Characterization of the Obsidian Used in the Chipped Stone Industry in Kendale Hecala
Abstract
:1. Introduction
2. The Archaeological Site
3. The Lithic Industry at Kendale Hecala
4. Materials and Methods
4.1. Sampling
4.2. Analytical Procedure
4.3. Data Analysis
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carter, R.A.; Philip, G. Beyond the Ubaid: Transformation and Integration in the Late Prehistoric Societies of the Middle East; The University of Chicago: Chicago, IL, USA, 2010; pp. 1–23. [Google Scholar]
- Porada, E.; Hansen, D.P.; Dunham, S.; Babcock, S.H. The Chronology of Mesopotamia, ca. 7000–1600 BC. In Chronologies in Old World Archaeology; Ehrick, R.W., Ed.; University of Chicago Press: Chicago, IL, USA, 1992; pp. 77–121. [Google Scholar]
- Lemonnier, P. La description des chaînes opératoires: Contribution à l’analyse des systèmes techniques. Techniques et Culture 1976, 1, 100–151. [Google Scholar]
- Lemonnier, P. Elements for an Anthropology of Technology; The University of Michigan: Ann Arbor, MI, USA, 1992; pp. 25–32. [Google Scholar]
- Thomalsky, J. Lithic industries of the Ubaid and Post-Ubaid period in northern Mesopotamia. Publ. L'Institut Français D'Études Anatol. 2012, 27, 417–439. [Google Scholar]
- Batist, Z. Obsidian Circulation Networks in Southwest Asia an Anatolia (12,000–5700 B.P.): A Comparative Approach. Master’s Thesis, McMaster University, Hamilton, ON, Canada, 2014. [Google Scholar]
- Campbell, S.; Healey, E. Diversity in obsidian use in the prehistoric and early historic Middle East. Quat. Int. 2018, 468, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Barge, O.; Kharanaghi, H.A.; Biglari, F.; Moradi, B.; Mashkour, M.; Tengberg, M.; Chataigner, C. Diffusion of Anatolian and Caucasian obsidian in the Zagros Mountains and the highlands of Iran: Elements of explanation in ‘least cost path’ models. Quat. Int. 2018, 467, 297–322. [Google Scholar] [CrossRef]
- Campbell, S.; Healey, E. Multiple sources: The pXRF analysis of obsidian from Kenan Tepe, SE Turkey. JAS Rep. 2016, 10, 377–389. [Google Scholar] [CrossRef] [Green Version]
- Renfrew, C.; Dixon, J.E.; Cann, J.R. Obsidian and early cultural contact in the Near East. East. Proc. Prehist. Soc. 1966, 32, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Campbell, S.; Healey, E.; Maeda, O. Profiling an unlocated source: Group 3D obsidian in prehistoric and early historic near East. JAS Rep. 2020, 33, 102533. [Google Scholar] [CrossRef]
- Khalidi, L.; Gratuze, B.; Stein, G.; McMahon, A.; Al-Quntar, S.; Carter, R.; Cuttler, R.; Dreshchler, P.; Healey, E.; Inizan, M.L.; et al. The growth of early social networks: New geochemical results of obsidian from the Ubaid to Chalcolithic Period in Syria, Iraq and the Gulf. JAS Rep. 2016, 9, 743–757. [Google Scholar] [CrossRef] [Green Version]
- Muşkara, Ü.; Konak, A. Obsidian source identification at Gre Fılla, Turkey. JAS Rep. 2021, 38, 103003. [Google Scholar] [CrossRef]
