Focal Muscle Vibration (fMV) for Post-Stroke Motor Recovery: Multisite Neuroplasticity Induction, Timing of Intervention, Clinical Approaches, and Prospects from a Narrative Review
Abstract
:1. Motor Recovery after Stroke and Neuroplasticity: From Stroke Lesion to Network Relearning
2. Focal MUSCLE Vibration (fMV) for Post-Stroke Motor Recovery: Concurrent Multisite Plasticity-Driven Mechanisms and Clinical Correlates
2.1. fMV-Induced Plasticity in the Brain
2.2. fMV-Induced Plasticity in the Spinal Cord
2.3. Timing of Intervention: New Evidence for an Extended Critical Time Window
3. fMV’s Different Current Clinical Approaches
4. Open Issues and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.; Sacco, R.L.; Hacke, W.; Fisher, M.; Pandian, J.; Lindsay, P. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int. J. Stroke 2022, 17, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Stroke Unit Trialists’ Collaboration Organised inpatient (stroke unit) care for stroke. Cochrane Database Syst. Rev. 2013, 2013, CD000197. [CrossRef]
- Jannini, T.B.; Ruggiero, M.; Viganò, A.; Comanducci, A.; Maestrini, I.; Giuliani, G.; Vicenzini, E.; Fattapposta, F.; Pauri, F.; Ruoppolo, G.; et al. The role of the Sapienza GLObal Bedside Evaluation of Swallowing after Stroke (GLOBE-3S) in the prevention of stroke-associated pneumonia (SAP). Neurol. Sci. 2021, 43, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Kishore, A.K.; Jeans, A.R.; Garau, J.; Bustamante, A.; Kalra, L.; Langhorne, P.; Chamorro, A.; Urra, X.; Katan, M.; Di Napoli, M.; et al. Antibiotic treatment for pneumonia complicating stroke: Recommendations from the pneumonia in stroke consensus (PISCES) group. Eur. Stroke J. 2019, 4, 318–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westendorp, W.F.; Nederkoorn, P.J.; Vermeij, J.-D.; Dijkgraaf, M.G.; van de Beek, D. Post-stroke infection: A systematic review and meta-analysis. BMC Neurol. 2011, 11, 110. [Google Scholar] [CrossRef] [Green Version]
- Levin, M.F.; Kleim, J.A.; Wolf, S.L. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabilit. Neural Repair 2008, 23, 313–319. [Google Scholar] [CrossRef]
- Bernhardt, J.; Hayward, K.S.; Kwakkel, G.; Ward, N.S.; Wolf, S.L.; Borschmann, K.; Krakauer, J.W.; A Boyd, L.; Carmichael, S.T.; Corbett, D.; et al. Agreed definitions and a shared vision for new standards in stroke recovery research: The Stroke Recovery and Rehabilitation Roundtable taskforce. Int. J. Stroke 2017, 12, 444–450. [Google Scholar] [CrossRef] [Green Version]
- Ballester, B.R.; Maier, M.; Duff, A.; Cameirão, M.; Bermúdez, S.; Duarte, E.; Cuxart, A.; Rodríguez, S.; Mozo, R.M.S.S.; Verschure, P.F.M.J. A critical time window for recovery extends beyond one-year post-stroke. J. Neurophysiol. 2019, 122, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Kwakkel, G.; Kollen, B.J.; Lindeman, E. Understanding the pattern of functional recovery after stroke: Facts and theories. Restor. Neurol. Neurosci. 2004, 22, 281–299. [Google Scholar] [CrossRef]
- Jang, S.H. Motor function-related maladaptive plasticity in stroke: A review. Neurorehabilitation 2013, 32, 311–316. [Google Scholar] [CrossRef]
- Bach-y-Rita, P. Central nervous system lesions: Sprouting and unmasking in rehabilitation. Arch. Phys. Med. Rehabil. 1981, 62, 413–417. [Google Scholar]
- Bach, Y.R. Brain plasticity as a basis of the development of rehabilitation procedures for hemiplegia. Scand. J. Rehabil. Med. 1981, 13, 73–83. [Google Scholar]
- Kaplan, M.S. Plasticity after brain lesions: Contemporary concepts. Arch. Phys. Med. Rehabil. 1988, 69, 984–991. [Google Scholar] [CrossRef]
- Nava, E.; Röder, B. Adaptation and maladaptation: Insights from brain plasticity. Prog. Brain Res. 2011, 191, 177–194. [Google Scholar] [CrossRef]
- Trojan, S.; Pokorný, J. Theoretical aspects of neuroplasticity. Physiol. Res. 1999, 48, 87–97. [Google Scholar]
- Grefkes, C.; Fink, G.R. Reorganization of cerebral networks after stroke: New insights from neuroimaging with connectivity approaches. Brain 2011, 134, 1264–1276. [Google Scholar] [CrossRef] [Green Version]
- Talelli, P.; Greenwood, R.; Rothwell, J. Arm function after stroke: Neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation. Clin. Neurophysiol. 2006, 117, 1641–1659. [Google Scholar] [CrossRef]
