Enhanced and Combined Representations in Extended Reality through Creative Industries
Abstract
:1. Introduction
2. Related Work
2.1. Computed Tomography Imaging
2.2. Three-Dimensional Graphics
2.3. Cutting-Edge Technologies
2.4. Game Engines
2.5. Contribution of This Research Work
3. Materials and Methods
3.1. Methodology
3.1.1. Research in Graphics and Immersive Technologies
3.1.2. Development and Assessment of an Experimental Virtual Museum
3.1.3. Concept for Multimodal Representations in Extended Reality
3.2. Implementation
3.2.1. Three-Dimensional Mesh Decimation and Texturing
3.2.2. Instances from CT-Scans
Generating the Instances
Display on a Static Surface
Display on a Moving Surface
3.2.3. Multimodal Interaction in Virtual Reality
Discrete Linear Exploration
Algorithm 1. Script in C# for discrete linear exploration on the fragment A of the Antikythera Mechanism. |
public void OnClickNext(string nameImage) { if (imgNumber < 100) { imgNumber++; nameImage = imgNumber.ToString (); imageXrayA.sprite = Resources.Load<Sprite> (“FragmentA/x_fragment_A_” + nameImage) as Sprite; } } public void OnClickPrevious(string nameImage) { if (imgNumber > 0) { imgNumber--; nameImage = imgNumber.ToString(); imageXrayA.sprite = Resources.Load<Sprite> (“FragmentA/x_fragment_A_” + nameImage) as Sprite; } } |
Fast Linear Exploration
Algorithm 2. Script in C# for fast linear exploration on fragment A of the Antikythera Mechanism. |
void Update () { string nameImage; if((Input.GetButtonDown(“Fire1”)) || (OVRInput.Get(OVRInput.Button.SecondaryIndexTrigger))) { if (imgNumber < 100) { imgNumber++; nameImage = imgNumber.ToString (); imageXrayA.sprite = Resources.Load<Sprite> (“FragmentA/x_fragment_A_” + nameImage) as Sprite; } } if((Input.GetButtonDown(“Fire2”)) || (OVRInput.Get(OVRInput.Button.SecondaryHandTrigger))) { if (imgNumber > 1) { Debug.Log (imgNumber); imgNumber--; nameImage = imgNumber.ToString(); imageXrayA.sprite = Resources.Load<Sprite> (“FragmentA/x_fragment_A_” + nameImage) as Sprite; } } } |
3.2.4. Advanced Interaction
4. Results and Discussion
4.1. Results
4.2. Discussion
4.2.1. Training Purposes
4.2.2. Advanced Cultural Heritage Representation
4.2.3. Ethics
Ownership
Use of Data
Authenticity
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alnasser, N.S.; Yi, L.J. Strategies applied by different arts and cultural organizations for their audience development: A comparative review. Heliyon 2023, 9, e15835. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zou, D.; Xie, H.; Wang, F.L. Technology-enhanced higher education: Text mining and bibliometrics. Heliyon 2024, 10, e25776. [Google Scholar] [CrossRef] [PubMed]
- Brozovsky, J.; Labonnote, N.; Vigren, O. Digital technologies in architecture, engineering, and construction. Autom. Constr. 2024, 158, 105212. [Google Scholar] [CrossRef]
