Investigation of the Features Influencing the Accuracy of Wind Turbine Power Calculation at Short-Term Intervals
Abstract
:1. Introduction
- Analysis of the impact of different features beyond wind speed on the accuracy of wind turbine output power estimation using real SCADA system open data with 10 min measurement intervals;
- Application of a hybrid approach based on the theoretical power curve and machine learning models to more accurately assess the actual wind turbine output power;
- Investigation of the hypothesis of using power values from the previous time step to enhance accuracy by considering the inertial properties of the wind turbine.
2. Materials and Methods
2.1. Initial Dataset and Exploratory Analysis
- Date and time;
- Generated active power, kW;
- Wind speed at turbine height, m/s;
- Theoretical electrical power values that the turbine generates with that wind speed as given by the turbine manufacturer, kW;
- Wind direction at turbine height (while the turbine is turned so that the wind wheel is perpendicular to the wind flow).
2.2. Pipeline of the Applied Method
2.3. Feature Extraction
Wind direction cos = cos(Wind direction)
- Wind speed, m/s;
- Wind direction sin;
- Wind direction cos;
- Month;
- Hour;
- Winter (0/1);
- Spring (0/1);
- Summer (0/1);
- Autumn (0/1);
- Theoretical power (kW);
- Previous value of real power (kW);
- Real power (kW) as a target.
2.4. Regression Models
- R2 (determination coefficient);
- Adjusted R2;
- RMSE, kW.
- Linear regression (LR);
- Support vector machine (SVM);
- k-nearest neighbors (kNN);
- Decision tree (DT);
- Random forest (RF);
- Extremely randomized trees (ET);
- Adaptive boosting (AB);
- Gradient boosting (GB);
- Extreme gradient boosting (XGB);
- Categorical boosting, or CatBoost (CB).
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Erdinc, O.; Uzunoglu, M. Optimum design of hybrid renewable energy systems: Overview of different approaches. Renew. Sustain. Energy Rev. 2012, 16, 1412–1425. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, C.; Zhang, G. Hybrid forecasting system based on an optimal model selection strategy for different wind speed forecasting problems. Appl. Energy 2019, 250, 1559–1580. [Google Scholar] [CrossRef]
- Moreno-Munoz, A. Description of wind power forecasting systems. In Large Scale Grid Integration of Renewable Energy Sources; Institution of Engineering and Technology (The IET): London, UK, 2017. [Google Scholar]
- Manusov, V.; Matrenin, P.; Nazarov, M.; Beryozkina, S.; Safaraliev, M.; Zicmane, I.; Ghulomzoda, A. Short-Term Prediction of the Wind Speed Based on a Learning Process Control Algorithm in Isolated Power Systems. Sustainability 2023, 15, 1730. [Google Scholar] [CrossRef]
- Goretti, G.; Duffy, A.; Lie, T.T. The impact of power curve estimation on commercial wind power forecasts—An empirical analysis. In Proceedings of the 2017 14th International Conference on the European Energy Market (EEM), Dresden, Germany, 6–9 June 2017. [Google Scholar] [CrossRef]
- Fang, S.; Chiang, H. A High-Accuracy Wind Power Forecasting Model. IEEE Trans. Power Syst. 2017, 32, 1589–1590. [Google Scholar] [CrossRef]
- Ali, B.M. Wind Energy Prediction: Artificial Intelligence Perspective. In Proceedings of the 6th International Conference on Engineering Technology and Its Applications (IICETA), Al-Najaf, Iraq, 15–16 July 2023; pp. 885–891. [Google Scholar]
- Erdem, E.; Shi, J. ARMA based approaches for forecasting the tuple of wind speed and direction. Appl. Energy 2011, 88, 1405–1414. [Google Scholar] [CrossRef]
- Cadenas, E.; Rivera, W.; Campos-Amezcua, R.; Heard, C. Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model. Energies 2016, 9, 109. [Google Scholar] [CrossRef]
- Prema, V.; Bhaskar, M.S.; Almakhles, D.; Gowtham, N.; Rao, K.U. Critical Review of Data, Models and Performance Metrics for Wind and Solar Power Forecast. IEEE Access 2022, 10, 667–688. [Google Scholar] [CrossRef]
- Hu, Y.-L.; Chen, L. A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and differential evolution algorithm. Energy Convers. Manag. 2018, 173, 123–142. [Google Scholar] [CrossRef]