- Ökse, A.T. Ambar Dam Salvage Excavations in 2018–2020: Ambar Höyük, Gre Fılla and Kendale Hecala. In Archaeology of Anatolia Volume IV: Recent Discoveries (2018–2020); Sharon, R.S., McMahon, G., Eds.; Cambridge Scholars Press: Newcastle upon Tyne, UK, 2021; pp. 4–20. [Google Scholar]
- Ökse, A.T. New Data on the Late Neolithic Pottery from the Northern Upper Tigris Region: Ambar Dam Reservoir. In Neolithic Pottery from the Near East: Production, Distribution and Use, Proceedings of the 2019 Third International Workshop (Antalya, Turkey); Özbal, R., Erdalkıran, M., Tonoike, Y., Eds.; Koç University Press: Istanbul, Turkey, 2020; Volume 259, pp. 301–322. [Google Scholar]
- Davis, M.K.; Jackson, T.L.; Shackley, M.S.; Teague, T.; Hampel, J.H. Factors affecting the energy-dispersive X-ray fluorescence (EDXRF) analysis of archaeological obsidian. In Archaeological Obsidian Studies: Method and Theory; Shackley, M.S., Ed.; Plenum Press: New York, NY, USA, 1998; pp. 159–180. [Google Scholar]
- Shackley, M.S. An introduction to X-ray fluorescence (XRF) analysis in archaeology. In X-ray Fluorescence Spectrometry (XRF) in Geoarchaeology; Shackley, M.S., Ed.; Springer: New York, NY, USA, 2011; pp. 7–44. [Google Scholar]
- Gauvin, R.; Lifshin, E. Simulation of X-ray emission from rough surfaces. Microchim. Acta 2000, 132, 201–204. [Google Scholar] [CrossRef]
- Liritsiz, I.; Zacharias, N. Portable XRF of Archaeological Artifacts: Current Research, Potentials and Limitations. In X-ray Fluorescence Spectrometry (XRF) in Geoarchaeology; Shackley, M.S., Ed.; Springer: New York, NY, USA, 2011; pp. 1009–1142. [Google Scholar]
- Steiner, A.E.; Conrey, R.M.; Wolff, J.A. PXRF calibrations for volcanic rocks and the application of in-field analysis to the geosciences. Chem. Geol. 2017, 453, 35–54. [Google Scholar] [CrossRef]
- Hunt, A.M.; Speakman, R.J. Portable XRF analysis of archaeological sediments and ceramics. JAS 2015, 53, 626–638. [Google Scholar] [CrossRef]
- Ferguson, J.R. X-ray Fluorescence of Obsidian: Approaches to Calibration and the Analysis of Small Samples. Handheld XRF for Art and Archaeology; Leuven University Press: Leuven, Belgium, 2012; pp. 401–422. [Google Scholar]
- Nazaroff, A.J.; Prufer, K.M.; Drake, B.L. Assessing the applicability of portable X-ray fluorescence spectrometry for obsidian provenance research in the Maya lowlands. JAS 2010, 37, 885–895. [Google Scholar] [CrossRef]
- Frahm, E. Validity of “off-the-shelf” handheld portable XRF for sourcing Near Eastern obsidian chip debris. JAS 2013, 40, 1080–1092. [Google Scholar] [CrossRef]
- Glascock, M.D.; Neff, H. Neutron activation analysis and provenance research in archaeology. Meas. Sci. Technol. 2003, 14, 1516–1526. [Google Scholar] [CrossRef]
- Grave, P.; Kealhofer, L.; Marsh, B.; Gates, M.H. Using neutron activation analysis to identify scales of interaction at Kinet Höyük, Turkey. JAS 2008, 35, 1974–1992. [Google Scholar] [CrossRef]
- Forster, N.; Grave, P. Non-destructive PXRF analysis of museum-curated obsidian from the Near East. JAS 2012, 35, 1974–1992. [Google Scholar] [CrossRef]
