Estimation of Total Real and Reactive Power Losses in Electrical Power Systems via Artificial Neural Network
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- A.
- Results for the IEEE 14-bus system
- B.
- Results for the IEEE 30-bus system
- C.
- Results for the IEEE 57-bus system
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
MLP | Multi-layer Perceptron Network |
ANN | Artificial neural network |
MSE | Mean square error |
MAPE | Mean Absolute Percentage Error |
λ | Loading factor |
Yob | Obtained outputs |
Ydes | Desired outputs |
CPF | Continuation power flow |
CP | Critical point |
Pa | Total real power losses |
Pr | Total reactive power losses |
PCPF | Parameterization continuation power flow |
p.u. | Per unit |
References
- Moldoveanu, C.; Ionita, I.; Brezoianu, V.; Zaharescu, S.; Grigorescu, S.; Hategan, I.; Marcolt, M. Romanian innovative system for power losses real time monitoring and analysis in electrical transmission and distribution systems. In Proceedings of the 9th International Conference on Modern Power Systems (MPS), Cluj-Napoca, Romania, 16–17 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Bonini Neto, A.; Magalhães, E.M.; Alves, D.A. Geometric Parameterization Technique for Continuation Power Flow Based on Quadratic Curve. Electr. Power Compon. Syst. 2017, 45, 1905–1917. [Google Scholar] [CrossRef]
- Tostado-Véliz, M.; Kamel, S.; Jurado, F. Development and Comparison of Efficient Newton-Like Methods for Voltage Stability Assessment. Electr. Power Compon. Syst. 2020, 48, 1798–1813. [Google Scholar] [CrossRef]
- Lima, G.B.; Bonini Neto, A.; Alves, D.A.; Minussi, C.R.; da Silva Amorim, E.; da Silva, L.C.P. Technique for Reactive Loss Reduction and Loading Margin Enhancement Using the Curves of Losses versus Voltage Magnitude. Energies 2023, 16, 5867. [Google Scholar] [CrossRef]
- Fernandes, T.R.; Ricciardi, T.R.; Schincariol, R.; De Almeida, M.C. Contributions to the Sequence-Decoupling Compensation Power Flow Method for Distribution System Analysis. IET Gener. Transm. Distrib. 2019, 13, 583–594. [Google Scholar] [CrossRef]
- Dong, X.; Wang, C.; Yun, Z.; Han, X.; Liang, J.; Wang, Y.; Zhao, P. Calculation of optimal load margin based on improved continuation power flow model. Int. J. Electr. Power Energy Syst. 2018, 94, 225–233. [Google Scholar] [CrossRef]
- Ansari, M.R.; Pirouzi, S.; Kazemi, M.; Naderipour, A.; Benbouzid, M. Renewable Generation and Transmission Expansion Planning Coordination with Energy Storage System: A Flexibility Point of View. Appl. Sci. 2021, 11, 3303. [Google Scholar] [CrossRef]
- Li, X.; Zhao, J.; Liang, H.; Xu, J. Application of an Improved Continuous Power Flow Method in Voltage Stability Analysis. In Proceedings of the 6th International Conference on Systems and Informatics (ICSAI), Shanghai, China, 2–4 November 2019; pp. 244–248. [Google Scholar] [CrossRef]
- Bonini Neto, A.; Alves, D.A. Singularities Analysis of the Jacobian Matrix Modified in the Continuation Power Flow: Mathematical Modeling. IEEE Lat. Am. Trans. 2016, 15, 2137–2143. [Google Scholar] [CrossRef]
- Bonini Neto, A.; Alves, D.A. Singularities Analysis of the Jacobian Matrix Modified in the Continuation Power Flow: Performance Evaluation. IEEE Lat. Am. Trans. 2017, 15, 2137–2143. [Google Scholar] [CrossRef]
- dos Santos, W.P.L.; Bonini Neto, A.; Gabriel Filho, L.R.A. Post-Contingency Loading Margin through Plane Change in the Continuation Power Flow. Energies 2023, 16, 7583. [Google Scholar] [CrossRef]
- Bonini Neto, A.; Alves, D.A.; Minussi, C.R. Artificial Neural Networks: Multilayer Perceptron and Radial Basis to Obtain Post-Contingency Loading Margin in Electrical Power Systems. Energies 2022, 15, 7939. [Google Scholar] [CrossRef]
- Aydin, F.; Gümüş, B. Study of Different ANN Algorithms for Voltage Stability Analysis. In Proceedings of the Innovations in Intelligent Systems and Applications Conference (ASYU), Istanbul, Turkey, 15–17 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Carreras, J.; Kikuti, Y.Y.; Miyaoka, M.; Hiraiwa, S.; Tomita, S.; Ikoma, H.; Kondo, Y.; Ito, A.; Nakamura, N.; Hamoudi, R. A Combination of Multilayer Perceptron, Radial Basis Function Artificial Neural Networks and Machine Learning Image Segmentation for the Dimension Reduction and the Prognosis Assessment of Diffuse Large B-Cell Lymphoma. AI 2021, 2, 106–134. [Google Scholar] [CrossRef]
- Ke, K.-C.; Huang, M.-S. Quality Prediction for Injection Molding by Using a Multilayer Perceptron Neural Network. Polymers 2020, 12, 1812. [Google Scholar] [CrossRef] [PubMed]
- Shankar, G.; Mukherjee, V.; Debnath, S.; Gogoi, K. Study of different ANN algorithms for weak area identification of power systems. In Proceedings of the 1st International Conference on Power and Energy in NERIST (ICPEN), Nirjuli, India, 28–29 December 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Al-Roomi, A.R.; El-Hawary, M.E. Novel Highly Precise Power Loss Estimators that Directly Solve Power Balance Equality Constraints. In Proceedings of the 2019 IEEE Electrical Power and Energy Conference (EPEC), Montreal, QC, Canada, 16–18 October 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Mathworks. Available online: http://www.mathworks.com (accessed on 20 January 2024).