- Jiang, P.; Yang, H.; Heng, J. A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting. Appl. Energy 2019, 235, 786–801. [Google Scholar] [CrossRef]
- Han, Y.; Mi, L.; Shen, L.; Cai, C.S.; Liu, Y.; Li, K.; Xu, G. A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Appl. Energy 2022, 312, 118777. [Google Scholar] [CrossRef]
- Mogos, A.S.; Salauddin, M.; Liang, X.; Chung, C.Y. An Effective Very Short-Term Wind Speed Prediction Approach Using Multiple Regression Models. IEEE Can. J. Electr. Comput. Eng. 2022, 45, 242–253. [Google Scholar] [CrossRef]
- Matrenin, P.V.; Khalyasmaa, A.I.; Rusina, A.G.; Eroshenko, S.A.; Popkova, N.A.; Sekatskii, D.A. Operational Forecasting of Wind Speed for an Self-Contained Power Assembly of a Traction Substation. Proc. CIS High. Educ. Inst. Power Eng. Assoc. Energetika 2023, 66, 18–29. [Google Scholar] [CrossRef]
- Ates, K.T. Estimation of Short-Term Power of Wind Turbines Using Artificial Neural Network (ANN) and Swarm Intelligence. Sustainability 2023, 15, 13572. [Google Scholar] [CrossRef]
- Sun, H.; Qiu, C.; Lu, L.; Gao, X.; Chen, J.; Yang, H. Wind turbine power modelling and optimization using artificial neural network with wind field experimental data. Appl. Energy 2020, 280, 115880. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, C.; Yu, S. Recognizing the mapping relationship between wind power output and meteorological information at a province level by coupling GIS and CNN technologies. Appl. Energy 2024, 360, 122791. [Google Scholar] [CrossRef]
- Paik, C.; Chung, Y.; Kim, Y.J. Power Curve Modeling of Wind Turbines through Clustering-Based Outlier Elimination. Appl. Syst. Innov. 2023, 6, 41. [Google Scholar] [CrossRef]
- Ouyang, T.; Kusiak, A.; He, Y. Modeling wind-turbine power curve: A data partitioning and mining approach. Renew. Energy 2017, 102, 1–8. [Google Scholar] [CrossRef]
- Kou, P.; Gao, F.; Guan, X. Sparse online warped Gaussian process for wind power probabilistic forecasting. Appl. Energy 2013, 108, 410–428. [Google Scholar] [CrossRef]
- Trivellato, F.; Battisti, L.; Miori, G. The ideal power curve of small wind turbines from field data. J. Wind Eng. Ind. Aerodyn. 2012, 107, 263–273. [Google Scholar] [CrossRef]
- Villanueva, D.; Feijoo, A. Normal-based model for true power curves of wind turbines. IEEE Trans. Sustain. Energy 2016, 7, 1005–1011. [Google Scholar] [CrossRef]
- Gottschall, J.; Peinke, J. How to improve the estimation of power curves for wind turbines. Environ. Res. Lett. 2008, 3, 015005. [Google Scholar] [CrossRef]
- Feijoo, A.; Villanueva, D. Four parameter models for wind farm power curves and power probability density functions. IEEE Trans. Sustain. Energy 2017, 8, 1783–1784. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, X.; Zou, R.; Zhang, F.; Li, Y.; Hu, Q. A novel data-driven deep learning approach for wind turbine power curve modeling. Energy 2012, 270, 126908. [Google Scholar] [CrossRef]
- Ibrahim, M.; Rassõlkin, A.; Vaimann, T.; Kallaste, A.; Zakis, J.; Hyunh, V.K.; Pomarnacki, R. Digital Twin as a Virtual Sensor for Wind Turbine Applications. Energies 2023, 16, 6246. [Google Scholar] [CrossRef]
- Massel, L.; Massel, A.; Shchukin, N.; Tsybikov, A. Designing a Digital Twin of a Wind Farm. Eng. Proc. 2023, 33, 30. [Google Scholar] [CrossRef]
- Pacheco-Blazquez, R.; Garcia-Espinosa, J.; Di Capua, D.; Pastor Sanchez, A. A Digital Twin for Assessing the Remaining Useful Life of Offshore Wind Turbine Structures. J. Mar. Sci. Eng. 2024, 12, 573. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Dong, M.; Huang, L.; Guo, Y.; He, S. Deep learning-based prediction of wind power for multi-turbines in a wind farm. Front. Energy Res. 2021, 9, 723775. [Google Scholar] [CrossRef]
- Zou, M.; Djokic, S.Z. A review of approaches for detection and treatment of outliers in processing wind turbine and wind farm measurements. Energies 2020, 13, 4228. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Q.; Li, L.; Foley, A.M.; Srinivasan, D. Approaches to wind power curve modeling: A review and discussion. Renew. Sustain. Energy Rev. 2019, 116, 109422. [Google Scholar] [CrossRef]
- Wind Turbine Scada Dataset. Available online: https://www.kaggle.com/datasets/berkerisen/wind-turbine-scada-dataset (accessed on 22 August 2024).