- Wu, J.; Qu, X.; Sheng, L.; Chu, W. Uncovering the dynamics of enterprises digital transformation research: A comparative review on literature before and after the COVID-19 pandemic. Heliyon 2024, 10, e26986. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Zheng, P.; Li, C.; Wang, L. A state-of-the-art survey on Augmented Reality-assisted Digital Twin for futuristic human-centric industry transformation. Robot. Comput.-Integr. Manuf. 2023, 81, 102515. [Google Scholar] [CrossRef]
- Rowan, N.J. Digital technologies to unlock safe and sustainable opportunities for medical device and healthcare sectors with a focus on the combined use of digital twin and extended reality applications: A review. Sci. Total Environ. 2024, 926, 171672. [Google Scholar] [CrossRef] [PubMed]
- Myshko, A.; Checchinato, F.; Colapinto, C.; Finotto, V.; Mauracher, C. Towards twin transition in the agri-food sector? Framing the current debate on sustainability and digitalisation. J. Clean. Prod. 2024, 452, 142063. [Google Scholar] [CrossRef]
- Liberty, J.T.; Sun, S.; Kucha, C.; Adedeji, A.A.; Agidi, G.; Ngadi, M.O. Augmented reality for food quality assessment: Bridging the physical and digital worlds. J. Food Eng. 2024, 367, 111893. [Google Scholar] [CrossRef]
- Liu, Z.; Orr, S.A.; Kumar, P.; Grau-Bove, J. Measuring the impact of COVID-19 on heritage sites in the UK using social media data. Humanit. Soc. Sci. Commun. 2023, 10, 537. [Google Scholar] [CrossRef]
- Parker, M.; Spennemann, D.H.; Bond, J. The Effect of the COVID-19 Pandemic on Heritage Festival Soundscapes—A Critical Review of Literature. Curr. Pollut. Rep. 2024, 10, 277–285. [Google Scholar] [CrossRef]
- Ryder, B.; Zhang, T.; Hua, N. The Social Media “Magic”: Virtually Engaging Visitors during COVID-19 Temporary Closures. Adm. Sci. 2021, 11, 53. [Google Scholar] [CrossRef]
- YiFei, L.; Othman, M.K. Investigating the behavioural intentions of museum visitors towards VR: A systematic literature review. Comput. Hum. Behav. 2024, 155, 108167. [Google Scholar] [CrossRef]
- Povroznik, N. Museums’ digital identity: Key components. Internet Hist. 2024, 8, 1–16. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, B.; Guillen-Sanz, H.; Checa, D.; Bustillo, A. A systematic review of virtual 3D reconstructions of Cultural Heritage in immersive Virtual Reality. Multimed. Tools Appl. 2024, 1–51. [Google Scholar] [CrossRef]
- Salleh, S.Z.; Bushroa, A.R. Bibliometric and content analysis on publications in digitization technology implementation in cultural heritage for recent five years (2016–2021). Digit. Appl. Archaeol. Cult. Herit. 2022, 25, e00225. [Google Scholar] [CrossRef]
- Perino, M.; Pronti, L.; Moffa, C.; Rosellini, M.; Felici, A.C. New Frontiers in the Digital Restoration of Hidden Texts in Manuscripts: A Review of the Technical Approaches. Heritage 2024, 7, 683–696. [Google Scholar] [CrossRef]
- Lovell, L.J.; Davies, R.J.; Hunt, D.V.L. The Application of Historic Building Information Modelling (HBIM) to Cultural Heritage: A Review. Heritage 2023, 6, 6691–6717. [Google Scholar] [CrossRef]
- Europeana Collections. Available online: https://www.europeana.eu/en/collections (accessed on 6 April 2024).
