NIR Spectroscopy for the Online Monitoring of Water and Olive Oil Content in Pomace during the Extraction Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. NIR Spectroscopy Device
2.2. Industrial Olive Oil Extraction Plant and NIR Device Implementation
2.3. Industrial Tests, Sampling, and Laboratory Analysis
2.4. Acquisition of NIR Spectra
2.5. Sample Selection
2.6. Spectra Pre-Processing
2.7. Development of Calibration Models and Validation
3. Results and Discussion
3.1. Spectral Measurements and Investigation
3.2. Calibration Results and Modelling
PLS Calibration of Pomace Oil and Moisture Content Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Commission Regulation (EC) No1019/2002 on Marketing Standards for Olive Oil; European Commission: Brussels, Belgium, 2002. [Google Scholar]
- Leone, A.; Romaniello, R.; Tamborrino, A. Development of a Prototype for Extra-Virgin Olive Oil Storage with Online Control of Injected Nitrogen. Trans. ASABE 2013, 56, 1017–1024. [Google Scholar]
- Leone, A.; Tamborrino, A.; Romaniello, R.; Zagaria, R.; Sabella, E. Specification and implementation of a continuous microwave-assisted system for paste malaxation in an olive oil extraction plant. Biosyst. Eng. 2014, 125, 24–35. [Google Scholar] [CrossRef]
- Squeo, G.; Tamborrino, A.; Pasqualone, A.; Leone, A.; Paradiso, V.M.; Summo, C.; Caponio, F. Assessment of the Influence of the Decanter Set-up during Continuous Processing of Olives at Different Pigmentation Index. Food Bioprocess Technol. 2017, 10, 592–602. [Google Scholar] [CrossRef]
- Tamborrino, A.; Leone, A.; Romaniello, R.; Catalano, P.; Bianchi, B. Comparative experiments to assess the performance of an innovative horizontal centrifuge working in a continuous olive oil plant. Biosyst. Eng. 2015, 129, 160–168. [Google Scholar] [CrossRef]
- Muik, B.; Lendl, B.; Molina-Díaz, A.; Pérez-Villarejo, L.; Ayora-Cañada, M.J. Determination of oil and water content in olive pomace using near infrared and Raman spectrometry. A comparative study. Anal. Bioanal. Chem. 2004, 379, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Tamborrino, A.; Perone, C.; Veneziani, G.; Berardi, A.; Romaniello, R.; Servili, M.; Leone, A. Experimental Investigation of a New Modular Crusher Machine Developed for Olive Oil Extraction Plants. Foods 2022, 11, 3035. [Google Scholar] [CrossRef]
- Servili, M.; Veneziani, G.; Taticchi, A.; Romaniello, R.; Tamborrino, A.; Leone, A. Low-frequency, high-power ultrasound treatment at different pressures for olive paste: Effects on olive oil yield and quality. Ultrason. Sonochem. 2019, 59, 104747. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, M.P.; Beltran, G.; Sanchez-Villasclaras, S.; Uceda, M.; Jimenez, A. Kneading olive paste from unripe ‘Picual’ fruits: I. Effect on oil process yield. J. Food Eng. 2010, 97, 533–538. [Google Scholar] [CrossRef]
- Moya, M.; Espínola, F.; Fernández, D.G.; de Torres, A.; Marcos, J.; Vilar, J.; Josue, J.; Sánchez, J.; Castro, T. Industrial trials on coadjuvants for olive oil extraction. J. Food Eng. 2010, 97, 57–63. [Google Scholar] [CrossRef]
- Puértolas, E.; de Marañón, I.M. Olive oil pilot-production assisted by pulsed electric field: Impact on extraction yield, chemical parameters and sensory properties. Food Chem. 2015, 167, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Taticchi, A.; Esposto, S.; Veneziani, G.; Minnocci, A.; Urbani, S.; Selvaggini, R.; Sordini, B.; Daidone, L.; Sebastiani, L.; Servili, M. High vacuum-assisted extraction affects virgin olive oil quality: Impact on phenolic and volatile compounds. Food Chem. 2021, 342, 128369. [Google Scholar] [CrossRef]
- Veneziani, G.; Esposto, S.; Taticchi, A.; Urbani, S.; Selvaggini, R.; Di Maio, I.; Sordini, B.; Servili, M. Cooling treatment of olive paste during the oil processing: Impact on the yield and extra virgin olive oil quality. Food Chem. 2017, 15, 107–113. [Google Scholar] [CrossRef]
- Selvaggini, R.; Esposto, S.; Taticchi, A.; Urbani, S.; Veneziani, G.; Di Maio, I.; Sordini, B.; Servili, M. Optimization of the temperature and oxygen concentration conditions in the malaxation during the oil mechanical extraction process of four Italian olive cultivars. J. Agric. Food Chem. 2014, 62, 3813–3822. [Google Scholar] [CrossRef] [PubMed]
