Dependability Assessment of a Dual-Axis Solar Tracking Prototype Using a Maintenance-Oriented Metric System
Abstract
:1. Introduction
2. Related Work
3. The Designing and Construction of an Autonomous Dual-Axis-Based Solar Tracking System
3.1. Mechanical Design and Construction Considerations
3.2. Electrical Schematic and Power Management
4. The Software Implementation of the Dual-Axis-Based Solar Tracking System
5. The Hardware Implementation of the Dual-Axis-Based Solar Tracking System
5.1. Main and Modified Versions of the BILBO Architecture
5.2. Reconfigurable BILBO Architecture for Stuck-At Fault Detection
5.3. Proposed ASPCB Design with Self-Testing Facilities
6. The Mathematical Approach for Computing the Dependability of the Solar Tracking System
6.1. Fault Coverage-Aware Metrics for Reliability Evaluation
6.2. Maintenance-Oriented Metric System for Reducing the Mean Time to Repair
7. The Experimental Results and Discussion
7.1. The Reconfigurability–Reliability Dependency Based on the Improved Fault Coverage
7.2. The Maintainability Index Computation for State-of-the-Art Solar Tracking Systems
8. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martínez-Barbosa, C.A.; Brown, A.G.A.; Zwart, S.P. Radial migration of the Sun in the Milky Way: A statistical study. Mon. Not. R. Astron. Soc. 2014, 446, 823–841. [Google Scholar] [CrossRef]
- Fares, T.; Djeddi, A.; Nouioua, N. Solar energy in Algeria between exploitation policies and export potential. In Proceedings of the 2019 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA), Tebessa, Algeria, 4–5 December 2019; pp. 1–5. [Google Scholar] [CrossRef]
- The Future of Solar Energy is Bright. Available online: https://sitn.hms.harvard.edu/flash/2019/future-solar-bright/ (accessed on 30 April 2024).
- Kroposki, B.; Mooney, D.; Markel, T.; Lundstrom, B. Energy systems integration facilities at the national renewable energy laboratory. In Proceedings of the 2012 IEEE Energytech, Cleveland, OH, USA, 29–31 May 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Zarabinia, N.; Lucarelli, G.; Rasuli, R.; De Rossi, F.; Taheri, B.; Javanbakht, H.; Brunetti, F.; Brown, T.M. Method for fabricating flexible solar cell perovskite semiconductors via a sheet of paper applicator soaked in anti-solvent. In Proceedings of the 2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Vienna, Austria, 10–13 July 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Prasanna, R.; Leijtens, T.; Titus, J.; Crowe, L.E.; Lee, H.; Santala, A.L.; Hoerantner, M.T.; Eperon, G.E. Convergence of Efficiency, Stability, and Manufacturability in Perovskite Tandem Solar Cells. In Proceedings of the 2023 IEEE 50th Photovoltaic Specialists Conference (PVSC), San Juan, PR, USA, 11–16 June 2023; p. 1. [Google Scholar] [CrossRef]
- Widhiyanuriyawan, D.; Hamidi, N.; Darjito; Hatib, R.; Widhiyanurrochmansyah, R. Fabrication of Perovskite Solar Cell (PSC) Using NiO/GO Material. In Proceedings of the 2023 3rd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), Yogyakarta, Indonesia, 9–10 August 2023; pp. 37–40. [CrossRef]
- Rohatgi, A.; Zhu, K.; Tong, J.; Kim, D.H.; Reichmanis, E.; Rounsaville, B.; Prakash, V.; Ok, Y.-W. 26.7% Efficient 4-Terminal Perovskite–Silicon Tandem Solar Cell Composed of a High-Performance Semitransparent Perovskite Cell and a Doped Poly-Si/SiOx Passivating Contact Silicon Cell. IEEE J. Photovolt. 2020, 10, 417–422. [Google Scholar] [CrossRef]
