Previous Issue
Volume 8, August
 
 

Appl. Syst. Innov., Volume 8, Issue 5 (October 2025) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
16 pages, 576 KB  
Article
Optimizing Bus Driver Scheduling: A Set Covering Approach for Reducing Transportation Costs
by Viktor Sándor Árgilán and József Békési
Appl. Syst. Innov. 2025, 8(5), 122; https://doi.org/10.3390/asi8050122 (registering DOI) - 25 Aug 2025
Abstract
Cutting operational costs is a critical component for transportation agencies. To reduce these costs, agencies must optimize their scheduling. Typically, the total operating costs of transport include vehicle expenses and driver wages. Solving such tasks is complex, and optimal planning is usually broken [...] Read more.
Cutting operational costs is a critical component for transportation agencies. To reduce these costs, agencies must optimize their scheduling. Typically, the total operating costs of transport include vehicle expenses and driver wages. Solving such tasks is complex, and optimal planning is usually broken down into multiple stages. These stages can include vehicle scheduling, driver shift planning, and driver assignment. This paper focuses specifically on developing a near-optimal driver schedule for a specified set of vehicle schedules. It shows how to efficiently assign drivers to predetermined optimal vehicle routes while ensuring compliance with regulatory constraints on driving hours. We address this challenge using a mathematical model based on the set covering problem, building on a framework established perviously. The set covering problem is typically formulated as an integer programming problem, solvable through column generation techniques. Our algorithm combines this method with heuristics, taking into account the practical aspects of the problem. The article also presents a computational analysis of the method using benchmark and real data. Full article
(This article belongs to the Section Applied Mathematics)
Show Figures

Figure 1

17 pages, 8169 KB  
Article
A Novel Spatiotemporal Framework for EEG-Based Visual Image Classification Through Signal Disambiguation
by Ahmed Fares
Appl. Syst. Innov. 2025, 8(5), 121; https://doi.org/10.3390/asi8050121 (registering DOI) - 25 Aug 2025
Abstract
This study presents a novel deep learning framework for classifying visual images based on brain responses recorded through electroencephalogram (EEG) signals. The primary challenge in EEG-based visual pattern recognition lies in the inherent spatiotemporal variability of neural signals across different individuals and recording [...] Read more.
This study presents a novel deep learning framework for classifying visual images based on brain responses recorded through electroencephalogram (EEG) signals. The primary challenge in EEG-based visual pattern recognition lies in the inherent spatiotemporal variability of neural signals across different individuals and recording sessions, which severely limits the generalization capabilities of classification models. Our work specifically addresses the task of identifying which image category a person is viewing based solely on their recorded brain activity. The proposed methodology incorporates three primary components: first, a brain hemisphere asymmetry-based dimensional reduction approach to extract discriminative lateralization features while addressing high-dimensional data constraints; second, an advanced channel selection algorithm utilizing Fisher score methodology to identify electrodes with optimal spatial representativeness across participants; and third, a Dynamic Temporal Warping (DTW) alignment technique to synchronize temporal signal variations with respect to selected reference channels. Comprehensive experimental validation on a visual image classification task using a publicly available EEG-based visual classification dataset, ImageNet-EEG, demonstrates that the proposed disambiguation framework substantially improves classification accuracy while simultaneously enhancing model convergence characteristics. The integrated approach not only outperforms individual component implementations but also accelerates the learning process, thereby reducing training data requirements for EEG-based applications. These findings suggest that systematic spatiotemporal disambiguation represents a promising direction for developing robust and generalizable EEG classification systems across diverse neurological and brain–computer interface applications. Full article
(This article belongs to the Special Issue Advancements in Deep Learning and Its Applications)
Show Figures

Figure 1

16 pages, 3072 KB  
Article
Voltage Strength Assessment of Sending/Receiving Systems with a High Proportion of New Energy and HVDC
by Biyang Wang, Yu Kou, Dehai Zhang, Qinglei Zhang, Haibo Li, Zongxiang Lu and Ying Qiao
Appl. Syst. Innov. 2025, 8(5), 120; https://doi.org/10.3390/asi8050120 - 25 Aug 2025
Abstract
The significant increase in renewable energy sources and HVDC transmission has resulted in a substantial reduction in power system stability, thereby giving rise to a growing concern regarding the safety and stability of the voltage and frequency of DC power systems. A survey [...] Read more.
The significant increase in renewable energy sources and HVDC transmission has resulted in a substantial reduction in power system stability, thereby giving rise to a growing concern regarding the safety and stability of the voltage and frequency of DC power systems. A survey of the extant literature pertaining to both DC outgoing systems and new energy power systems reveals a preponderance of studies that employ the short-circuit ratio or multi-site short-circuit ratio as a metric for strength evaluation. However, it is evident that there is an absence of a universally applicable and comprehensive strength definition index for new energy and DC-accessed sending/receiving systems. Thus, the present paper puts forward a novel voltage stiffness-based strength evaluation index for new energy and DC-accessed sending/receiving systems and provides a qualitative analysis from the perspective of static voltage stability support. The static stability limit and transient overvoltage limit correspond to impedance ratios of 1 and 2.56, respectively. The findings demonstrate the efficacy of the proposed index in accurately gauging the strength of the sending system. The index’s versatility is further highlighted by its wide applicability in the sending/receiving systems of new energy and HVDC access. Full article
Show Figures

