Rapid Access to Empirical Impact Ionization Cross Sections for Atoms and Ions across the Periodic Table
Abstract
:1. Introduction
2. Empirical Approximations for Modeling Impact Ionization Processes
2.1. Empirical Estimates versus Quantum Many-Electron Computations
2.2. Binary-Encounter Approximations
2.3. Use of Semi-Empirical Models
2.4. Resonant Excitation and Capture Contributions to Electron-Impact Ionization
3. Implementation of Partial and Total Electron-Impact Cross Sections
3.1. The Jac Toolbox
3.2. Empirical Estimates of EII Cross Sections within Jac
4. Rapid Access to and Comparison of EII Cross Sections from Different Models
4.1. K-Shell Electron-Impact Ionization of Ions
4.2. Partial M-Shell and Total EII Cross Sections for Argon-like Ions
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burgess, A.; Chidichimo, M.C. Electron impact ionization of complex ions. Mon. Not. R. Astro. Soc. 1983, 203, 1269. [Google Scholar] [CrossRef]
- Märk, T.D.; Dunn, G.H. (Eds.) Electron Impact Ionization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Bartlett, P.L.; Stelbovics, A.T. Calculation of electron-impact total-ionization cross sections. Phys. Rev. A 2002, 66, 012707. [Google Scholar] [CrossRef]
- Bartlett, P.L.; Stelbovics, A.T. Electron-impact ionization cross sections for elements Z=1 to Z=54. At. Data Nucl. Data Tables 2004, 86, 235. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Jiao, L.G.; Fritzsche, S. Generalized binary-encounter-Bethe model for electron impact ionization of atoms. J. Phys. B, 2023; accepted. [Google Scholar]
- Kim, Y.K.; Santos, J.P.; Parente, F. Extension of the binary-encounter-dipole model to relativistic incident electrons. Phys. Rev. A 2000, 62, 052710. [Google Scholar] [CrossRef]
- Uddin, M.A.; Haque, A.K.F.; Billah, M.M.; Basak, A.K.; Karim, K.R.; Saha, B.C. Computation of electron-impact K-shell ionization cross sections of atoms. Phys. Rev. A 2005, 71, 032715. [Google Scholar] [CrossRef]
- Haque, A.K.F.; Uddin, M.A.; Shahjahan, M.; Talukder, M.R.; Basak, A.K.; Saha, B.C. Electron impact inner-shell ionization of atoms. Adv. Quantum Chem. 2011, 61, 317. [Google Scholar]
- Bartschat, K.; Burke, P.G. The R-matrix method for electron impact ionisation. J. Phys. B 1987, 20, 3191. [Google Scholar] [CrossRef]
- Pindzola, M.S.; Schultz, D.R. Time-dependent close-coupling method for electron-impact ionization of hydrogen. Phys. Rev. A 1996, 53, 1525. [Google Scholar] [CrossRef]
- Fritzsche, S. A fresh computational approach to atomic structures, processes and cascades. Comp. Phys. Commun. 2019, 240, 1. [Google Scholar] [CrossRef]
- Grant, I.P. Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Lotz, W. Electron-impact ionization cross-sections for atoms up to Z = 108. Z. Phys. 1970, 232, 101. [Google Scholar] [CrossRef]
- Bartlett, P.L.; Stelbovics, A.T. Electron-helium S-wave model benchmark calculations. I. Single ionization and single excitation. Phys. Rev. A 2010, 81, 022715. [Google Scholar] [CrossRef]
- Younger, S.M. Distorted-wave electron-impact-ionization cross sections for highly ionized neonlike atoms. Phys. Rev. A 1981, 23, 1138. [Google Scholar] [CrossRef]
- Griffin, D.C.; Pindzola, M.S. Distorted-wave calculations of electron impact ionisation in the Ni isonuclear sequence. J. Phys. B 1988, 21, 3253. [Google Scholar] [CrossRef]