- Kaur, K. Perovskite solar cells-A futuristic approach. In Proceedings of the 2019 IEEE 2nd International Conference on Renewable Energy and Power Engineering (REPE), Toronto, ON, Canada, 2–4 November 2019; pp. 187–190. [Google Scholar] [CrossRef]
- Badillo, P.D.; Degterev, A.E. Perspectives on Perovskite Solar Cells Under the Glass of Characterization and Model-based Research. In Proceedings of the 2023 XXVI International Conference on Soft Computing and Measurements (SCM), Saint Petersburg, Russia, 24–26 May 2023; pp. 277–280. [Google Scholar] [CrossRef]
- Sharma, S.; Pachauri, R.K.; Mavi, R.; Shashikant; Minai, A.F. Simulation, Design and Modeling of Lead-Free Double Halide Perovskite Solar Cell. In Proceedings of the 2023 International Conference on Power, Instrumentation, Energy and Control (PIECON), Aligarh, India, 10–12 February 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Chowdhury, R. Performance Optimization of Perovskite Based Solar Cells without and with Different ETM/HTM Layers. In Proceedings of the 2023 10th IEEE International Conference on Power Systems (ICPS), Cox’s Bazar, Bangladesh, 13–15 December 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, C.; Zhang, X. Performance Optimization of CsPbIBr2 Perovskite Solar Cells with Carbon Electrode. In Proceedings of the 2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES), Beijing, China, 27–30 October 2022; pp. 1778–1782. [Google Scholar] [CrossRef]
- Chakraborty, A.; Chakraborty, A.; Khan, F.T.; Mahmud, T.; Hossain, M.S.; Andersson, K. Optimizing Tandem Solar Cell Efficiency: A Perovskite-CIGS Approach. In Proceedings of the 2024 Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE), Vellore, India, 22–23 February 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Wei, M.; Xiao, K.; Tan, H.; Sargent, E.H. Combining Efficiency and Stability in Mixed Tin-Lead Perovskite Solar Cells by Capping Grains with an Ultra-thin 2D layer. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 15 June–21 August 2020; pp. 2475–2479. [Google Scholar] [CrossRef]
- Tanwar, M.P.; Agarwal, A.; Mishra, A. Power Output Enhancement of Solar Panels by Field Area Optimization. In Proceedings of the 2018 International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, India, 28–29 September 2018; pp. 364–368. [Google Scholar] [CrossRef]
- Rakesh, N.; Malavya, U. Maximizing the power output of partially shaded solar PV array using novel interconnection method. In Proceedings of the 2017 International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bengaluru, India, 21–23 February 2017; pp. 39–45. [Google Scholar] [CrossRef]
- Mishra, N.; Jhan, A.; Singh, A.; Mishra, S. An Upgrade to Power Output of Solar Panel utilizing MPPT with Artificial Intelligence. In Proceedings of the 2022 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI), Chennai, India, 8–10 December 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Unde, M.; Hans, M.; Navghare, M. Grid Tie PV Inverter Using Buck-Boost Based Converter Maximizing Power Yield in Mismatched Environmental Condition Controlling Two Solar PV Arrays. In Proceedings of the 2020 IEEE International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC), Gunupur Odisha, India, 15–17 December 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Sahraei, N.; Dauzou, F.; Kashi, S.; Cheng, C.C.H. Angular efficiency of solar panels: How nanotextured anti-reflection surfaces improve annual energy output. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 15 June–21 August 2020; pp. 2274–2277. [Google Scholar] [CrossRef]