- Prokeš, L.; Galiová, M.V.; Hušková, S.; Vaculovič, T.; Hrdlička, A.; Mason, A.Z.; Neff, H.; Přichystal, A.; Kanický, V. Laser microsampling and multivariate methods in provenance studies of obsidian artefacts. Chem. Pap. 2015, 69, 761–778. [Google Scholar] [CrossRef]
- Robin, A.K.; Mouralis, D.; Akköprü, E.; Gratuze, B.; Kuzucuoğlu, C.; Nomade, S.; Pereira, A.; Doğu, A.F.; Erturaç, K.; Khalidi, L. Identification and characterization of two new obsidian sub-sources in the Nemrut volcano (Eastern Anatolia, Turkey): The Sıcaksu and Kayacık obsidian. JAS Rep. 2016, 9, 705–717. [Google Scholar] [CrossRef]
- Orange, M.; Carter, T.; Le Bourdonnec, F.X. Sourcing obsidian from Tell Aswad and Qdeir 1 (Syria) by SEM-EDS and EDXRF: Methodological implications. Comptes Rendus Palevol 2013, 12, 173–180. [Google Scholar] [CrossRef]
- Baxter, M.J.; Buck, C.E. Data Handling and Statistical Analysis. In Modern Analytical Methods in Art and Archaeology; Ciliberto, E., Spoto, G., Eds.; John Wiley and Sons: New York, NY, USA, 2000; pp. 681–746. [Google Scholar]
- Glascock, D.M. A systematic approach to geochemical sourcing of obsidian artifacts. Sci. Cult. 2020, 2, 35–47. [Google Scholar]
- Liritzis, I.; Xanthopoulou, V.; Palamara, E.; Papageorgiou, I.; Iliopoulos, I.; Zacharias, N.; Vafiadou, A.; Karydas, A.G. Characterization and provenance of ceramic artifacts and local clays from Late Mycenaean Kastrouli (Greece) by means of p-XRF screening and statistical analysis. J. Cult. Herit. 2020, 46, 61–81. [Google Scholar] [CrossRef]
- López-García, P.A.; Vidal-Aldana, C.I.; Gómez-Ambríz, E.A.; Argote, D.L. The obsidian of la ferrería site: Local consumption and long-distance interactions in north and northwestern Mexico. JAS Rep. 2021, 9, 103081. [Google Scholar] [CrossRef]
- Chataigner, C.; Poidevin, J.L.; Arnaud, N.O. Turkish occurrences of obsidian and use by prehistoric peoples in the Near East from 14,000 to 6000 BP. J. Volcanol. Geotherm. Res. 1998, 85, 517–537. [Google Scholar] [CrossRef]
- Chabot, J.; Poidevin, J.L.; Chataigner, C.; Fortin, M. Caracterisation et provenance des artefacts en obsidienne de Tell’Atij et de Tell Gudeda (III millenaire, Syrie). Cahiers d’Acheologie Du CELAT 2001, 10, 241–256. [Google Scholar]
- Francaviglia, V.M. L’origine des outils en obsidienne de Tell Magzalia, Tell Sotto, Yarim Tepe et Kül Tepe, Iraq. Paléorient 1994, 20, 18–31. [Google Scholar] [CrossRef]
- Gratuze, B. Obsidian characterization by laser ablation ICP-MS and its application to prehistoric trade in the Mediterranean and the Near East: Sources and distribution of obsidian within the Aegean and Anatolia. JAS 1999, 26, 869–881. [Google Scholar] [CrossRef] [Green Version]
- Bressy, C.; Poupeau, G.; Yener, K.A. Cultural interactions during the Ubaid and Halaf periods: Tell Kurdu (Amuq Valley, Turkey) obsidian sourcing. JAS 2005, 32, 1560–1565. [Google Scholar] [CrossRef]
