Early Probe and Drug Discovery in Academia: A Minireview
Abstract
:1. Introduction
2. Target Identification and Validation
3. Assay Development
4. Assay Optimization
5. Compound Screening Process
6. Screening Libraries
7. Actives: Hits to Leads
8. Hit to Lead Optimization
9. Overall Impact of Academic Early Discovery Programs
10. Summary
Acknowledgments
Conflicts of Interest
References
- Macarron, R.; Banks, M.N.; Bojanic, D.; Burns, D.J.; Cirovic, D.A.; Garyantes, T.; Green, D.V.; Hertzberg, R.P.; Janzen, W.P.; Paslay, J.W.; et al. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov. 2011, 10, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Everett, J.R. Academic drug discovery: Current status and prospects. Expert Opin. Drug Discov. 2015, 10, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; McDonald, P.R.; Sittampalam, S.; Chaguturu, R. Open access high throughput drug discovery in the public domain: A mount everest in the making. Curr. Pharm. Biotechnol. 2010, 11, 764–778. [Google Scholar] [CrossRef] [PubMed]
- Hoelder, S.; Clarke, P.A.; Workman, P. Discovery of small molecule cancer drugs: Successes, challenges and opportunities. Mol. Oncol. 2012, 6, 155–176. [Google Scholar] [CrossRef] [PubMed]
- Bunnage, M.E.; Gilbert, A.M.; Jones, L.H.; Hett, E.C. Know your target, know your molecule. Nat. Chem. Biol. 2015, 11, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, P.G.; Gilbert, I.H.; Read, K.D.; Fairlamb, A.H. Target validation: Linking target and chemical properties to desired product profile. Curr. Top. Med. Chem. 2011, 11, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.J.; Martinez Molina, D.; Lundback, T. Cetsa: A target engagement assay with potential to transform drug discovery. Future Med. Chem. 2015, 7, 975–978. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.; et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 2016, 16, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Inglese, J.; Johnson, R.L.; Simeonov, A.; Xia, M.; Zheng, W.; Austin, C.P.; Auld, D.S. High-throughput screening assays for the identification of chemical probes. Nat. Chem. Biol. 2007, 3, 466–479. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Zhang, Y.; Saba, N.; Austin, C.P.; Wiestner, A.; Auld, D.S. Identification of therapeutic candidates for chronic lymphocytic leukemia from a library of approved drugs. PLoS ONE 2013, 8, e75252. [Google Scholar] [CrossRef] [PubMed]
- Thorne, N.; Auld, D.S.; Inglese, J. Apparent activity in high-throughput screening: Origins of compound-dependent assay interference. Curr. Opin. Chem. Biol. 2010, 14, 315–324. [Google Scholar] [CrossRef] [PubMed]
- (Sittampalam; et al.) Assay Guidance Manual. Available online: https://www.ncbi.nlm.nih.gov/books/NBK53196 (accessed on 27 December 2017).
- Nebane, N.M.; Tatjana, C.; Kanupriya, W.; Sara, M.; LaKeisha, W.; Melinda, S.; Russell, S.; Lynn, R.; Mary-Ann, B.; White, E.L. High-throughput RNA interference screening: Tricks of the trade. J. Lab. Automat. 2013, 18, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Birmingham, A.; Selfors, L.M.; Forster, T.; Wrobel, D.; Kennedy, C.J.; Shanks, E.; Santoyo-Lopez, J.; Dunican, D.J.; Long, A.; Kelleher, D.; et al. Statistical methods for analysis of high-throughput RNA interference screens. Nat. Methods 2009, 6, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.; Casini, A.; Heine, A.; Kuhn, D.; Supuran, C.T.; Scozzafava, A.; Klebe, G. Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: New pharmacological opportunities due to related binding site recognition. J. Med. Chem. 2004, 47, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Dahlin, J.L.; Walters, M.A. How to triage pains-full research. Assay Drug Dev.Technol. 2016, 14, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Bruns, R.F.; Watson, I.A. Rules for identifying potentially reactive or promiscuous compounds. J. Med. Chem. 2012, 55, 9763–9772. [Google Scholar] [CrossRef] [PubMed]
- Jhoti, H.; Williams, G.; Rees, D.C.; Murray, C.W. The “rule of three”; for fragment-based drug discovery: Where are we now? Nat. Rev. Drug Discov. 2013, 12, 644. [Google Scholar] [CrossRef] [PubMed]