- Kher, V.; Sharma, S.; Santhosh, H.M.; Manoj, N.; Yogesh, O.M.; Bhinge, N.A. Scheduled single axis solar tracker system for improvisation of energy efficiency. In Proceedings of the 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 January 2022; pp. 787–791. [Google Scholar] [CrossRef]
- Santhosh, R.; Ramachandran, A.; Abhiram, S.; Mahalakshmi, R. Hardware design of Single axis solar tracker and MPPT charge controller using PIC18F4520. In Proceedings of the 2022 International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 16–18 March 2022; pp. 51–56. [Google Scholar] [CrossRef]
- Sitompul, D.K.H.; Wahyunggoro, O.; Cahyadi, A.I. Single-Axis Solar Tracker for Solar Panel with Power and Cost Analysis. In Proceedings of the 2021 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA), Surabaya, Indonesia, 8–9 December 2021; pp. 18–22. [Google Scholar] [CrossRef]
- Mallick, T.C.; Munna, M.S.; Barua, B.; Rahman, K.M. A design & implementation of a single axis solar tracker with diffuse reflector. In Proceedings of the 2014 9th International Forum on Strategic Technology (IFOST), Cox’s Bazar, Bangladesh, 21–23 October 2014; pp. 289–293. [Google Scholar] [CrossRef]
- Rani, P.; Singh, O.; Pandey, S. An Analysis on Arduino based Single Axis Solar Tracker. In Proceedings of the 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Gorakhpur, India, 2–4 November 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Sahu, S.; Tiwari, S.; Patel, R.N. Analysis and Testing of Dual Axis Solar Tracker for a Standalone PV System. In Proceedings of the 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T), Raipur, India, 3–5 January 2020; pp. 96–101. [Google Scholar] [CrossRef]
- Pratama, A.Y.; Fauzy, A.; Effendi, H. Performance Enhancement of Solar Panel Using Dual Axis Solar Tracker. In Proceedings of the 2019 International Conference on Electrical Engineering and Informatics (ICEEI), Bandung, Indonesia, 9–10 July 2019; pp. 444–447. [Google Scholar] [CrossRef]
- Kaur, T.; Mahajan, S.; Verma, S.; Priyanka; Gambhir, J. Arduino based low cost active dual axis solar tracker. In Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 4–6 July 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Singh, A.; Adhav, S.; Dalvi, A.; Chippa, A.; Rane, M. Arduino based Dual Axis Solar Tracker. In Proceedings of the 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS), Coimbatore, India, 23–25 February 2022; pp. 1789–1793. [Google Scholar] [CrossRef]
- Sharma, S.; Rohilla, Y. A Study-Level Dual-Axis Active Solar Tracker. In Proceedings of the 2021 International Conference on System, Computation, Automation and Networking (ICSCAN), Puducherry, India, 30–31 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Manjhi, S.K.; Rohan, R.; Kumar, D. Comparison of Static and Single Axis Solar Tracker. In Proceedings of the 2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC), Gunupur, India, 15–17 December 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Venkateshwarlu, S.; Pranav, V.S.; Anirudh, C.S.; Reddy, K.S. A Comparative Evaluation of Various Solar Trackers to Harness Maximum Energy—A Brief Review. In Proceedings of the 2022 International Conference on Smart and Sustainable Technologies in Energy and Power Sectors (SSTEPS), Mahendragarh, India, 7–11 November 2022; pp. 52–56. [Google Scholar] [CrossRef]