- Giovannetti, G.; Guerrini, A.; Minozzi, S.; Panetta, D.; Salvadori, P.A. Computer tomography and magnetic resonance for multimodal imaging of fossils and mummies. Magn. Reson. Imaging 2022, 94, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.; Bai, C.; Baldwin, D.R.; Chen, Y.; Connolly, C.; de Koning, H.; Heuvelmans, M.A.; Hu, P.; Kazerooni, E.A.; Lancaster, H.L.; et al. Current and Future Perspectives on Computed Tomography Screening for Lung Cancer: A Roadmap From 2023 to 2027 From the International Association for the Study of Lung Cancer. J. Thorac. Oncol. 2024, 19, 36–51. [Google Scholar] [CrossRef]
- Bibb, R.; McKnight, L. Identification of bird taxa species in ancient Egyptian mummies: Part 2, a qualitative evaluation of the utility of CT scanning and 3D printing. J. Archaeol. Sci. Rep. 2022, 46, 103668. [Google Scholar] [CrossRef]
- Sokiranski, R.; Faltings, D.; Sokiranski, S.; Pirsig, W.; Mudry, A. Probable fatal mastoiditis by the around 2300 year old Heidelberg's Egyptian mummy Djed-Hor. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2024, 141, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Mahnke, H.E.; Arlt, T.; Baum, D.; Hege, H.C.; Herter, F.; Lindow, N.; Manke, I.; Siopi, T.; Menei, E.; Etienne, M.; et al. Virtual unfolding of folded papyri. J. Cult. Herit. 2020, 41, 264–269. [Google Scholar] [CrossRef]
- de Solla Price, D. Gears from the Greeks. The Antikythera Mechanism: A Calendar Computer from ca. 80 B. C. Trans. Am. Philos. Soc. 1974, 64, 1–70. [Google Scholar] [CrossRef]
- Roumeliotis, M. Antikythera Mechanism, Multimedia CD (In Greek, English, and German); Technology Museum of Thessaloniki: Thermi, Greece, 1999. [Google Scholar]
- Freeth, T.; Bitsakis, Y.; Moussas, X.; Seiradakis, J.H.; Tselikas, A.; Mangou, H.; Zafeiropoulou, M.; Hadland, R.; Bate, D.; Ramsey, A.; et al. Decoding the ancient Greek astronomical calculator known as the Antikythera Mechanism. Nature 2006, 444, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, A. X-ray Tomography of the Antikythera Mechanism. In Proceedings of the Antikythera to the Square Kilometre Array: Lessons from the Ancients, Kerastari, Greece, 12–15 June 2012; Volume 170, p. 22. Available online: https://pos.sissa.it/170/022/pdf (accessed on 15 April 2024).
- Roumeliotis, M. Are the Modern Computer Simulations a Substitute for Physical Models? The Antikythera Case. In Proceedings of the Antikythera to the Square Kilometre Array: Lessons from the Ancients, Kerastari, Greece, 12–15 June 2012; Volume 170, p. 36. Available online: https://pos.sissa.it/170/036/pdf (accessed on 15 April 2024).
- Anastasiou, M. The Antikythera Mechanism: Astronomy and Technology in Ancient Greece. Ph.D. Thesis, Aristotle University, Thessaloniki, Greece, 2014. Available online: http://go.nature.com/2Af8uxy (accessed on 15 April 2024). (In Greek).
- Roumeliotis, M. Calculating the torque on the shafts of the Antikythera Mechanism to determine the location of the driving gear. Mech. Mach. Theory 2018, 122, 148–159. [Google Scholar] [CrossRef]
- Seiradakis, J.H.; Edmunds, M.G. Our current knowledge of the Antikythera Mechanism. Nat. Astron. 2018, 2, 35–42. [Google Scholar] [CrossRef]
- Feddoul, Y.; Ragot, N.; Duval, F.; Havard, V.; Baudry, D.; Assila, A. Exploring human-machine collaboration in industry: A systematic literature review of digital twin and robotics interfaced with extended reality technologies. Int. J. Adv. Manuf. Technol. 2023, 129, 1917–1932. [Google Scholar] [CrossRef]
- Rivera, M.L.; Mora-Serrano, J.; Oñate, E. A Critical Review of How Extended Reality (XR) has Addressed Key Factors Influencing Safety on Construction Projects (fSCPs). Arch. Comput. Methods Eng. 2024, 31, 2015–2048. [Google Scholar] [CrossRef]