- Bayram, S.; Çıtakoğlu, H. Modeling monthly reference evapotranspiration process in Turkey: Application of machine learning methods. Environ. Monit. Assess. 2023, 195, 67. [Google Scholar] [CrossRef] [PubMed]
- Özbayrak, A.; Ali, M.K.; Çıtakoğlu, H. Buckling Load Estimation Using Multiple Linear Regression Analysis and Multigene Genetic Programming Method in Cantilever Beams with Transverse Stiffeners. Arab. J. Sci. Eng. 2024, 48, 5347–5370. [Google Scholar] [CrossRef]
ANN | Specified Values | Achieved Values |
---|---|---|
Iterations | 100 | 14 |
Time (s) | 20 | 3 |
Performance (MSE) Training | 0.001 | * 0.00096832 |
Correlation (R2) | 1.0 | 0.9994 |
Performance (MSE) Validation | 0.001 | 0.00102334 |
Correlation (R2) Validation | 1.0 | 0.9993 |
MAPE Training | 0.0% | 0.0013% |
MAPE Validation | 0.0% | 0.0017% |
p_value Training | >5% | 97.68% NS |
p_value Validation | >5% | 95.41% NS |
Sistema | CPF-Ydes | ANN-Yob | Error (Pa) | Error (Pr) | |||
---|---|---|---|---|---|---|---|
λ | Pa | Pr | Pa | Pr | |||
IEEE-14 | 1.7680 | 0.7855 | 3.1321 | 0.8008 | 3.1245 | 0.0153 | 0.0076 |
IEEE-30 | 1.5335 | 0.8036 | 2.9657 | 0.8316 | 3.0070 | 0.0280 | 0.0413 |
IEEE-57 | 1.7252 | 1.0600 | 3.4851 | 1.0540 | 3.4492 | 0.0060 | 0.0359 |
Neurons Hidden Layer | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Neurons input layer | m1 | m2 | m3 | m4 | m5 | m6 | m7 | m8 | m9 | m10 | |
R1 | −1.2368 | −1.5605 | 1.1352 | 1.7150 | 2.5877 | 2.2800 | 1.7049 | −0.5347 | 0.0008 | −1.7900 | |
R2 | −0.0780 | 1.5275 | 1.3470 | −3.1085 | −5.2889 | 0.6714 | −0.5995 | 0.0254 | −2.0015 | 2.3300 | |
R3 | −2.0406 | −1.2778 | −2.1769 | −1.1149 | −0.2648 | 0.0610 | −2.9989 | 2.7551 | 1.6881 | 1.0371 |
Neurons Output Layer | |||
---|---|---|---|
Neuons hidden layer | i1 | i2 | |
m1 | −0.3609 | 0.2951 | |
m2 | 0.1773 | −0.8661 | |
m3 | 0.5061 | 0.3577 | |
m4 | −0.7777 | −0.8783 | |
m5 | 0.4843 | 0.6522 | |
m6 | −0.1138 | −0.0693 | |
m7 | −0.4676 | −0.3453 | |
m8 | 0.5247 | 0.3355 | |
m9 | −0.2771 | 0.4759 | |
m10 | 0.7237 | −0.1474 |
Neurons Hidden Layer (mx1) | Neurons Output Layer (ix1) | ||
---|---|---|---|
1 | 2.6553 | 1 | 0.7553 |
2 | 2.7143 | ||
3 | −0.6601 | ||
4 | −0.0560 | ||
5 | −0.8453 | ||
6 | 0.4965 | 2 | 0.9341 |
7 | −0.8958 | ||
8 | 1.8592 | ||
9 | −2.9821 | ||
10 | −2.6619 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, G.G.; de Queiroz, A.; Garbelini, E.; dos Santos, W.P.L.; Minussi, C.R.; Bonini Neto, A. Estimation of Total Real and Reactive Power Losses in Electrical Power Systems via Artificial Neural Network. Appl. Syst. Innov. 2024, 7, 46. https://doi.org/10.3390/asi7030046
da Silva GG, de Queiroz A, Garbelini E, dos Santos WPL, Minussi CR, Bonini Neto A. Estimation of Total Real and Reactive Power Losses in Electrical Power Systems via Artificial Neural Network. Applied System Innovation. 2024; 7(3):46. https://doi.org/10.3390/asi7030046
Chicago/Turabian Styleda Silva, Giovana Gonçalves, Alexandre de Queiroz, Enio Garbelini, Wesley Prado Leão dos Santos, Carlos Roberto Minussi, and Alfredo Bonini Neto. 2024. "Estimation of Total Real and Reactive Power Losses in Electrical Power Systems via Artificial Neural Network" Applied System Innovation 7, no. 3: 46. https://doi.org/10.3390/asi7030046
APA Styleda Silva, G. G., de Queiroz, A., Garbelini, E., dos Santos, W. P. L., Minussi, C. R., & Bonini Neto, A. (2024). Estimation of Total Real and Reactive Power Losses in Electrical Power Systems via Artificial Neural Network. Applied System Innovation, 7(3), 46. https://doi.org/10.3390/asi7030046