HS | 0.7 | 47.9 1 |
11 | Yangui, 2021 [44] | Tunisia | COSMED Quark Series | 122 (1.7) | IHD (55.7;46.7) | >40; ≥10 | 59.3 (9.5) | 52.3 (28.3) | HS | 0.7 | 13.9 |
First Author, Year of Publication | Country/ Region | Device (Manufacturer) 3 | Participants: n (%F) | Population (Prevalence of Comorbidities: DM%; HTN%) | Inclusion Criteria: Age, PY | PY (Mean: (SD) | Setting | FEV1/FVC Cut off Value for Airway Obstruction | % Newly Diagnosed COPD | |
---|---|---|---|---|---|---|---|---|---|---|
1 | Thorn, 2012 [45] | Sweden | COPD-6 | 305 (56.7) | GP (ND) | 45–85; ≥15 | 30.3 (11.5) | PC | 0.7 | 25.2 2 |
2 | Ching, 2014 [46] | Malaysia | COPD-6 | 416 (0.2) | GP (ND; 46.2) | ≥40; ≥10 | 20.4 (18) | PC | 0.75/0/7 4 | 1.9 |
3 | Kim, 2016 [47] | South Korea | COPD-6 | 190 (ND) | GP (17.8; 40) | >40; >10 | 28.5 (14.6) | PC | 0.77/0.7 4 | 23.7 1 |
4 | Korczyński, 2017 [48] | Poland | MicroLab 3500, CareFusion | 178 (36.5) | GP (ND; 67) | >40; >10 | 28 | RS | 0.7 | 2.8 |
5 | Liang, 2018 [49] | Australia | COPD-6 | 1045 (ND) | GP (ND) | ≥40; ≥10 | ND | PC | 0.75/0.7 4 | 17.6 |
6 | Lin, 2021 [50] | Taiwan | Spirobank Smart | 370 (5.7) | GP (ND) | ≥40; ≥10 | 42.6 (28.3) | PC | 0.7 | 27.8 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankowski, P.; Mycroft, K.; Górska, K.; Korczyński, P.; Krenke, R. How to Enhance the Diagnosis of Early Stages of Chronic Obstructive Pulmonary Disease (COPD)? The Role of Mobile Spirometry in COPD Screening and Diagnosis—A Systematic Review. Adv. Respir. Med. 2024, 92, 158-174. https://doi.org/10.3390/arm92020018
Jankowski P, Mycroft K, Górska K, Korczyński P, Krenke R. How to Enhance the Diagnosis of Early Stages of Chronic Obstructive Pulmonary Disease (COPD)? The Role of Mobile Spirometry in COPD Screening and Diagnosis—A Systematic Review. Advances in Respiratory Medicine. 2024; 92(2):158-174. https://doi.org/10.3390/arm92020018
Chicago/Turabian StyleJankowski, Piotr, Katarzyna Mycroft, Katarzyna Górska, Piotr Korczyński, and Rafał Krenke. 2024. "How to Enhance the Diagnosis of Early Stages of Chronic Obstructive Pulmonary Disease (COPD)? The Role of Mobile Spirometry in COPD Screening and Diagnosis—A Systematic Review" Advances in Respiratory Medicine 92, no. 2: 158-174. https://doi.org/10.3390/arm92020018
APA StyleJankowski, P., Mycroft, K., Górska, K., Korczyński, P., & Krenke, R. (2024). How to Enhance the Diagnosis of Early Stages of Chronic Obstructive Pulmonary Disease (COPD)? The Role of Mobile Spirometry in COPD Screening and Diagnosis—A Systematic Review. Advances in Respiratory Medicine, 92(2), 158-174. https://doi.org/10.3390/arm92020018