- Khalidi, L.; Gratuze, B.; Boucetta, S. Provenance of obsidian excavated from Late Chalcolithic levels at the sites of Tell Hamoukar and Tell Brak, Syria. Archaeometry 2009, 51, 879–893. [Google Scholar] [CrossRef]
- Poupeau, G.; Le Bourdonnec, F.X.; Carter, T.; Delerue, S.; Shackley, M.S.; Barrat, J.A.; Dubernet, S.; Moretto, P.; Calligaro, T.; Milić, M.; et al. The use of SEM-EDS, PIXE and EDXRF for obsidian provenance studies in the Near East: A case study from Neolithic Çatalhöyük (central Anatolia). JAS 2010, 37, 2705–2720. [Google Scholar] [CrossRef]
- Chataigner, C. Les propriétés géochimiques des obsidiennes et la distinction des sources de Bingöl et du Nemrut Dag. Paléorient 1994, 20, 9–17. [Google Scholar] [CrossRef]
- Frahm, E. Distinguishing Nemrut Dağ and Bingöl A obsidians: Geochemical and landscape differences and the archaeological implications. JAS 2012, 39, 1436–1444. [Google Scholar] [CrossRef]
- Frahm, E. Variation in Nemrut Dağ obsidian at Pre-Pottery Neolithic to Late Bronze Age sites (or: All that’s Nemrut Dağ obsidian isn’t the Sıcaksu source). JAS 2020, 32, 102438. [Google Scholar] [CrossRef]
- Abedi, A.; Vosough, B.; Razani, M.; Kasiri, M.B.; Steimiger, D.; Ebrahimi, G. Obsidian Deposits from Northwestern Iran and First Analytical Results: Implications for Prehistoric Production and Trade. Mediterr. Archaeol. Archaeom. 2018, 18, 107–118. [Google Scholar]
- Ökse, A.T. Yukarı Dicle Havzasında Ambar Çayı Vadisi Yerleşim Tarihi. Olba 2020, 28, 1–34. [Google Scholar]
- Abedi, A.; Varoutsikos, B.; Chataigner, C. Provenance of obsidian artifacts from the Chalcolithic site of Dava Göz in NW IRAN using portable XRF. JAS Rep. 2018, 20, 756–767. [Google Scholar] [CrossRef]
Date (BC) | Period | Pottery | Lithics | Architecture |
---|---|---|---|---|
6660–5500 | KH III-PN 1 | |||
5500–4550 | KH II-Ubaid 3–4 | |||
500–1500 2 | KH I-Middle Age |
Sample Nr | Stratum | Trench | Color | Assemblage |
---|---|---|---|---|
KH-O-001 | KH II | K8 | Black | Retouched |
KH-O-002 | KH II | L8 | Gray | Retouched |
KH-O-003 | KH II | L8 | Black | Retouched |
KH-O-004 | KH II | L8 | Gray | Retouched |
KH-O-005 | KH II | L8 | Black | Retouched |
KH-O-006 | KH II | K8 | Green | Retouched |
KH-O-007 | KH II | K8 | Green | Flake |
KH-O-008 | KH II | K8 | Green | Core |
KH-O-009 | KH II | K8 | Green | Splitter |
KH-O-010 | KH II | K8 | Green | Retouched |
KH-O-011 | KH II | K8 | Green | Retouched |
KH-O-012 | KH II | K8 | Green | Flake |
KH-O-013 | KH II | K8 | Smokey gray | Core |
KH-O-014 | KH II | K8 | Smokey gray | Retouched |
KH-O-015 | KH II | K8 | Green | Core |
KH-O-016 | KH II | K8 | Green | Flake |
KH-O-017 | KH II | L8 | Green-gray | Flake |
KH-O-018 | KH II | L8 | Green-gray | Retouched |
KH-O-019 | KH II | L8 | Green-gray | Splitter |
KH-O-020 | KH II | L8 | Black | Retouched |
KH-O-021 | KH II | L8 | Green-gray | Retouched |
Sample | Fe | Ca | Zr | Ti | Ba | Mn | Rb | Zn | Sr | Pb | As | Source |
---|---|---|---|---|---|---|---|---|---|---|---|---|
KH-O-001 | 12,132 | 4666 | 268 | 1168 | 317 | 305 | 192 | 36 | 38 | 25 | 5 | Bingöl B |