Figure 1

24 pages, 1149 KB  
Article
Toward a Holistic Bikeability Framework: Expert-Based Prioritization of Urban Cycling Criteria via AHP
by Ugo N. Castañon, Paulo J. G. Ribeiro and José F. G. Mendes
Appl. Syst. Innov. 2025, 8(5), 119; https://doi.org/10.3390/asi8050119 - 22 Aug 2025
Viewed by 183
Abstract
This study applies a multicriteria decision analysis to explore how experts from different backgrounds assess traditional and emerging criteria for urban cycling. A hierarchical model with 7 main criteria and 31 subcriteria was evaluated by 30 specialists from academic, technical, and user-focused groups. [...] Read more.
This study applies a multicriteria decision analysis to explore how experts from different backgrounds assess traditional and emerging criteria for urban cycling. A hierarchical model with 7 main criteria and 31 subcriteria was evaluated by 30 specialists from academic, technical, and user-focused groups. Using pairwise comparisons and aggregated judgments, this study reveals points of agreement and divergence among expert priorities. Safety and infrastructure were rated as the most important factors. In contrast, contextual and technological aspects, such as Multimodality, Environmental Quality, Shared Systems, and Digital Solutions, received moderate to lower weights, with differences linked to expert profiles. These results highlight how different disciplinary perspectives influence the understanding of bikeability-related factors. Conceptually, the findings support a broader view of cycling conditions that incorporates both established and emerging criteria. Methodologically, this study demonstrates the value of the Analytic Hierarchy Process (AHP) as a participatory and transparent tool to integrate diverse stakeholder opinions into a structured evaluation model. This approach can support cycling mobility planning and policymaking. Future applications may include case studies in specific cities, combining expert-based priorities with local spatial data, as well as longitudinal research to track changes in cycling conditions over time. Full article
(This article belongs to the Topic Social Sciences and Intelligence Management, 2nd Volume)
Show Figures

Figure 1

21 pages, 5059 KB  
Article
Experimental and Numerical Validation of an Extended FFR Model for Out-of-Plane Vibrations in Discontinuous Flexible Structures
by Sherif M. Koda, Masami Matsubara, Ahmed M. R. Fath El-Bab and Ayman A. Nada
Appl. Syst. Innov. 2025, 8(5), 118; https://doi.org/10.3390/asi8050118 - 22 Aug 2025
Viewed by 175
Abstract
Toward the innovative design of tunable structures for energy generation, this paper presents an extended Floating Frame of Reference (FFR) formulation capable of modeling slope discontinuities in flexible multibody systems—overcoming a key limitation of conventional FFR methods that assume slope continuity. The model [...] Read more.
Toward the innovative design of tunable structures for energy generation, this paper presents an extended Floating Frame of Reference (FFR) formulation capable of modeling slope discontinuities in flexible multibody systems—overcoming a key limitation of conventional FFR methods that assume slope continuity. The model is validated using a spatial double-pendulum structure composed of circular beam elements, representative of out-of-plane energy harvesting systems. To investigate the influence of boundary constraints on dynamic behavior, three electromagnetic clamping configurations—Fixed–Free–Free (XFF), Fixed–Free–Fixed (XFX), and Free–Fixed–Free (FXF)—are implemented. Tri-axial accelerometer measurements are analyzed via Fast Fourier Transform (FFT), revealing natural frequencies spanning from 38.87 Hz (lower frequency range) to 149.01 Hz (higher frequency range). For the lower frequency range, the FFR results (38.76 Hz) show a close match with the experimental prediction (38.87 Hz) and ANSYS simulation (36.49 Hz), yielding 0.28% error between FFR and experiments and 5.85% between FFR and ANSYS. For the higher frequency range, the FFR model (148.17 Hz) achieves 0.56% error with experiments (149.01 Hz) and 0.85% with ANSYS (146.91 Hz). These high correlation percentages validate the robustness and accuracy of the proposed FFR formulation. The study further shows that altering boundary conditions enables effective frequency tuning in discontinuous structures—an essential feature for the optimization of application-specific systems such as wave energy converters. This validated framework offers a versatile and reliable tool for the design of vibration-sensitive devices with geometric discontinuities. Full article
(This article belongs to the Section Control and Systems Engineering)
Show Figures

Figure 1

Previous Issue
Back to TopTop