- Badnell, N.R. A Breit-Pauli distorted wave implementation for Autostructure. Comp. Phys. Commun. 2011, 182, 1528. [Google Scholar] [CrossRef]
- Mao, J.; Badnell, N.R.; Del Zanna, G. R-matrix electron-impact excitation data for the C-like iso-electronic sequence. Astron. Astrophys. 2020, 634, A7. [Google Scholar] [CrossRef]
- Kim, Y.-K. Scaling of plane-wave Born cross sections for electron-impact excitation of neutral atoms. Phys. Rev. A 2001, 64, 032713. [Google Scholar] [CrossRef]
- Thomson, J.J. XLII. Ionization by moving electrified particle. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1912, 23, 449. [Google Scholar] [CrossRef]
- Thomas, L.H. The calculation of atomic fields. Proc. Camb. Phil. Soc. 1927, 73, 713. [Google Scholar] [CrossRef]
- Vriens, L. Binary-encounter proton-atom collision theory. Proc. Phys. Soc. 1967, 90, 935. [Google Scholar] [CrossRef]
- Kolbenstvedt, H. Simple theory for K-Ionization by relativistic electrons. J. Appl. Phys. 1967, 38, 4785. [Google Scholar] [CrossRef]
- Kim, Y.K.; Rudd, M.E. Binary-encounter-dipole model for electron-impact ionization. Phys. Rev. A 1994, 50, 3954. [Google Scholar] [CrossRef]
- Bell, K.L.; Gilbody, H.B.; Hughes, J.G.; Kingston, A.E.; Smith, F.J. Recommended data on the electron impact ionization of light atoms and ions. J. Phys. Chem. Ref. Data 2008, 41, 095204. [Google Scholar] [CrossRef]
- Guerra, M.; Parente, F.; Indelicato, P.; Santos, J.P. Modified binary encounter Bethe model for electron-impact ionization. Int. J. Mass Spectrom. 2012, 1–7, 313. [Google Scholar] [CrossRef]
- Vriens, L.; Smeets, A.H.M. Cross-section and rate formulas for electron-impact ionization, excitation, deexcitation and total depopulation of excited atoms. Phys. Rev. A 1980, 22, 940. [Google Scholar] [CrossRef]
- Bethe, H. Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann. Phys. 1930, 5, 325. [Google Scholar] [CrossRef]
- Gallagher, J. Absolute cross sections for molecular photoabsorption, partial photoionization, and ionic photofragmentation processes. J. Phys. Chem. Ref. Data 1988, 17, 9. [Google Scholar] [CrossRef]
- Patoary, M.A.R.; Haque, A.K.F.; Hossain, M.I.; Hosain, M.E.; Uddin, M.A.; Basak, A.K.; Haque, M.M.; Maaza, M.; Saha, B.C. An analytical model for the electron impact K-shell ionization cross sections of atoms. Int. J. Mass Spec. 2017, 415, 1. [Google Scholar] [CrossRef]
- Huo, W.M. Convergent series representation for the generalized oscillator strength of electron-impact ionization and an improved binary-encounter-dipole model. Phys. Rev. A 2001, 64, 042719. [Google Scholar] [CrossRef]
- Uddin, M.A.; Fazlul Haque, M.A.K.; Basak, A.K.; Saha, B.C. Calculations of electron-impact single-ionization cross sections of helium isoelectronic systems. Phys. Rev. A 2004, 70, 032706. [Google Scholar] [CrossRef]
- Schippers, S.; Martins, M.; Beerwerth, R.; Bari, S.; Holste, K.; Schubert, K.; Viefhaus, J.; Savin, D.W.; Fritzsche, S.; Müller, A. Near L-edge single and multiple photoionization of singly charged iron ions. Astrophys. J. 2017, 849, 5. [Google Scholar] [CrossRef]
- Beerwerth, R.; Buhr, T.; Perry-Sassmannshausen, A.; Stock, S.O.; Bari, S.; Holste, K.; Kilcoyne, A.L.D.; Reinwardt, S.; Ricz, S.; Savin, D.W.; et al. Near L-edge single and multiple photoionization of triply charged iron ions. Astrophys. J. 2019, 887, 189. [Google Scholar] [CrossRef]