- Arnaoutakis, G.E.; Busko, D.; Richards, B.S.; Ivaturi, A.; Gordon, J.M.; Katz, E.A.; Arnaoutakis, G.E.; Busko, D.; Richards, B.S.; Ivaturi, A.; et al. Ultra-broadband near-infrared upconversion for solar energy harvesting. Sol. Energy Mater. Sol. Cells 2024, 269, 112783. [Google Scholar] [CrossRef]
- Fischer, S.; Ivaturi, A.; Frohlich, B.; Rudiger, M.; Richter, A.; Kramer, K.W.; Richards, B.S.; Goldschmidt, J.C. Upconverter Silicon Solar Cell Devices for Efficient Utilization of Sub-Band-Gap Photons under Concentrated Solar Radiation. IEEE J. Photovolt. 2014, 4, 183–189. [Google Scholar] [CrossRef]
- Lamoureux, A.; Lee, K.; Shlian, M.; Forrest, S.R.; Shtein, M. Dynamic kirigami structures for integrated solar tracking. Nat. Commun. 2015, 6, 8092. [Google Scholar] [CrossRef] [PubMed]
- Yakubu, R.O.; Mensah, L.D.; Quansah, D.A.; Adaramola, M.S. Improving solar photovoltaic installation energy yield using bifacial modules and tracking systems: An analytical approach. Adv. Mech. Eng. 2022, 14, 1–12. [Google Scholar] [CrossRef]
- McIntosh, K.R.; Abbott, M.D.; Sudbury, B.A. The Optimal Tilt Angle of Monofacial and Bifacial Modules on Single-Axis Trackers. IEEE J. Photovolt. 2022, 12, 397–405. [Google Scholar] [CrossRef]
- Theristis, M.; Fernández, E.F.; Sumner, M.; O’Donovan, T.S. Multiphysics modelling and experimental validation of high concentration photovoltaic modules. Energy Convers. Manag. 2017, 139, 122–134. [Google Scholar] [CrossRef]
- Theristis, M.; Fernández, E.F.; Georghiou, G.E.; O’Donovan, T.S. Performance of a concentrating photovoltaic monomodule under real operating conditions: Part I—Outdoor characterization. Energy Convers. Manag. 2017, 154, 311–321. [Google Scholar] [CrossRef]
- Theristis, M.; Fernández, E.F.; Georghiou, G.E.; O’Donovan, T.S. Performance of a concentrating photovoltaic monomodule under real operating conditions: Part II—Power rating. Energy Convers. Manag. 2018, 156, 329–336. [Google Scholar] [CrossRef]
- Nair, A.S.; Bonifus, P.L. An efficient built-in self-repair scheme for multiple RAMs. In Proceedings of the 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 19–20 May 2017; pp. 2076–2080. [Google Scholar] [CrossRef]
- Wane, S.; Ranaivoniarivo, M.; Elkassir, B.; Kelma, C.; Gamand, P. Towards cognitive built-in-self-test (BIST) for reconfigurable on-chip applications, and contact-less measurement. In Proceedings of the 2011 IEEE Radio Frequency Integrated Circuits Symposium, Baltimore, MD, USA, 5–7 June 2011; pp. 1–4. [Google Scholar] [CrossRef]
- George, K.; Chen, C.H. Logic Built-In Self-Test for Core-Based Designs on System-on-a-Chip. IEEE Trans. Instrum. Meas. 2009, 58, 1495–1504. [Google Scholar] [CrossRef]
- Groza, V.; Abielmona, R.; Assaf, M.H.; Elbadri, M.; El-Kadri, M.; Khalaf, A. A Self-Reconfigurable Platform for Built-In Self-Test Applications. IEEE Trans. Instrum. Meas. 2007, 56, 1307–1315. [Google Scholar] [CrossRef]
- Tseng, T.; Li, J.; Hsu, C.; Pao, A.; Chiu, K.; Chen, E. A Reconfigurable Built-In Self-Repair Scheme for Multiple Repairable RAMs in SOCs. In Proceedings of the 2006 IEEE International Test Conference, Santa Clara, CA, USA, 22–27 October 2006; pp. 1–9. [Google Scholar] [CrossRef]
- Adouni, A.; Elmellah, K.; Chariag, D.; Sbita, L. DC-DC converter fault diagnostic in PV system. In Proceedings of the 2017 International Conference on Green Energy Conversion Systems (GECS), Hammamet, Tunisia, 23–25 March 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Kasar, K.; Tapre, P.C. A new fast detection module for short-circuit current detection in PV grid system. In Proceedings of the 2018 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 19–20 January 2018; pp. 468–472. [Google Scholar] [CrossRef]