- Stephenson, N.; Pushparajah, K.; Wheeler, G.; Deng, S.; Schnabel, J.A.; Simpson, J.M. Extended reality for procedural planning and guidance in structural heart disease—A review of the state-of-the-art. Int. J. Cardiovasc. Imaging 2023, 39, 1405–1419. [Google Scholar] [CrossRef]
- Kanade, S.G.; Duffy, V.G. Exploring the effectiveness of virtual reality as a learning tool in the context of task interruption: A systematic review. Int. J. Ind. Ergon. 2024, 99, 103548. [Google Scholar] [CrossRef]
- Wong, E.Y.C.; Lee, P.T.Y. Virtual reality in transportation and logistics: A clustering analysis of studies from 2010 to 2023 and future directions. Comput. Hum. Behav. 2024, 153, 108082. [Google Scholar] [CrossRef]
- Woodland, M.B.; Ong, J.; Zaman, N.; Hirzallah, M.; Waisberg, E.; Masalkhi, M.; Kamran, S.A.; Lee, A.G.; Tavakkoli, A. Applications of extended reality in spaceflight for human health and performance. Acta Astronaut. 2024, 214, 748–756. [Google Scholar] [CrossRef]
- Mudička, Š.; Kapica, R. Digital Heritage, the Possibilities of Information Visualisation through Extended Reality Tools. Heritage 2023, 6, 112–131. [Google Scholar] [CrossRef]
- Tukur, M.; Schneider, J.; Househ, M.; Dokoro, A.H.; Ismail, U.I.; Dawaki, M.; Agus, M. The Metaverse digital environments: A scoping review of the techniques, technologies, and applications. J. King Saud Univ. Comput. Inf. Sci. 2024, 36, 101967. [Google Scholar] [CrossRef]
- Innocente, C.; Ulrich, L.; Moos, S.; Vezzetti, E. A framework study on the use of immersive XR technologies in the cultural heritage domain. J. Cult. Herit. 2023, 62, 268–283. [Google Scholar] [CrossRef]
- Chueca, J.; Verón, J.; Font, J.; Pérez, F.; Cetina, C. The consolidation of game software engineering: A systematic literature review of software engineering for industry-scale computer games. Inf. Softw. Technol. 2024, 165, 107330. [Google Scholar] [CrossRef]
- Unity Real-Time Development Platform. Available online: https://unity.com/ (accessed on 7 April 2024).
- Unreal Engine, the Most Powerful Real-Time 3D Creation Tool. Available online: https://www.unrealengine.com/ (accessed on 7 April 2024).
- Yastikli, N. Documentation of cultural heritage using digital photogrammetry and laser scanning. J. Cult. Herit. 2007, 8, 423–427. [Google Scholar] [CrossRef]
- Kingsland, K. Comparative analysis of digital photogrammetry software for cultural heritage. Digit. Appl. Archaeol. Cult. Herit. 2020, 18, e00157. [Google Scholar] [CrossRef]
- Acke, L.; Corradi, D.; Verlinden, J. Comprehensive educational framework on the application of 3D technologies for the restoration of cultural heritage objects. J. Cult. Herit. 2024, 66, 613–627. [Google Scholar] [CrossRef]
- Di Angelo, L.; Di Stefano, P.; Guardiani, E. A review of computer-based methods for classification and reconstruction of 3D high-density scanned archaeological pottery. J. Cult. Herit. 2022, 56, 10–24. [Google Scholar] [CrossRef]
- Calantropio, A.; Chiabrando, F. Underwater Cultural Heritage Documentation Using Photogrammetry. J. Mar. Sci. Eng. 2024, 12, 413. [Google Scholar] [CrossRef]
- Anastasovitis, E.; Roumeliotis, M. Transforming computed tomography scans into a full-immersive virtual museum for the Antikythera Mechanism. Digit. Appl. Archaeol. Cult. Herit. 2023, 28, e00259. [Google Scholar] [CrossRef]
- Schönfelder, P.; Aziz, A.; Faltin, B.; König, M. Automating the retrospective generation of As-is BIM models using machine learning. Autom. Constr. 2023, 152, 104937. [Google Scholar] [CrossRef]
- Campagna, S.; Kobbelt, L.; Seidel, H.P. Enhancing digital documents by including 3D-models. Comput. Graph. 1998, 22, 655–666. [Google Scholar] [CrossRef]