KH-O-002 | 12,860 | 7271 | 286 | 1288 | 318 | 296 | 208 | 33 | 39 | 29 | 3 | Bingöl B |
KH-O-003 | 15,396 | 7204 | 291 | 1186 | 419 | 310 | 203 | 36 | 38 | 25 | 6 | Bingöl B |
KH-O-004 | 12,537 | 8398 | 281 | 1180 | 373 | 275 | 194 | 39 | 37 | 29 | 1 | Bingöl B |
KH-O-005 | 12,673 | 5371 | 295 | 1228 | 431 | 323 | 205 | 39 | 38 | 29 | 3 | Bingöl B |
KH-O-006 | 28,952 | 2145 | 1148 | 1173 | n.d. 1 | 541 | 216 | 168 | n.d. | 34 | 23 | Nemrut D. |
KH-O-007 | 26,570 | 1791 | 1051 | 1067 | n.d. | 486 | 194 | 140 | n.d. | 31 | 20 | Nemrut D. |
KH-O-008 | 28,504 | 2342 | 1148 | 916 | n.d. | 500 | 210 | 167 | n.d. | 36 | 18 | Nemrut D. |
KH-O-009 | 24,063 | 2170 | 1022 | 899 | n.d. | 504 | 202 | 145 | n.d. | 39 | 22 | Nemrut D. |
KH-O-010 | 27,422 | 1922 | 1078 | 1149 | n.d. | 490 | 196 | 162 | n.d. | 33 | 17 | Nemrut D. |
KH-O-011 | 27,345 | 1859 | 892 | 1157 | n.d. | 584 | 194 | 136 | n.d. | 33 | 15 | Nemrut D. |
KH-O-012 | 24,812 | 1871 | 1042 | 1008 | n.d. | 477 | 206 | 156 | n.d. | 38 | 25 | Nemrut D. |
KH-O-013 | 10,206 | 5486 | 170 | 368 | n.d. | 331 | 394 | 74 | n.d. | 63 | 15 | Group 3d |
KH-O-014 | 11,825 | 3571 | 189 | 449 | n.d. | 430 | 448 | 84 | n.d. | 67 | 14 | Group 3d |
KH-O-015 | 11,553 | 4442 | 273 | 1079 | 356 | 284 | 198 | 33 | 34 | 28 | 4 | Bingöl B |
KH-O-016 | 30,038 | 2532 | 1260 | 1230 | n.d. | 554 | 229 | 170 | n.d. | 40 | 22 | Nemrut D. |
KH-O-017 | 18,320 | 2379 | 1082 | 759 | n.d. | 392 | 201 | 130 | n.d. | 31 | 14 | Nemrut D. |
KH-O-018 | 29,772 | 2807 | 1019 | 1294 | n.d. | 631 | 223 | 151 | n.d. | 42 | 16 | Nemrut D. |
KH-O-019 | 18,665 | 2587 | 1080 | 794 | n.d. | 408 | 202 | 142 | n.d. | 33 | 14 | Nemrut D. |
KH-O-020 | 12,158 | 4280 | 196 | 467 | 317 | 383 | 476 | 89 | 11 | 70 | 11 | Group 3d |
KH-O-021 | 33,332 | 2215 | 1098 | 1212 | 318 | 734 | 235 | 163 | 38 | 41 | 20 | Nemrut D. |
1 | 2 | 3 | |
---|---|---|---|
Log10Fe | 0.878 | −0.426 | 0.165 |
Log10Zr | 0.887 | −0.359 | −0.188 |
Log10Ca | −0.675 | −0.145 | 0.644 |
Log10Ti | −0.134 | −0.931 | 0.251 |
Log10Mn | 0.733 | −0.196 | 0.596 |
Log10Rb | −0.011 | 0.948 | 0.269 |
Log10Zn | 0.979 | 0.093 | 0.000 |
Log10Pb | 0.351 | 0.888 | 0.223 |
Log10As | 0.921 | 0.240 | −0.025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muşkara, Ü.; Konak, A. Characterization of the Obsidian Used in the Chipped Stone Industry in Kendale Hecala. Quaternary 2022, 5, 3. https://doi.org/10.3390/quat5010003
Muşkara Ü, Konak A. Characterization of the Obsidian Used in the Chipped Stone Industry in Kendale Hecala. Quaternary. 2022; 5(1):3. https://doi.org/10.3390/quat5010003
Chicago/Turabian StyleMuşkara, Üftade, and Ayşin Konak. 2022. "Characterization of the Obsidian Used in the Chipped Stone Industry in Kendale Hecala" Quaternary 5, no. 1: 3. https://doi.org/10.3390/quat5010003
APA StyleMuşkara, Ü., & Konak, A. (2022). Characterization of the Obsidian Used in the Chipped Stone Industry in Kendale Hecala. Quaternary, 5(1), 3. https://doi.org/10.3390/quat5010003