- Esposto, S.; Veneziani, G.; Taticchi, A.; Selvaggini, R.; Urbani, S.; Di Maio, I.; Sordini, B.; Minnocci, A.; Sebastiani, L.; Servili, M. Flash thermal conditioning of olive pastes during the olive oil mechanical extraction process: Impact on the structural modifications of pastes and oil quality. J. Agric. Food Chem. 2013, 61, 4953–4960. [Google Scholar] [CrossRef]
- Perone, C.; Catalano, F.; Leone, A.; Berardi, A.; Tamborrino, A. Modelling the Rheology of Olive Paste for Oil Extraction Plant Automation: Effects of the Crushing Process on the Rheology of Olive Pastes. Foods 2023, 12, 2218. [Google Scholar] [CrossRef] [PubMed]
- Romaniello, R.; Leone, A.; Tamborrino, A. Specification of a new de-stoner machine: Evaluation of machining effects on olive paste’s rheology and olive oil yield and quality. J. Sci. Food Agric. 2017, 97, 115–121. [Google Scholar] [CrossRef]
- Leone, A.; Romaniello, R.; Zagaria, R.; Tamborrino, A. Mathematical modelling of the performance parameters of a new decanter centrifuge generation. J. Food Eng. 2015, 166, 10–20. [Google Scholar] [CrossRef]
- Amirante, P.; Clodoveo, M.L.; Dugo, G.; Leone, A.; Tamborrino, A. Advance technology in virgin olive oil production from traditional and de-stoned pastes: Influence of the introduction of a heat exchanger on oil quality. Food Chem. 2006, 98, 797–805. [Google Scholar] [CrossRef]
- Inarejos-García, A.M.; Fregapane, G.; Salvador, M.D. Effect of crushing on olive paste and virgin olive oil minor components. Eur. Food Res. Technol. 2011, 232, 441–451. [Google Scholar] [CrossRef]
- Altieri, G.; Di Renzo, G.C.; Genovese, F. Horizontal centrifuge with screw conveyor (decanter): Optimization of oil/water levels and differential speed during olive oil extraction. J. Food Eng. 2013, 119, 561–572. [Google Scholar] [CrossRef]
- Altieri, G. Comparative trials and an empirical model to assess throughput indices in olive oil extraction by decanter centrifuge. J. Food Eng. 2010, 97, 46–56. [Google Scholar] [CrossRef]
- Leone, A.; Romaniello, R.; Peri, G.; Tamborrino, A. Development of a new model of olives de-stoner machine: Evaluation of electric consumption and kernel characterization. Biomass Bioenergy 2015, 81, 108–116. [Google Scholar] [CrossRef]
- Caponio, F.; Squeo, G.; Difonzo, G.; Pasqualone, A.; Summo, C.; Paradiso, V.M. Has the use of talc an effect on yield and extra virgin olive oil quality? J. Sci. Food Agric. 2016, 96, 3292–3299. [Google Scholar] [CrossRef]
- Sadkaoui, A.; Jimenez, A.; Aguilera, M.P.; Pacheco, R.; Beltran, G. Virgin olive oil yield as affected by physicochemical talc properties and dosage. Eur. J. Lipid Sci. Technol. 2017, 119, 1600112. [Google Scholar] [CrossRef]
- Tamborrino, A.; Selvaggini, R.; Veneziani, G.; Berardi, A.; Leone, A.; Servili, M. Effect of enzymatic and talc treatment on olive oil extraction process at the industrial scale. Food Biosci. 2023, 53, 102706. [Google Scholar] [CrossRef]
- De Faveri, D.; Aliakbarian, B.; Avogadro, M.; Perego, P.; Converti, A. Improvement of olive oil phenolics content by means of enzyme formulations: Effect of different enzyme activities and levels. Biochem. Eng. J. 2008, 41, 149–156. [Google Scholar] [CrossRef]
- Hadj-Taieb, N.; Grati, N.; Ayadi, M.; Attia, I.; Bensalem, H.; Gargouri, A. Optimisation of olive oil extraction and minor compounds content of Tunisian olive oil using enzymatic formulations during malaxation. Biochem. Eng. J. 2012, 62, 79–85. [Google Scholar] [CrossRef]
- Tamborrino, A.; Mescia, L.; Taticchi, A.; Berardi, A.; Lamacchia, C.M.; Leone, A.; Servili, M. Continuous pulsed electric field pilot plant for olive oil extraction process. Innov. Food Sci. Emerg. Technol. 2022, 82, 103192. [Google Scholar] [CrossRef]
- Tamborrino, A.; Taticchi, A.; Romaniello, R.; Perone, C.; Esposto, S.; Leone, A.; Servili, M. Assessment of the olive oil extraction plant layout implementing a high-power ultrasound machine. Ultrason Sonochem. 2021, 73, 105505. [Google Scholar] [CrossRef] [PubMed]