- Sarasso, S.; D’ambrosio, S.; Fecchio, M.; Casarotto, S.; Viganò, A.; Landi, C.; Mattavelli, G.; Gosseries, O.; Quarenghi, M.; Laureys, S.; et al. Local sleep-like cortical reactivity in the awake brain after focal injury. Brain 2020, 143, 3672–3684. [Google Scholar] [CrossRef] [PubMed]
- Engineer, N.D.; Riley, J.; Seale, J.D.; Vrana, W.A.; Shetake, J.A.; Sudanagunta, S.P.; Borland, M.S.; Kilgard, M. Reversing pathological neural activity using targeted plasticity. Nature 2011, 470, 101–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flor, H. Maladaptive plasticity, memory for pain and phantom limb pain: Review and suggestions for new therapies. Expert Rev. Neurother. 2008, 8, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Viganò, A.; Toscano, M.; Puledda, F.; Di Piero, V. Treating Chronic Migraine With Neuromodulation: The Role of Neurophysiological Abnormalities and Maladaptive Plasticity. Front. Pharmacol. 2019, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Rocco, A.; Afra, J.; Toscano, M.; Sirimarco, G.; Di Clemente, L.; Altieri, M.; Lenzi, G.L.; Di Piero, V. Acute subcortical stroke and early serotonergic modification: A IDAP study. Eur. J. Neurol. 2007, 14, 1378–1382. [Google Scholar] [CrossRef] [PubMed]
- Toscano, M.; Viganò, A.; Puledda, F.; Verzina, A.; Rocco, A.; Lenzi, G.L.; Di Piero, V. Serotonergic correlation with anger and aggressive behavior in acute stroke patients: An intensity dependence of auditory evoked potentials (IDAP) study. Eur. Neurol. 2014, 72, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Wieloch, T.; Nikolich, K. Mechanisms of neural plasticity following brain injury. Curr. Opin. Neurobiol. 2006, 16, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Sanes, J.N.; Donoghue, J.P. Plasticity and primary motor cortex. Annu. Rev. Neurosci. 2000, 23, 393–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Q. Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience 2002, 111, 815–835. [Google Scholar] [CrossRef]
- Ward, N.S.; Frackowiak, R.S. The functional anatomy of cerebral reorganisation after focal brain injury. J. Physiol. 2006, 99, 425–436. [Google Scholar] [CrossRef]
- Buchli, A.D.; Schwab, M.E. Inhibition of Nogo: A key strategy to increase regeneration, plasticity and functional recovery of the lesioned central nervous system. Ann. Med. 2005, 37, 556–567. [Google Scholar] [CrossRef]
- Dancause, N.; Barbay, S.; Frost, S.B.; Plautz, E.J.; Chen, D.; Zoubina, E.V.; Stowe, A.M.; Nudo, R.J. Extensive cortical rewiring after brain injury. J. Neurosci. 2005, 25, 10167–10179. [Google Scholar] [CrossRef] [Green Version]
- Grefkes, C.; Nowak, D.A.; Wang, L.E.; Dafotakis, M.; Eickhoff, S.B.; Fink, G.R. Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. Neuroimage 2010, 50, 233–242. [Google Scholar] [CrossRef]
- Turton, A.; Wroe, S.; Trepte, N.; Fraser, C. Lemon Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. Electroencephalogr. Clin. Neurophysiol. Mot. Control 1996, 101, 316–328. [Google Scholar] [CrossRef]
- Johansen-Berg, H.; Rushworth, M.F.S.; Bogdanovic, M.D.; Kischka, U.; Wimalaratna, S.; Matthews, P.M. The role of ipsilateral premotor cortex in hand movement after stroke. Proc. Natl. Acad. Sci. USA 2002, 99, 14518–14523. [Google Scholar] [CrossRef]
- Ward, N.S.; Brown, M.M.; Thompson, A.J.; Frackowiak, R.S.J. Neural correlates of outcome after stroke: A cross-sectional fMRI study. Brain 2003, 126, 1430–1448. [Google Scholar] [CrossRef] [Green Version]
- Fridman, E.A.; Hanakawa, T.; Chung, M.; Hummel, F.; Leiguarda, R.C.; Cohen, L.G. Reorganization of the human ipsilesional premotor cortex after stroke. Brain 2004, 127 Pt 4, 747–758. [Google Scholar] [CrossRef]
- Ward, N.S. Plasticity and the functional reorganization of the human brain. Int. J. Psychophysiol. 2005, 58, 158–161. [Google Scholar] [CrossRef]
- Carr, L.J.; Harrison, L.M.; Evans, A.L.; Stephens, J.A. Patterns of central motor reorganization in hemiplegic cerebral palsy. Brain 1993, 116, 1223–1247. [Google Scholar] [CrossRef]