- Sharma, L.; Surzhykov, A.; Srivastava, R.; Fritzsche, S. Electron-impact excitation of singly charged metal ions. Phys. Rev. A 2011, 83, 062701. [Google Scholar] [CrossRef]
- Wu, Z.W.; Tian, Z.Q.; Dong, C.Z.; Surzhykov, A.; Fritzsche, S. Hyperfine-induced effects on Kα1 linear polarization following electron-impact excitation of helium-like Tl79+ ions with nuclear spin I=1/2. New J. Phys. 2023, 25, 093039. [Google Scholar] [CrossRef]
- Fritzsche, S. The Ratip program for relativistic calculations of atomic transition, ionization and recombination properties. Comp. Phys. Commun. 2012, 183, 1525. [Google Scholar] [CrossRef]
- Pindzola, M.S.; Griffin, D.C.; Bottcher, C. Electron-impact excitation autoionization of Ga II. Phys. Rev. A 1982, 25, 211. [Google Scholar] [CrossRef]
- Pakalka, S.; Kucas, S.; Masys, S.; Kyniene, A.; Momkauskaite, A.; Jonauskas, V. Electron-impact single ionization of the Se3+ ion. Phys. Rev. A 2018, 97, 012708. [Google Scholar] [CrossRef]
- Fritzsche, S.; Palmeri, P.; Schippers, S. Atomic cascade computations. Symmetry 2021, 13, 520. [Google Scholar] [CrossRef]
- Fritzsche, S. Application of symmetry-adapted atomic amplitudes. Atoms 2022, 10, 127. [Google Scholar] [CrossRef]
- Fritzsche, S. JAC: User Guide, Compendium & Theoretical Background. Available online: https://github.com/OpenJAC/JAC.jl (accessed on 10 December 2023).
- Available online: https://docs.julialang.org (accessed on 10 December 2023).
- Bezanson, J.; Chen, J.; Chung, B.; Karpinski, S.; Shah, V.B.; Vitek, J.; Zoubritzky, J. Julia: Dynamism and performance reconciled by design. Proc. ACM Program. Lang. 2018, 2, 120. [Google Scholar] [CrossRef]
- Kwong, T. Hands-On Design Patterns and Best Practices with Julia; Packt Publishing: Birmingham, UK, 2020. [Google Scholar]
- Fritzsche, S. Level structure and properties of open f-shell elements. Atoms 2022, 10, 7. [Google Scholar] [CrossRef]
- Fritzsche, S.; Maiorova, A.V.; Wu, Z.W. Radiative recombination plasma rate coefficients for multiply charged ions. Atoms 2023, 11, 50. [Google Scholar] [CrossRef]
- Fritzsche, S. Dielectronic recombination strengths and plasma rate coefficients of multiply charged ions. Astron. Astrophys. 2021, 656, A163. [Google Scholar] [CrossRef]
- Fritzsche, S.; Surzhykov, A. Approximate atomic Green functions. Molecules 2021, 26, 2660. [Google Scholar] [CrossRef]
- Fritzsche, S. Symbolic evaluation of expressions from Racah’s algebra. Symmetry 2021, 13, 1558. [Google Scholar] [CrossRef]
- Deprince, J.; Bautista, M.A.; Fritzsche, S.; Garcia, J.; Kallman, T.R.; Mendoza, C.; Palmeri, P.; Quinet, P. Plasma environment effects on K lines of astrophysical interest. I. Atomic structure, radiative rates, and Auger widths of oxygen ions. Astron. Astrophys. 2019, 624, A74. [Google Scholar] [CrossRef]
- Haque, A.K.F.; Atiqur, M.; Patoary, R.; Uddin, M.A.; Basak, A.K.; Saha, B.C. Electron Impact Atomic and Ionic Ionization: Analytical, Semiempirical, and Semiclassical Methods. Adv. Quantum Chem. 2016, 73, 363. [Google Scholar] [CrossRef]
- Donets, E.D.; Ovsyannikov, V.P. Investigation of ionization of positive ions by electron impact. Zh. Eksp. Teor. Fiz. 1981, 80, 916. [Google Scholar]
- Colgan, J.; Fontes, C.J.; Zhang, H.L. Inner-shell electron-impact ionization of neutral atoms. Phys. Rev. A 2006, 73, 062711. [Google Scholar] [CrossRef]