- Marovic, B.; Jovanovic, Z. Visualization of 3D fields and medical data and using VRML. Future Gener. Comput. Syst. 1998, 14, 33–49. [Google Scholar] [CrossRef]
- Brett, A.D.; Hill, A.; Taylor, C.J. A method of 3D surface correspondence and interpolation for merging shape examples. Image Vis. Comput. 1999, 17, 635–642. [Google Scholar] [CrossRef]
- Anastasovitis, E.; Roumeliotis, M. Virtual Museum for the Antikythera Mechanism: Designing an Immersive Cultural Exhibition. In Proceedings of the 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Munich, Germany, 16–20 October 2018; pp. 310–313. [Google Scholar] [CrossRef]
- Bilskie, M.V.; Hagen, S.C.; Medeiros, S.C. Unstructured finite element mesh decimation for real-time Hurricane storm surge forecasting. Coast. Eng. 2020, 156, 103622. [Google Scholar] [CrossRef]
- Mahnke, H.E. Radiation studies of items of cultural heritage. Radiat. Phys. Chem. 2022, 200, 110323. [Google Scholar] [CrossRef]
- Meinerová, T.; Šutoová, D.; Havelková, P.B.; Velemínská, J.; Dupej, J.; Bejdová, Š. How reliable is the application of the sex classifier based on exocranial surface (Musilová et al., 2016) for geographically and temporally distant skull series. Forensic Sci. Int. 2023, 352, 111850. [Google Scholar] [CrossRef]
- White, K.N.; Chiasserini, D.; Loynes, R.; David, A.R.; van Dongen, B.E.; Drosou, K.; Forshaw, R.; Fraser, S.; Causey-Freeman, P.; Metcalfe, J.; et al. Enhancing mummy ‘palaeobiographies’ through the use of multidisciplinary techniques and approaches. J. Archaeol. Sci. Rep. 2023, 47, 103784. [Google Scholar] [CrossRef]
- McKnight, L.; White, J.; Rosier, A.; Cooper, J.; Bibb, R. Identification of avian remains contained within wrapped ancient Egyptian mummies: Part 1, A critical assessment of identification techniques. J. Archaeol. Sci. Rep. 2022, 45, 103585. [Google Scholar] [CrossRef]
- Seales, W.B.; Parker, C.S.; Segal, M.; Tov, E.; Shor, P.; Porath, Y. From damage to discovery via virtual unwrapping: Reading the scroll from En-Gedi. Sci. Adv. 2016, 2, e1601247. [Google Scholar] [CrossRef]
- Parsons, S.; Parker, C.S.; Chapman, C.; Hayashida, M.; Seales, W.B. Educelab-scrolls: Verifiable recovery of text from herculaneum papyri using X-ray ct. arXiv 2023, arXiv:2304.02084. [Google Scholar] [CrossRef]
- Avizo Software: Materials Characterization Software. Available online: https://www.thermofisher.com/gr/en/home/electron-microscopy/products/software-em-3d-vis/avizo-software.html (accessed on 11 April 2024).
- DigiM Image to Simulation Software. Available online: https://www.digimsolution.com/technology/digim-i2s-software (accessed on 11 April 2024).
- Dragonfly: 3D Visualization and Analysis Solutions for Scientific and Industrial Data. Available online: https://www.theobjects.com/dragonfly/index.html (accessed on 11 April 2024).
- GeoDict: Modular Software Solution for Digital Material Design. Available online: https://www.math2market.com/geodict-software/geodict-base-modules.html (accessed on 11 April 2024).
- Imaris Microscopy Image Analysis Software. Available online: https://imaris.oxinst.com/packages (accessed on 11 April 2024).
- Tescan Applications. Available online: https://www.tescan.com/applications/ (accessed on 11 April 2024).
- VGSTUDIO: The Simple Solution for the Visualization of CT Data. Available online: https://www.volumegraphics.com/en/products/vgstudio.html (accessed on 11 April 2024).
- 3D Slicer Image Computing Platform. Available online: https://www.slicer.org/ (accessed on 11 April 2024).
- Drishti. Available online: https://github.com/nci/drishti (accessed on 11 April 2024).
- Fiji Processing Package. Available online: https://imagej.net/software/fiji/ (accessed on 11 April 2024).