- Bramm, A.M.; Eroshenko, S.A.; Khalyasmaa, A.I.; Matrenin, P.V. Grey Wolf Optimizer for RES Capacity Factor Maximization at the Placement Planning Stage. Mathematics 2023, 11, 2545. [Google Scholar] [CrossRef]
- Matrenin, P.V.; Gamaley, V.V.; Khalyasmaa, A.I.; Stepanova, A.I. Solar Irradiance Forecasting with Natural Language Processing of Cloud Observations and Interpretation of Results with Modified Shapley Additive Explanations. Algorithms 2024, 17, 150. [Google Scholar] [CrossRef]
- Joseph, P.; Deo, R.C.; Casillas-Pèrez, D.; Prasad, R.; Raj, N.; Salcedo-Sanz, S. Multi-Step-Ahead Wind Speed Forecast System: Hybrid Multivariate Decomposition and Feature Selection-Based Gated Additive Tree Ensemble Model. IEEE Access 2024, 12, 58750–58777. [Google Scholar] [CrossRef]
- Lee, J.; Wang, W.; Harrou, F.; Sun, Y. Wind Power Prediction Using Ensemble Learning-Based Models. IEEE Access 2020, 8, 61517–61527. [Google Scholar] [CrossRef]
- Scikit-Learn. Machine Learning in Python. Available online: https://scikit-learn.org/stable/ (accessed on 12 August 2024).
- XGBoost Documentation. Available online: https://xgboost.readthedocs.io/en/stable/ (accessed on 18 August 2024).
- CatBoost. Available online: https://catboost.ai/en/docs/ (accessed on 24 August 2024).
Date and Time | Real Power, kW | Wind Speed, m/s | Theoretical Power, kW | Wind Direction ° |
---|---|---|---|---|
1 January 2018 00:00 | 380.047791 | 5.311336 | 416.328908 | 259.994904 |
1 January 2018 00:10 | 453.769196 | 5.672167 | 519.917511 | 268.641113 |
1 January 2018 00:20 | 306.376587 | 5.216037 | 390.900016 | 272.5964789 |
1 January 2018 00:30 | 419.645905 | 5.659674 | 516.127569 | 271.258087 |
1 January 2018 00:40 | 380.650696 | 5.577941 | 491.702972 | 265.674286 |
Metric/Parameter | Real Power, kW | Wind Speed, m/s | Theoretical Power, kW | Wind Direction ° |
---|---|---|---|---|
Samples number | 46,976 | 46,976 | 46,976 | 46,976 |
Average value | 1406 | 7.709 | 1546 | 123.7 |
Standard deviation | 1309 | 4.269 | 1371 | 92.72 |
Minimum value | 0.000 | 0.000 | 0.000 | 0.000 |
25th percentile value | 168.5 | 4.467 | 215.0 | 50.00 |
50th percentile value | 991.1 | 7.294 | 1154 | 73.50 |
75th percentile value | 2613 | 10.48 | 3057 | 201.4 |
Maximum value | 3618.7 | 25.21 | 3600 | 360.0 |
Model | All Features | All Except Theoretical Power | All Except Previous Real Power | All Except Features Based on Date and Time | All Except Seasonal Binary Features | Wind Speed Only |
---|---|---|---|---|---|---|
LR | 183.70 | 229.58 | 252.52 | 184.31 | 184.16 | 459.71 |
SVR | 277.08 | 298.01 | 334.36 | 192.77 | 282.59 | 254.69 |