- Congreve, M.; Carr, R.; Murray, C.; Jhoti, H. A ‘rule of three’ for fragment-based lead discovery? Drug Discovery. Today 2003, 8, 876–877. [Google Scholar] [CrossRef]
- Huang, R.; Southall, N.; Wang, Y.; Yasgar, A.; Shinn, P.; Jadhav, A.; Nguyen, D.T.; Austin, C.P. The NCGC pharmaceutical collection: A comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci. Transl. Med. 2011, 3, 80ps16. [Google Scholar] [CrossRef] [PubMed]
- Strovel, J.; Sittampalam, S.; Coussens, N.P.; Hughes, M.; Inglese, J.; Kurtz, A.; Andalibi, A.; Patton, L.; Austin, C.; Baltezor, M.; et al. Early drug discovery and development guidelines: For academic researchers, collaborators, and start-up companies. In Assay Guidance Manual; Sittampalam, G.S., Coussens, N.P., Brimacombe, K., Grossman, A., Arkin, M., Auld, D., Austin, C., Baell, J., Bejcek, B., Chung, T.D.Y., et al., Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2004. [Google Scholar]
- Yin, H.; Kassner, M. In vitro high-throughput RNAi screening to accelerate the process of target identification and drug development. Methods Mol. Biol. 2016, 1470, 137–149. [Google Scholar] [PubMed]
- Ana, E.; Miguel, M. MicroRNA screening and the quest for biologically relevant targets. J. Biomol. Screen. 2015, 20, 1003–1017. [Google Scholar]
- Mark, W. High-throughput silencing using the CRISPR-Cas9 system: A review of the benefits and challenges. J. Biomol. Screen. 2015, 20, 1027–1039. [Google Scholar]
- Shih, H.H.; Miller, P.; Harnish, D.C. An overview of the discovery and development process for biologics. Pharmaceutical Sciences Encyclopedia. 2013, 1, 1–28. [Google Scholar]
- Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today 2015, 20, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bryant, S.H.; Cheng, T.; Wang, J.; Gindulyte, A.; Shoemaker, B.A.; Thiessen, P.A.; He, S.; Zhang, J. PubChem BioAssay: 2017 update. Nucleic Acids Res. 2017, 45, D955–D963. [Google Scholar] [CrossRef] [PubMed]
- Jasial, S.; Hu, Y.; Bajorath, J. How frequently are pan-assay interference compounds active? Large-scale analysis of screening data reveals diverse activity profiles, low global hit frequency, and many consistently inactive compounds. J. Med. Chem. 2017, 60, 3879–3886. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, J.L.; Nissink, J.W.M.; Strasser, J.M.; Francis, S.; Higgins, L.; Zhou, H.; Zhang, Z.; Walters, M.A. PAINS in the assay: Chemical mechanisms of assay interference and promiscuous enzymatic inhibition observed during a sulfhydryl-scavenging HTS. J. Med. Chem. 2015, 58, 2091–2113. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, J.L.; Inglese, J.; Walters, M.A. Mitigating risk in academic preclinical drug discovery. Nat. Rev. Drug Discov. 2015, 14, 279–294. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Taylor, B.; McDonald, P.R.; Price, A.; Chaguturu, R. Hit-to-Probe-to-Lead Optimization Strategies: A Biology Perspective to Conquer the Valley of Death, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009; Volume 196, p. 35. [Google Scholar]
- Frye, S.V. The art of the chemical probe. Nat. Chem. Biol. 2010, 6, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Workman, P.; Collins, I. Probing the probes: Fitness factors for small molecule tools. Chem. Biol. 2010, 17, 561–577. [Google Scholar] [CrossRef] [PubMed]
- Peterson, K.R.; Costa, F.C.; Fedosyuk, H.; Neades, R.Y.; Chazelle, A.M.; Zelenchuk, L.; Fonteles, A.H.; Dalal, P.; Roy, A.; Chaguturu, R.; et al. A cell-based high-throughput screen for novel chemical inducers of fetal hemoglobin for treatment of hemoglobinopathies. PLoS ONE 2014, 9, e107006. [Google Scholar] [CrossRef] [PubMed]
- Martinez Molina, D.; Nordlund, P. The cellular thermal shift assay: A novel biophysical assay for in situ drug target engagement and mechanistic biomarker studies. Annu. Rev. Pharmacol. Toxicol. 2016, 56, 141–161. [Google Scholar] [CrossRef] [PubMed]
