Advanced Technologies and Methods in Mechanical Fault Diagnostics and Prognostics

A special issue of Applied System Innovation (ISSN 2571-5577). This special issue belongs to the section "Control and Systems Engineering".

Deadline for manuscript submissions: closed (30 June 2024) | Viewed by 865

Special Issue Editors

School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
Interests: fault diagnosis of machinery; degradation modeling; remaining useful life prediction; intelligent maintenance
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, China
Interests: machine fault diagnosis under non-stationary conditions; time-frequency analysis; adaptive mode decomposition
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Fault diagnostics and prognostics play significant roles in ensuring the safe operation of mechanical systems. With the development of condition-based maintenance and predictive maintenance, fault diagnostics and prognostics have attracted increasing amounts of attention in both academic research and industrial practice. With this Special Issue, we aim to summarize and publish the advanced technologies and methods in mechanical fault diagnostics and prognostics. This Special Issue aims to provide a platform for scholars to publish their new ideas and research works in this area.

Areas relevant to advanced technologies and methods in mechanical fault diagnostics and prognostics include, but are not limited to, the following:

  • Dynamic modeling of mechanical systems;
  • Degradation modeling of mechanical systems;
  • Advanced signal processing technologies;
  • Health indicator construction from multi-sensor signals;
  • Health condition monitoring of mechanical systems;
  • Big-data-driven intelligent fault diagnostics;
  • Data-model-fusion fault diagnostics and prognostics;
  • Remaining useful life prediction of mechanical systems.

Dr. Naipeng Li
Dr. Shiqian Chen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied System Innovation is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • intelligent fault diagnostics
  • remaining useful life prediction
  • dynamic modeling
  • health condition monitoring
  • health indicator construction
  • mechanical systems

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

37 pages, 10262 KiB  
Article
Dependability Assessment of a Dual-Axis Solar Tracking Prototype Using a Maintenance-Oriented Metric System
by Raul Rotar, Flavius Maxim Petcuț, Robert Susany, Flavius Oprițoiu and Mircea Vlăduțiu
Appl. Syst. Innov. 2024, 7(4), 67; https://doi.org/10.3390/asi7040067 - 31 Jul 2024
Viewed by 437
Abstract
This study presents a numerical method for evaluating the maintainability of a dual-axis solar tracking system that can be deployed in residential areas for improved energy production. The purpose of this research manuscript is threefold. It targets the following objectives: (i) First, we [...] Read more.
This study presents a numerical method for evaluating the maintainability of a dual-axis solar tracking system that can be deployed in residential areas for improved energy production. The purpose of this research manuscript is threefold. It targets the following objectives: (i) First, we present the construction of a self-sufficient dual-axis solar tracking system based on a low-power electronic schematic that requires only one motor driver to control the azimuth and elevation angles of the photovoltaic (PV) panel. The automated system’s main electronic equipment comprises 1 × Arduino Mega2560 microcontroller unit (MCU), 1 × TB6560 stepper driver module, 2 × stepper motors, 2 × relay modules, 1 × solar charge controller, 1 × accumulator, and 1 × voltage convertor. Additional hardware components such as photoresistors, mechanical limit switches, rotary encoders, voltage, and current sensors are also included to complete the automation cycle of the solar tracking system. (ii) Second, the Arduino Mega 2560 prototyping board is replaced by a custom-made and low-cost application-specific printed circuit board (ASPCB) based on the AVR controller. The MCU’s possible fault domain is then further defined by examining the risks of the poor manufacturing process, which can lead to stuck-at-0 (Sa0) and stuck-at-1 (Sa1) defects. Besides these issues, other challenges such as component modularity, installation accessibility, and hardware failures can affect the automated system’s serviceability. (iii) Third, we propose a novel set of maintenance-oriented metrics that combine the previously identified variables to provide a maintainability index (MI), which serves as a valuable tool for evaluating, optimizing, and maintaining complex systems such as solar tracking devices. The experimental data show that the computed MI improves the system’s maintainability and enhances repair operations, increasing uptime. Full article
Show Figures

Figure 1

Back to TopTop