- Lecointre, J.; Jureta, J.J.; Defrance, P. Electron-impact ionization of singly-charged neon ions. J. Phys. B 2008, 41, 095204. [Google Scholar] [CrossRef]
- Duponchelle, M.; Khouilid, M.; Oualim, E.M.; Zhang, H.; Defrance, P. Electron-impact ionization of neon ions (q = 4–8). J. Phys. B 1997, 30, 729. [Google Scholar] [CrossRef]
- Tinschert, K.; Müller, A.; Hofmann, G.; Huber, K.; Becker, R.; Gregory, D.C.; Salzborn, E. Experimental cross sections for electron impact ionisation of hydrogen-like Li2+ ions. J. Phys. B 1989, 22, 531. [Google Scholar] [CrossRef]
- Khouilid, M.; Cherkani-Hassani, S.; Rachafi, S.; Teng, H.; Defrance, P. Electron-impact single ionization of krypton ions (q = 12–18). J. Phys. B 2001, 34, 1727. [Google Scholar] [CrossRef]
- Fritzsche, S.; Jiao, L.-G.; Wang, Y.-C.; Sienkiewicz, J.E. Collision Strengths of Astrophysical Interest for Multiply Charged Ions. Atoms 2023, 11, 80. [Google Scholar] [CrossRef]
- Defrance, P. Recommended data for electron impact ionization of noble gas ions. Nucl. Fusion Suppl. 1995, 6, 43. [Google Scholar]
- Blanke, J.H.; Fricke, B.; Finkbener, M. Database Plasmarelevante Atomare Daten; University of Kassel: Kassel, Germany, 1992. [Google Scholar]
Model | Features and Limitations |
---|---|
Generalized binary-encounter Bethe (BEB): | suitable for non-relativistic and relativistic impact energies and most not-too-heavy elements. This model is parameter-free and easy to use [5] and expands the EII cross sections of Kim and coworkers [6,19]. It is often applied to light and medium elements with , as well as to the EII of (sub-)valence shells. The relativistic version of this model is suggested for impact energies keV; ImpactIonization.BEBmodel, ImpactIonization.RelativisticBEBmodel. |
Binary-encounter-dipole (BED): | a modified BEB model following the studies of Huo [31] and Uddin and coworkers [32]. Again, this model is suitable for both non-relativistic and relativistic impact energies, but is based especially on fit parameters; ImpactIonization.BEDmodel, RelativisticBEDmodel. |
Parameter-dependent (fitted) BED: | another modified BEB model due to Haque and coworkers [8,30]. This model can be applied to a good range of impact energies by making use of different fit coefficients for the K-, L- and M-subshells. It incorporates certain ionic and relativistic corrections and has been applied successfully up to ultra-high energies 2 GeV for atomic targets with nuclear charge ; ImpactIonization.FittedBEDmodel. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fritzsche, S.; Jiao, L.; Visentin, G. Rapid Access to Empirical Impact Ionization Cross Sections for Atoms and Ions across the Periodic Table. Plasma 2024, 7, 106-120. https://doi.org/10.3390/plasma7010008
Fritzsche S, Jiao L, Visentin G. Rapid Access to Empirical Impact Ionization Cross Sections for Atoms and Ions across the Periodic Table. Plasma. 2024; 7(1):106-120. https://doi.org/10.3390/plasma7010008
Chicago/Turabian StyleFritzsche, Stephan, Liguang Jiao, and Giorgio Visentin. 2024. "Rapid Access to Empirical Impact Ionization Cross Sections for Atoms and Ions across the Periodic Table" Plasma 7, no. 1: 106-120. https://doi.org/10.3390/plasma7010008
APA StyleFritzsche, S., Jiao, L., & Visentin, G. (2024). Rapid Access to Empirical Impact Ionization Cross Sections for Atoms and Ions across the Periodic Table. Plasma, 7(1), 106-120. https://doi.org/10.3390/plasma7010008