- Amarillo, M.; Pérez, N.; Blasina, F.; Gambaro, A.; Leone, A.; Romaniello, R.; Xu, X.Q.; Juliano, P. Impact of sound attenuation on ultrasound-driven yield improvements during olive oil extraction. Ultrason Sonochem. 2019, 53, 142–151. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EEC) No. 2568/91 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Altieri, G.; Matera, A.; Genovese, F.; Di Renzo, G.C. Models for the rapid assessment of water and oil content in olive pomace by near-infrared spectrometry. J. Sci. Food Agric. 2020, 100, 3236–3245. [Google Scholar] [CrossRef] [PubMed]
- Garcıa Sanchez, A.; Ramos Martos, N.; Ballesteros, E. Comparative study of various analytical techniques NIR and NMR spectroscopies, and Soxhlet extraction for the determination of the fat and moisture content of olives and pomace obtained from Jaen Spain. Grasas Y Aceites 2005, 56, 220–227. [Google Scholar] [CrossRef]
- Giovenzana, V.; Beghi, R.; Romaniello, R.; Tamborrino, A.; Guidetti, R.; Leone, A. Use of visible and near infrared spectroscopy with a view to on-line evaluation of oil content during olive processing. Biosyst. Eng. 2018, 172, 102–109. [Google Scholar] [CrossRef]
- Wold, J.P.; O’Farrell, M.; Tschudi, J.; Eskildsen, C.E.; Andersen, P.V.; Ottestad, S. In-line and non-destructive monitoring of core temperature in sausages during industrial heat treatment by NIR interaction spectroscopy. J. Food Eng. 2020, 277, 109921. [Google Scholar] [CrossRef]
- Tonolini, M.; van den Berg, F.W.J.; Skou, P.B.; Sørensen, K.M.; Engelsen, S.B. Near-infrared spectroscopy as a process analytical technology tool for monitoring performance of membrane filtration in a whey protein fractionation process. J. Food Eng. 2023, 350, 111487. [Google Scholar] [CrossRef]
- Chen, C.; Li, X.; Zhu, S.; Cui, P.; Lei, H.; Yan, H. Detection of the alcohol fermentation process in vinegar production with a digital micro-mirror based NIR spectra set-up and chemometrics. J. Food Compos. Anal. 2023, 115, 105036. [Google Scholar] [CrossRef]
- Kapoor, R.; Malvandi, A.; Feng, H.; Kamruzzaman, M. Real-time moisture monitoring of edible coated apple chips during hot air drying using miniature NIR spectroscopy and chemometrics. LWT 2022, 154, 112602. [Google Scholar] [CrossRef]
- Rinnan, A.; van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
Pomace Sample | |||
---|---|---|---|
Min | Max | Average | |
Oil content [%] | 1.06 | 2.55 | 1.74 |
Moisture [%] | 63.45 | 70.15 | 66.57 |
Calibration Performance | |||||
---|---|---|---|---|---|
Component | RMSECV | Bias | Slope | Intercept | R2 |
Oil content | 0.155 | 0.000 | 1.000 | 0.000 | 0.700 |
Validation performance | |||||
Component | RMSEP | Bias | Slope | Intercept | R2 |
Oil content | 0.184 | 0.068 | 1.283 | −0.406 | 0.773 |
Calibration Performance | |||||
---|---|---|---|---|---|
Component | RMSECV | Bias | Slope | Intercept | R2 |
Humidity | 0.653 | 0.000 | 1.000 | 0.000 | 0.829 |
Validation performance | |||||
Component | RMSEP | Bias | Slope | Intercept | R2 |
Humidity | 0.698 | 0.066 | 0.894 | 7.110 | 0.676 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Institute of Knowledge Innovation and Invention. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leone, A.; Berardi, A.; Antonelli, G.; Dellisanti, C.D.; Tamborrino, A. NIR Spectroscopy for the Online Monitoring of Water and Olive Oil Content in Pomace during the Extraction Process. Appl. Syst. Innov. 2024, 7, 96. https://doi.org/10.3390/asi7050096
Leone A, Berardi A, Antonelli G, Dellisanti CD, Tamborrino A. NIR Spectroscopy for the Online Monitoring of Water and Olive Oil Content in Pomace during the Extraction Process. Applied System Innovation. 2024; 7(5):96. https://doi.org/10.3390/asi7050096
Chicago/Turabian StyleLeone, Alessandro, Antonio Berardi, Giovanni Antonelli, Cosimo Damiano Dellisanti, and Antonia Tamborrino. 2024. "NIR Spectroscopy for the Online Monitoring of Water and Olive Oil Content in Pomace during the Extraction Process" Applied System Innovation 7, no. 5: 96. https://doi.org/10.3390/asi7050096