- ImageVis3D: Volumetric Rendering Program. Available online: https://www.sci.utah.edu/software/imagevis3d.html (accessed on 11 April 2024).
- InVesalius Open-Source Software for Reconstruction of Computed Tomography and Magnetic Resonance Images. Available online: https://invesalius.github.io/ (accessed on 11 April 2024).
- volBrain: An Automated MRI Brain Volumetric System. Available online: https://www.volbrain.net/ (accessed on 11 April 2024).
- Limaye, A. Drishti: A volume exploration and presentation tool. In Proceedings of the Developments in X-ray Tomography VIII, San Diego, CA, USA, 17 October 2012; SPIE: Bellingham, WA, USA, 2012; Volume 8506, pp. 191–199. [Google Scholar] [CrossRef]
- Dell'Unto, N.; Leander, A.M.; Dellepiane, M.; Callieri, M.; Ferdani, D.; Lindgren, S. Digital reconstruction and visualization in archaeology: Case-study drawn from the work of the Swedish Pompeii Project. In Proceedings of the 2013 Digital Heritage International Congress (DigitalHeritage), Marseille, France, 28 October–1 November 2013; pp. 621–628. [Google Scholar] [CrossRef]
- Obradović, M.; Vasiljević, I.; Đurić, I.; Kićanović, J.; Stojaković, V.; Obradović, R. Virtual Reality Models Based on Photogrammetric Surveys-A Case Study of the Iconostasis of the Serbian Orthodox Cathedral Church of Saint Nicholas in Sremski Karlovci (Serbia). Appl. Sci. 2020, 10, 2743. [Google Scholar] [CrossRef]
- Obradović, M.; Mišić, S.; Vasiljević, I.; Ivetić, D.; Obradović, R. The Methodology of Virtualizing Sculptures and Drawings: A Case Study of the Virtual Depot of the Gallery of Matica Srpska. Electronics 2023, 12, 4157. [Google Scholar] [CrossRef]
- Papas, N.; Tsongas, K.; Karolidis, D.; Tzetzis, D. A comparison of laser and structured light scanning technologies for archaeological applications. Int. J. Mod. Manuf. Technol. 2021, 13, 111–116. [Google Scholar] [CrossRef]
- Liu, S.Q.; Ong, S.K.; Chen, Y.P.; Nee, A.Y.C. Real-time, dynamic level-of-detail management for three-axis NC milling simulation. Comput.-Aided Des. 2006, 38, 378–391. [Google Scholar] [CrossRef]
- Li, M.; Nan, L. Feature-preserving 3D mesh simplification for urban buildings. ISPRS J. Photogramm. Remote Sens. 2021, 173, 135–150. [Google Scholar] [CrossRef]
- Oh, S.; Koo, B.K. Data perturbation for fewer triangles in marching tetrahedra. Graph. Models 2007, 69, 211–218. [Google Scholar] [CrossRef]
- Narayanaswamy, A.; Dwarakapuram, S.; Bjornsson, C.S.; Cutler, B.M.; Shain, W.; Roysam, B. Robust Adaptive 3-D Segmentation of Vessel Laminae from Fluorescence Confocal Microscope Images and Parallel GPU Implementation. IEEE Trans. Med. Imaging 2010, 29, 583–597. [Google Scholar] [CrossRef]
- Maglo, A.; Courbet, C.; Alliez, P.; Hudelot, C. Progressive compression of manifold polygon meshes. Comput. Graph. 2012, 36, 349–359. [Google Scholar] [CrossRef]
- Pagani, L.; Jiang, X.; Scott, P.J. Investigation on the effect of sampling on areal texture parameters. Measurement 2018, 128, 306–313. [Google Scholar] [CrossRef]
- Qiao, Z.; Lu, T.; Luo, H.; Liu, Q.; Klasky, S.; Podhorszki, N.; Wang, J. SIRIUS: Enabling Progressive Data Exploration for Extreme-Scale Scientific Data. IEEE Trans. Multi-Scale Comput. Syst. 2018, 4, 900–913. [Google Scholar] [CrossRef]
- Ghazanfarpour, A.; Mellado, N.; Himeur, C.E.; Barthe, L.; Jessel, J.P. Proximity-aware multiple meshes decimation using quadric error metric. Graph. Models 2020, 109, 101062. [Google Scholar] [CrossRef]
- dos Anjos, R.K.; Roberts, R.A.; Allen, B.; Jorge, J.; Anjyo, K. Saliency detection for large-scale mesh decimation. Comput. Graph. 2023, 111, 63–76. [Google Scholar] [CrossRef]
- Fang, W.; Chen, L.; Zhang, T.; Chen, C.; Teng, Z.; Wang, L. Head-mounted display augmented reality in manufacturing: A systematic review. Robot. Comput.-Integr. Manuf. 2023, 83, 102567. [Google Scholar] [CrossRef]
- Apple Vision Pro. Available online: https://www.apple.com/apple-vision-pro/ (accessed on 11 April 2024).