- Jain, P.; Xu, J.; Panda, S.K.; Poon, J.; Spanos, C.; Sanders, S.R. Fault diagnosis via PV panel-integrated power electronics. In Proceedings of the 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), Trondheim, Norway, 27–30 June 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Weerasekara, M.; Vilathgamuwa, M.; Mishra, Y. Detection of high impedance faults in PV systems using mathematical morphology. In Proceedings of the 2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES), Hamilton, New Zealand, 31 January–2 February 2018; pp. 357–361. [Google Scholar] [CrossRef]
- Thukral, S.; Mahela, O.P.; Kumar, B. Detection of transmission line faults in the presence of solar PV system using stockwell’s transform. In Proceedings of the 2016 IEEE 7th Power India International Conference (PIICON), Bikaner, India, 25–27 November 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Jain, L.; Jain, T.; Aggarwal, Y.; Kashyap, G.; Anjali, J.; Verma, N. Concentrated Solar Power Tracker Using Arduino UNO and Stepper Motor. In Proceedings of the 2018 3rd International Conference for Convergence in Technology (I2CT), Pune, India, 6–8 April 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Dong, Y.; Qin, H.; Zhang, J.; Yang, W.; Chen, Z.; Li, H. Empirical test and evaluation of efficiency of string PV inverters. In Proceedings of the 2019 4th IEEE Workshop on the Electronic Grid (eGRID), Xiamen, China, 11–14 November 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Rosyid, O.A.; Lande, N.M.; Rizanulhaq, F.M. Validation of Solar Inverter Testing Procedure for Stand-Alone PV Systems. In Proceedings of the 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), Batu, Indonesia, 9–11 October 2018; pp. 42–45. [Google Scholar] [CrossRef]
- IEC 61683; Photovoltaic Systems—Power Conditioners—Procedure for Measuring Efficiency, 1999-11-25. IEC: Geneva, Switzerland, 1999. Available online: https://www.iecee.org/certification/iec-standards/iec-616831999 (accessed on 9 July 2024).
- IEEE Std 1547-2003; IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. IEEE: Piscataway, NJ, USA, 2018; pp. 1–138. [CrossRef]
- Liu, Y.-J.; Lan, P.-H.; Lin, H.-H. Grid-connected PV inverter test system for solar photovoltaic power system certification. In Proceedings of the 2014 IEEE PES General Meeting|Conference & Exposition, National Harbor, MD, USA, 27–31 July 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Golnas, A. PV System Reliability: An Operator’s Perspective. IEEE J. Photovolt. 2013, 3, 416–421. [Google Scholar] [CrossRef]
- Li, T.; Tao, S.; Zhang, R.; Liu, Z.; Ma, L.; Sun, J.; Sun, Y. Reliability Evaluation of Photovoltaic System Considering Inverter Thermal Characteristics. Electronics 2021, 10, 1763. [Google Scholar] [CrossRef]
- Sonawane, P.R.; Bhandari, S.; Patil, R.B.; Al-Dahidi, S. Reliability and Criticality Analysis of a Large-Scale Solar Photovoltaic System Using Fault Tree Analysis Approach. Sustainability 2023, 15, 4609. [Google Scholar] [CrossRef]
- Solar Tracker Mechanical Design. (EcoFlow Solar Tracking System). Available online: https://ecoflowromania.ro/p/solar-tracker-ecoflow/?gad_source=1&gclid=Cj0KCQjw-5y1BhC-ARIsAAM_oKl7CiEfjrsaDo_KnCCA5foG1-Juh7dDwaxmYij74KCAdnobzyPvjgQaAnMQEALw_wcB (accessed on 5 May 2024).