- Simon, G.M.; Niphakis, M.J.; Cravatt, B.F. Determining target engagement in living systems. Nat. Chem. Biol. 2013, 9, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Chin-Dusting, J.; Mizrahi, J.; Jennings, G.; Fitzgerald, D. Finding improved medicines: The role of academic–industrial collaboration. Nat. Rev. Drug Discov. 2005, 4, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, S.L. Organic synthesis toward small-molecule probes and drugs. Proc. Natl. Acad.Sci. USA 2011, 108, 6699–6702. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, S.L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 2000, 287, 1964–1969. [Google Scholar] [CrossRef] [PubMed]
- Ciardiello, J.J.; Stewart, H.L.; Sore, H.F.; Galloway, W.; Spring, D.R. A novel complexity-to-diversity strategy for the diversity-oriented synthesis of structurally diverse and complex macrocycles from quinine. Bioorg. Med. Chem. 2017, 25, 2825–2843. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, S.L.; Kotz, J.D.; Li, M.; Aube, J.; Austin, C.P.; Reed, J.C.; Rosen, H.; White, E.L.; Sklar, L.A.; Lindsley, C.W.; et al. Advancing biological understanding and therapeutics discovery with small-molecule probes. Cell 2015, 161, 1252–1265. [Google Scholar] [CrossRef] [PubMed]
- McLeod, M.C.; Aube, J. Efficient access to sp(3)-rich tricyclic amine scaffolds through Diels-Alder reactions of azide-containing silyloxydienes. Tetrahedron 2016, 72, 3766–3774. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Aube, J. Synthesis of cyclic 1,3-diols as scaffolds for spatially directed libraries. Org. Biomol. Chem. 2016, 14, 4299–4303. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Cao, S.; Su, P.-C.; Patel, R.; Shah, D.; Chokshi, H.B.; Szukala, R.; Johnson, M.E.; Hevener, K.E. Hit identification and optimization in virtual screening: Practical recommendations based upon a critical literature analysis. J. Med. Chem. 2013, 56, 6560–6572. [Google Scholar] [CrossRef] [PubMed]
- Pu, M.; Hayashi, T.; Cottam, H.; Mulvaney, J.; Arkin, M.; Corr, M.; Carson, D.; Messer, K. Analysis of high-throughput screening assays using cluster enrichment. Stat. Med. 2012, 31, 4175–4189. [Google Scholar] [CrossRef] [PubMed]
- Petrone, P.M.; Simms, B.; Nigsch, F.; Lounkine, E.; Kutchukian, P.; Cornett, A.; Deng, Z.; Davies, J.W.; Jenkins, J.L.; Glick, M. Rethinking molecular similarity: Comparing compounds on the basis of biological activity. ACS Chem. Biol. 2012, 7, 1399–1409. [Google Scholar] [CrossRef] [PubMed]
- Huryn, D.M.; Resnick, L.O.; Wipf, P. Contributions of academic labs to the discovery and development of chemical biology tools. J. Med. Chem. 2013, 56, 7161–7176. [Google Scholar] [CrossRef] [PubMed]
- Wassermann, A.M.; Tudor, M.; Glick, M. Deorphanization strategies for dark chemical matter. Drug Discov. Today Technol. 2017, 23, 69–74. [Google Scholar] [CrossRef] [PubMed]
- London, N.; Miller, R.M.; Krishnan, S.; Uchida, K.; Irwin, J.J.; Eidam, O.; Gibold, L.; Cimermančič, P.; Bonnet, R.; Shoichet, B.K.; et al. Covalent docking of large libraries for the discovery of chemical probes. Nat. Chem. Biol. 2014, 10, 1066–1072. [Google Scholar] [CrossRef] [PubMed]
- Slusher, B.S.; Conn, P.J.; Frye, S.; Glicksman, M.; Arkin, M. Bringing together the academic drug discovery community. Nat. Rev. Drug Discov. 2013, 12, 811. [Google Scholar] [CrossRef] [PubMed]
- Academic DRUG DISCOVERY Consortium. Available online: http://addconsortium.org/ (accessed on 27 December 2017).
- Silber, B.M. Driving drug discovery: The fundamental role of academic labs. Sci. Transl. Med. 2010, 2, 30cm16. [Google Scholar] [CrossRef] [PubMed]
- Kneller, R. The importance of new companies for drug discovery: Origins of a decade of new drugs. Nat. Rev. Drug Discov. 2010, 9, 867–882. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, A. Early Probe and Drug Discovery in Academia: A Minireview. High-Throughput 2018, 7, 4. https://doi.org/10.3390/ht7010004
Roy A. Early Probe and Drug Discovery in Academia: A Minireview. High-Throughput. 2018; 7(1):4. https://doi.org/10.3390/ht7010004
Chicago/Turabian StyleRoy, Anuradha. 2018. "Early Probe and Drug Discovery in Academia: A Minireview" High-Throughput 7, no. 1: 4. https://doi.org/10.3390/ht7010004
APA StyleRoy, A. (2018). Early Probe and Drug Discovery in Academia: A Minireview. High-Throughput, 7(1), 4. https://doi.org/10.3390/ht7010004