- Meta Quest 3: New Mixed Reality VR Headset. Available online: https://www.meta.com/quest/quest-3/ (accessed on 11 April 2024).
- Varjo XR-4 Series: Mixed Reality Headset for Professionals. Available online: https://varjo.com/products/xr-4/ (accessed on 11 April 2024).
- Vive XR Elite—Convertible All-in-One XR headset. Available online: https://www.vive.com/us/product/vive-xr-elite/overview/ (accessed on 11 April 2024).
- Anastasovitis, E.; Georgiou, G.; Matinopoulou, E.; Nikolopoulos, S.; Kompatsiaris, I.; Roumeliotis, M. Enhanced Inclusion through Advanced Immersion in Cultural Heritage: A Holistic Framework in Virtual Museology. Electronics 2024, 13, 1396. [Google Scholar] [CrossRef]
- Thiel, S.; Bernhardt, J.C. AI in Museums: Reflections, Perspectives and Applications; Volume 74 in the series Edition Museum; Transcript Verlag: Bielefeld, Germany, 2023. [Google Scholar] [CrossRef]
- Cotella, V.A. From 3D point clouds to HBIM: Application of Artificial Intelligence in Cultural Heritage. Autom. Constr. 2023, 152, 104936. [Google Scholar] [CrossRef]
- Reshma, M.R.; Kannan, B.; Jagathy Raj, V.P.; Shailesh, S. Cultural heritage preservation through dance digitization: A review. Digit. Appl. Archaeol. Cult. Herit. 2023, 28, e00257. [Google Scholar] [CrossRef]
- Mylonas, G.; Kalogeras, A.; Pavlidis, G.; Lalos, A.; García-López, A. Digital Twins for Protecting Cultural Heritage Against Climate Change. Computer 2023, 56, 100–104. [Google Scholar] [CrossRef]
- Münster, S. Advancements in 3D Heritage Data Aggregation and Enrichment in Europe: Implications for Designing the Jena Experimental Repository for the DFG 3D Viewer. Appl. Sci. 2023, 13, 9781. [Google Scholar] [CrossRef]
- Jin, X.; Wang, X.; Cao, X.; Xue, C. Construction and recognition of acoustic ID of ancient coins based on deep learning of artificial intelligence for audio signals. Herit. Sci. 2023, 11, 46. [Google Scholar] [CrossRef]
- Sarithadevi, S.; Rajesh, R. Character recognition for Malayalam palm leaf manuscripts: An overview of techniques and challenges. In Proceedings of the AIP Conference, Kochi, Kerala, India, 17–22 January 2022; AIP Publishing: Melville, NY, USA, 2022; Volume 2773, p. 020003. [Google Scholar] [CrossRef]
- Alonso, J.M.; Casalino, G. Explainable artificial intelligence for human-centric data analysis in virtual learning environments. In Proceedings of the International Workshop on Higher Education Learning Methodologies and Technologies Online (HELMeTO 2019), Novedrate, Italy, 6–7 June 2019; Springer International Publishing: Cham, Switzerland, 2019; Volume 1091, pp. 125–138. [Google Scholar] [CrossRef]
- Ververidis, D.; Migkotzidis, P.; Nikolaidis, E.; Anastasovitis, E.; Papazoglou Chalikias, A.; Nikolopoulos, S.; Kompatsiaris, I. An authoring tool for democratizing the creation of high-quality VR experiences. Virtual Real. 2022, 26, 105–124. [Google Scholar] [CrossRef]
- Marín-Vega, H.; Alor-Hernández, G.; Bustos-López, M.; López-Martínez, I.; Hernández-Chaparro, N.L. Extended Reality (XR) Engines for Developing Gamified Apps and Serious Games: A Scoping Review. Future Internet 2023, 15, 379. [Google Scholar] [CrossRef]