- Rotar, R.; Jurj, S.L.; Opritoiu, F.; Vladutiu, M. Position Optimization Method for a Solar Tracking Device Using the Cast-Shadow Principle. In Proceedings of the 2018 IEEE 24th International Symposium for Design and Technology in Electronic Packaging (SIITME), Iasi, Romania, 25–28 October 2018; pp. 61–70. [Google Scholar] [CrossRef]
- Jurj, S.L.; Rotar, R.; Opritoiu, F.; Vladutiu, M. White-Box Testing Strategy for a Solar Tracking Device Using NodeMCU Lua ESP8266 Wi-Fi Network Development Board Module. In Proceedings of the 2018 IEEE 24th International Symposium for Design and Technology in Electronic Packaging (SIITME), Iasi, Romania, 25–28 October 2018; pp. 53–60. [Google Scholar] [CrossRef]
- Jurj, S.L.; Rotar, R.; Opritoiu, F.; Vladutiu, M. Online Built-In Self-Test Architecture for Automated Testing of a Solar Tracking Equipment. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 9–12 June 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Rotar, R.; Jurj, S.L. Configurable Built-In Self-Test Architecture for Automated Testing of a Dual-Axis Solar Tracker. In Proceedings of the 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Bari, Italy, 7–10 September 2021; pp. 1–9. [Google Scholar] [CrossRef]
- Jurj, S.L.; Rotar, R.; Opritoiu, F.; Vladutiu, M. Hybrid Testing of a Solar Tracking Equipment using In-Circuit Testing and JTAG Debugging Strategies. In Proceedings of the 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 9–12 June 2021; pp. 1–10. [Google Scholar] [CrossRef]
- Rotar, R.; Jurj, S.L.; Opritoiu, F.; Vladutiu, M. Fault Coverage-Aware Metrics for Evaluating the Reliability Factor of Solar Tracking Systems. Energies 2021, 14, 1074. [Google Scholar] [CrossRef]
- Jurj, S.L.; Rotar, R.; Opritoiu, F.; Vladutiu, M. Improving the Solar Reliability Factor of a Dual-Axis Solar Tracking System using Energy-Efficient Testing Solutions. Energies 2021, 14, 2009. [Google Scholar] [CrossRef]
- Jurj, S.L.; Rotar, R.; Opritoiu, F.; Vladutiu, M. Efficient Implementation of a Self-Sufficient Solar-Powered Real-Time Deep Learning-Based System. In Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference, EANN 2020; Proceedings of the International Neural Networks Society; Iliadis, L., Angelov, P., Jayne, C., Pimenidis, E., Eds.; Springer: Cham, Switzerland, 2020; Volume 2, pp. 99–118. [Google Scholar] [CrossRef]
- Rotar, R.; Jurj, S.L.; Susany, R.; Opritoiu, F.; Vladutiu, M. Global Energy Production Computation of a Solar-Powered Smart Home Automation System using Reliability-Oriented Metrics. Energies 2021, 14, 2541. [Google Scholar] [CrossRef]
- Bartlett, H.L.; Lawson, B.E.; Goldfarb, M. Optimal Transmission Ratio Selection for Electric Motor Driven Actuators with Known Output Torque and Motion Trajectories. J. Dyn. Syst. Meas. Control 2017, 139, 101013. [Google Scholar] [CrossRef]
- Schmidt, V.; Luccioni, A.; Mukkavilli, S.K.; Balasooriya, N.; Sankaran, K.; Chayes, J.; Bengio, Y. Visualizing the Consequences of Climate Change Using Cycle-Consistent Adversarial Networks. arXiv 2019, arXiv:1905.03709. [Google Scholar]
- UN Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 10 July 2024).