kNN | 133.31 | 164.85 | 130.63 | 136.88 | 132.38 | 260.12 |
DT | 135.31 | 137.86 | 194.46 | 149.64 | 144.40 | 256.70 |
RF | 121.32 | 121.59 | 169.68 | 132.16 | 125.52 | 243.65 |
ET | 125.04 | 137.96 | 182.74 | 134.58 | 128.11 | 240.89 |
AB | 125.04 | 123.24 | 135.58 | 138.95 | 125.10 | 611.49 |
GB | 112.59 | 113.87 | 144.43 | 134.91 | 116.80 | 252.59 |
XGB | 114.34 | 113.08 | 131.13 | 138.76 | 114.04 | 240.06 |
CB | 113.25 | 114.98 | 123.81 | 132.88 | 116.67 | 239.63 |
Model | All Features | All Except Theoretical Power | All Except Previous Real Power | All Except Features Based on Date and Time | All Except Seasonal Binary Features | Wind Speed Only |
---|---|---|---|---|---|---|
LR | 0.98016 | 0.96901 | 0.96251 | 0.98004 | 0.98007 | 0.87589 |
SVR | 0.95486 | 0.94779 | 0.93428 | 0.97817 | 0.95307 | 0.96190 |
kNN | 0.98955 | 0.98402 | 0.98997 | 0.98899 | 0.98970 | 0.96026 |
DT | 0.98924 | 0.98883 | 0.97777 | 0.98684 | 0.98775 | 0.96130 |
RF | 0.99135 | 0.99131 | 0.98307 | 0.98974 | 0.99074 | 0.96514 |
ET | 0.99081 | 0.98881 | 0.98037 | 0.98936 | 0.99035 | 0.96592 |
AB | 0.99081 | 0.99107 | 0.98919 | 0.98866 | 0.99080 | 0.78041 |
GB | 0.99255 | 0.99238 | 0.98774 | 0.98931 | 0.99198 | 0.96253 |
XGB | 0.99231 | 0.99248 | 0.98989 | 0.98869 | 0.99236 | 0.96616 |
CB | 0.99246 | 0.99223 | 0.99099 | 0.98963 | 0.99200 | 0.96628 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Institute of Knowledge Innovation and Invention. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matrenin, P.V.; Harlashkin, D.A.; Mazunina, M.V.; Khalyasmaa, A.I. Investigation of the Features Influencing the Accuracy of Wind Turbine Power Calculation at Short-Term Intervals. Appl. Syst. Innov. 2024, 7, 105. https://doi.org/10.3390/asi7060105
Matrenin PV, Harlashkin DA, Mazunina MV, Khalyasmaa AI. Investigation of the Features Influencing the Accuracy of Wind Turbine Power Calculation at Short-Term Intervals. Applied System Innovation. 2024; 7(6):105. https://doi.org/10.3390/asi7060105
Chicago/Turabian StyleMatrenin, Pavel V., Dmitry A. Harlashkin, Marina V. Mazunina, and Alexandra I. Khalyasmaa. 2024. "Investigation of the Features Influencing the Accuracy of Wind Turbine Power Calculation at Short-Term Intervals" Applied System Innovation 7, no. 6: 105. https://doi.org/10.3390/asi7060105
APA StyleMatrenin, P. V., Harlashkin, D. A., Mazunina, M. V., & Khalyasmaa, A. I. (2024). Investigation of the Features Influencing the Accuracy of Wind Turbine Power Calculation at Short-Term Intervals. Applied System Innovation, 7(6), 105. https://doi.org/10.3390/asi7060105