- Anastasovitis, E.; Roumeliotis, M. Software tools for analysis and visualization of the Antikythera Mechanism. In Proceedings of the 2017 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), Copenhagen, Denmark, 7–9 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Anastasovitis, E.; Roumeliotis, M. Creative Industries and Immersive Technologies for Training, Understanding and Communication in Cultural Heritage. In Digital Heritage, Progress in Cultural Heritage: Documentation, Preservation, and Protection (EuroMed 2020), Lecture Notes in Computer Science; Ioannides, M., Fink, E., Cantoni, L., Champion, E., Eds.; Springer: Cham, Switzerland, 2021; Volume 12642, pp. 450–461. [Google Scholar] [CrossRef]
- Anastasovitis, E.; Roumeliotis, M. Virtual museum for the Antikythera Mechanism. In Proceedings of the Demos track of the 14th EuroVR International Conference (EuroVR 2017), Laval, France, 12–14 December 2017; pp. 8–9. [Google Scholar]
- Dudley, J.; Yin, L.; Garaj, V.; Kristensson, P.O. Inclusive Immersion: A review of efforts to improve accessibility in virtual reality, augmented reality and the metaverse. Virtual Real. 2023, 27, 2989–3020. [Google Scholar] [CrossRef]
Software | Distribution |
---|---|
3D Slicer [69] | free/open-source |
Avizo [62] | commercial |
digiM I2S [63] | commercial |
Dragonfly [64] | commercial |
Drishti [70] | free/open-source |
Fiji [71] | free/open-source |
GeoDict [65] | commercial |
ImageVis3D [72] | free/open-source |
Imaris [66] | commercial |
InVesalius [73] | free/open-source |
TESCAN FIB-SEMs [67] | commercial |
VGSTUDIO [68] | commercial |
volBrain platform [74] | free for research only |
Fragment | Format | Opacity | Resolution | Instances per Fragment |
---|---|---|---|---|
A | .png | yes | 1920 × 1080 | 100 |
B | .png | yes | 1920 × 1080 | 100 |
C | .png | yes | 1920 × 1080 | 100 |
D | .png | no | 648 × 736 | 100 |
E | .png | yes | 1920 × 1080 | 100 |
F | .png | yes | 1920 × 1080 | 100 |
G | .png | yes | 1920 × 1080 | 100 |
Total | 700 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastasovitis, E.; Roumeliotis, M. Enhanced and Combined Representations in Extended Reality through Creative Industries. Appl. Syst. Innov. 2024, 7, 55. https://doi.org/10.3390/asi7040055
Anastasovitis E, Roumeliotis M. Enhanced and Combined Representations in Extended Reality through Creative Industries. Applied System Innovation. 2024; 7(4):55. https://doi.org/10.3390/asi7040055
Chicago/Turabian StyleAnastasovitis, Eleftherios, and Manos Roumeliotis. 2024. "Enhanced and Combined Representations in Extended Reality through Creative Industries" Applied System Innovation 7, no. 4: 55. https://doi.org/10.3390/asi7040055
APA StyleAnastasovitis, E., & Roumeliotis, M. (2024). Enhanced and Combined Representations in Extended Reality through Creative Industries. Applied System Innovation, 7(4), 55. https://doi.org/10.3390/asi7040055