- Schwartz, R.; Dodge, J.; Smith, N.A.; Etzioni, O. Green AI. arXiv 2019, arXiv:1907.10597v3. [Google Scholar] [CrossRef]
- Bekakra, Y.; Zellouma, L.; Serhoud, H. Design and Implementation of a Solar Tracker System with Dual Axis for Photo-voltaic Panels in El Oued Region of Algeria. In Proceedings of the 2019 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA), Tebessa, Algeria, 4–5 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Suria, A.K.; Idris, R.M. Dual-axis solar tracker based on predictive control algorithms. In Proceedings of the 2015 IEEE Conference on Energy Conversion (CENCON), Johor Bahru, Malaysia, 19–20 October 2015; pp. 238–243. [Google Scholar] [CrossRef]
- Barrett, S.F. Analog to Digital Conversion (ADC). In Arduino Microcontroller Processing for Everyone! Synthesis Lectures on Digital Circuits & Systems; Springer: Cham, Switzerland, 2013. [Google Scholar] [CrossRef]
- Stroud, C.E. A Designer’s Guide to Built-In Self-Test; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Koenemann, B.; Mucha, J.; Zwiehoff, G. Built-In Logic Block Observation Technique. In Proceedings of IEEE International Test Conference; IEEE: Piscataway, NJ, USA, 1979; pp. 37–41. [Google Scholar]
- Jurj, S.L.; Rotar, R. Increasing the Solar Reliability Factor of a Dual-Axis Solar Tracker Using an Improved Online Built-In Self-Test Architecture. IEEE Access 2024, 12, 37715–37730. [Google Scholar] [CrossRef]
- Samoylov, L.K.; Denisenko, D.Y.; Prokopenko, N.N. Analog/Digital Anti-Aliasing Filters. In Proceedings of the 2019 International Siberian Conference on Control and Communications (SIBCON), Tomsk, Russia, 18–20 April 2019; pp. 1–4. [Google Scholar] [CrossRef]
- International Society of Automation. Available online: https://www.isa.org/intech-home/2019/march-april/features/improving-maintenance-by-adopting-a-p-f-curve-meth (accessed on 10 May 2024).
- Rotar, R.; Vârtaci, N.; Bălaş, M.; Opriţoiu, F.; Vlăduţiu, M. Digital Twin Architecture for an Automated PV System with Self-Testing Capabilities. In Proceedings of the 2023 IEEE 29th International Symposium for Design and Technology in Electronic Packaging (SIITME), Craiova, Romania, 18–20 October 2023; pp. 28–33. [Google Scholar] [CrossRef]
- Collins, E.; Dvorack, M.; Mahn, J.; Mundt, M.; Quintana, M. Reliability and availability analysis of a fielded photovoltaic system. In Proceedings of the 34th IEEE Photovoltaic Spec. Conf. (PVSC), Philadelphia, PA, USA, 7–12 June 2009; pp. 2316–2321. [Google Scholar] [CrossRef]
- Dragomir, T.L.; Petcuţ, F.M.; Korodi, A. Reference Value Generator of Maximum Power Point Coordinates of the Photovoltaic Panel External Characteristic. In New Concepts and Applications in Soft Computing. Studies in Computational Intelligence; Balas, V., Fodor, J., Várkonyi-Kóczy, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 417. [Google Scholar] [CrossRef]
- Dragomir, T.L.; Petcut, F.M.; Dragomir, L.E. Maximum power point determination for a photovoltaic panel using a Simulink model. In Proceedings of the 4th International Workshop on Soft Computing Applications, Arad, Romania, 15–17 July 2010; pp. 221–224. [Google Scholar] [CrossRef]
Paper Title | Components | Power Gain |
---|---|---|
Enhancing Solar Panel Efficiency with Dual Axis Tracker [27] | Solar panel, light-dependent resistor, servo motors, driver integrated circuit, SD card. | 33.16% |
Low-Cost Arduino Dual-Axis Solar Tracker [28] | Solar panel, light-dependent resistors, servo motors, driver integrated circuit, Arduino UNO. | 13.44% |
Dual-Axis Solar Tracker for PV Panels in El Oued, Algeria [74] | Solar panel, light-dependent resistor, 5 V relays, charge/discharge regulator, 12 V-62 Ah lithium-ion battery, 12 V DC motors, Arduino UNO. | ~20% |
Predictive Control Dual-Axis Solar Tracker [75] | Solar panel, temperature sensor, G15 cube servo ID 1, G15 cube servo ID 2, G15 driver, 5 V and 12 V power supplies, SD module, PC. | 21.4% |
Original BILBO Modes of Operation | Expanded BILBO Modes of Operation | ||||||
B2 | B1 | Modes of Operation | B3 | B2 | B1 | Modes of Operation | |
0 | 0 | Shift (scan) mode (Qt ≤ Qt − 1) | 0 | 0 | 0 | Shift (scan) mode ((Qt ≤ Qt − 1) | |
0. | 1 | MISR (BIST) mode (Qt ≤ Zt ⊕ Qt − 1) | 1 | 0 | 1 | MISR (BIST) mode (Qt ≤ Zt ⊕ Qt − 1) | |
1 | 0 | Initialization mode (Qt ≤ 0) | 1 | 0 | 0 | TPG (BIST) mode (Qt ≤ 0 ⊕ Qt − 1) | |
1 | 1 | System mode (Qt ≤ Zt) | X | 1 | 0 | Initialization mode (Qt ≤ 0) | |
X | 1 | 1 | System mode (Qt ≤ Zt) | ||||
Modified BILBO Flip-Flop | Modified BILBO Modes of Operation | ||||||
B2 | B1 | Xi | Mode of Operation | B2 | B1 | Modes of Operation | |
0 | 0 | 0 | Initialization (Qt ≤ 0) | 0 | 0 | Shift (scan) mode (Qt ≤ Qt − 1) | |
0 | 1 | Zt | System mode (Qt ≤ Zt) | 0 | 1 | System mode (Qt ≤ Zt) | |
1 | 0 | Qt − 1 | Scan mode (Qt ≤ Qt − 1) | 1 | 0 | LFSR (BIST TPG) mode (Qt ≤ Qt − 1) | |
1 | 1 | Zt ⊕ Qt − 1 | BIST (Qt ≤ Zt ⊕ Qt − 1) | 1 | 1 | MISR (BIST ORA) mode (Qt ≤ Zt ⊕ Qt − 1) |
Research Title | TNC | NMC | MF | NAC | AS | NTD | PME | MI |
---|---|---|---|---|---|---|---|---|
“Performance Enhancement of Solar Panel Using Dual Axis Solar Tracker” [27] | 15 | 10 | 66.6% | 9 | 60% | 0 | 0% | 37.98% |
“Arduino-based low-cost active dual-axis solar tracker” [28] | 10 | 10 | 100% | 6 | 60% | 0 | 0% | 48% |
“Design and Implementation of a Solar Tracker System with Dual Axis for Photovoltaic Panels in El Oued Region of Algeria” [74] | 14 | 10 | 71.42% | 6 | 100% | 0 | 0% | 51.42% |
“Dual-axis solar tracker based on predictive control algorithms” [75] | 10 | 10 | 100% | 8 | 80% | 1 | 10% | 58% |
“Digital Twin Architecture for an Automated PV System with Self-Testing Capabilities” [82] | 38 | 32 | 84.21% | 35 | 92.1% | 8 | 21.05% | 61.28% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotar, R.; Petcuț, F.M.; Susany, R.; Oprițoiu, F.; Vlăduțiu, M. Dependability Assessment of a Dual-Axis Solar Tracking Prototype Using a Maintenance-Oriented Metric System. Appl. Syst. Innov. 2024, 7, 67. https://doi.org/10.3390/asi7040067
Rotar R, Petcuț FM, Susany R, Oprițoiu F, Vlăduțiu M. Dependability Assessment of a Dual-Axis Solar Tracking Prototype Using a Maintenance-Oriented Metric System. Applied System Innovation. 2024; 7(4):67. https://doi.org/10.3390/asi7040067
Chicago/Turabian StyleRotar, Raul, Flavius Maxim Petcuț, Robert Susany, Flavius Oprițoiu, and Mircea Vlăduțiu. 2024. "Dependability Assessment of a Dual-Axis Solar Tracking Prototype Using a Maintenance-Oriented Metric System" Applied System Innovation 7, no. 4: 67. https://doi.org/10.3390/asi7040067