- Di Piero, V.; Chollet, F.M.; MacCarthy, P.; Lenzi, G.L.; Frackowiak, R.S. Motor recovery after acute ischaemic stroke: A metabolic study. J. Neurol. Neurosurg. Psychiatry 1992, 55, 990–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buetefisch, C.M. Role of the Contralesional Hemisphere in Post-Stroke Recovery of Upper Extremity Motor Function. Front. Neurol. 2015, 6, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodd, K.C.; Nair, V.A.; Prabhakaran, V. Role of the Contralesional vs. Ipsilesional Hemisphere in Stroke Recovery. Front. Hum. Neurosci. 2017, 11, 469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celletti, C.; Suppa, A.; Bianchini, E.; Lakin, S.; Toscano, M.; La Torre, G.; Di Piero, V.; Camerota, F. Promoting post-stroke recovery through focal or whole body vibration: Criticisms and prospects from a narrative review. Neurol. Sci. 2019, 41, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Avvantaggiato, C.; Casale, R.; Cinone, N.; Facciorusso, S.; Turitto, A.; Stuppiello, L.; Picelli, A.; Ranieri, M.; Intiso, D.; Fiore, P.; et al. Localized muscle vibration in the treatment of motor impairment and spasticity in post-stroke patients: A systematic review. Eur. J. Phys. Rehabil. Med. 2020, 57, 44–60. [Google Scholar] [CrossRef]
- Casale, R. Focal, local or segmental vibration? Eur. J. Phys. Rehabil. Med. 2015, 51, 507–508. [Google Scholar]
- Celletti, C.; Sinibaldi, E.; Pierelli, F. Focal Muscle Vibration and Progressive Modular Rebalancing with neurokinetic facilitations in post- stroke recovery of upper limb. Clin. Ter. 2017, 168, e33–e36. [Google Scholar] [CrossRef]
- Costantino, C.; Galuppo, L.; Romiti, D. Short-term effect of local muscle vibration treatment versus sham therapy on upper limb in chronic post-stroke patients: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2017, 53, S1973–S9087. [Google Scholar] [CrossRef]
- Marconi, B.; Filippi, G.M.; Koch, G.; Giacobbe, V.; Pecchioli, C.; Versace, V.; Camerota, F.; Saraceni, V.M.; Caltagirone, C. Long-term effects on cortical excitability and motor recovery induced by repeated muscle vibration in chronic stroke patients. Neurorehabilit. Neural Repair 2010, 25, 48–60. [Google Scholar] [CrossRef]
- Marconi, B.; Filippi, G.M.; Koch, G.; Pecchioli, C.; Salerno, S.; Don, R.; Camerota, F.; Saraceni, V.M.; Caltagirone, C. Long-term effects on motor cortical excitability induced by repeated muscle vibration during contraction in healthy subjects. J. Neurol. Sci. 2008, 275, 51–59. [Google Scholar] [CrossRef]
- Toscano, M.; Celletti, C.; Viganò, A.; Altarocca, A.; Giuliani, G.; Jannini, T.B.; Mastria, G.; Ruggiero, M.; Maestrini, I.; Vicenzini, E.; et al. Short-Term Effects of Focal Muscle Vibration on Motor Recovery After Acute Stroke: A Pilot Randomized Sham-Controlled Study. Front. Neurol. 2019, 10, 115. [Google Scholar] [CrossRef]
- Huang, Y.-Z.; Lu, M.-K.; Antal, A.; Classen, J.; Nitsche, M.; Ziemann, U.; Ridding, M.; Hamada, M.; Ugawa, Y.; Jaberzadeh, S.; et al. Plasticity induced by non-invasive transcranial brain stimulation: A position paper. Clin. Neurophysiol. 2017, 128, 2318–2329. [Google Scholar] [CrossRef]
- Rocchi, L.; Suppa, A.; Leodori, G.; Celletti, C.; Camerota, F.; Rothwell, J.; Berardelli, A. Plasticity Induced in the Human Spinal Cord by Focal Muscle Vibration. Front. Neurol. 2018, 9, 935. [Google Scholar] [CrossRef]
- Filippi, G.M.; Rodio, A.; Fattorini, L.; Faralli, M.; Ricci, G.; Pettorossi, V.E. Plastic changes induced by muscle focal vibration: A possible mechanism for long-term motor improvements. Front. Neurosci. 2023, 17, 1112232. [Google Scholar] [CrossRef]
- Perasso, L.; Avanzino, L.; Lagravinese, G.; Giannini, A.; Faelli, E.L.; Bisio, A.; Quartarone, A.; Rizzo, V.; Ruggeri, P.; Bove, M. Boosting and consolidating the proprioceptive cortical aftereffect by combining tendon vibration and repetitive TMS over primary motor cortex. Neurol. Sci. 2018, 40, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Toscano, M.; Ricci, M.; Celletti, C.; Paoloni, M.; Ruggiero, M.; Viganò, A.; Jannini, T.B.; Altarocca, A.; Liberatore, M.; Camerota, F.; et al. Motor Recovery After Stroke: From a Vespa Scooter Ride Over the Roman Sampietrini to Focal Muscle Vibration (fMV) Treatment. A 99mTc-HMPAO SPECT and Neurophysiological Case Study. Front. Neurol. 2020, 11, 567833. [Google Scholar] [CrossRef] [PubMed]
- Heath, C.J.; Hore, J.; Phillips, C.G. Inputs from low threshold muscle and cutaneous afferents of hand and forearm to areas 3a and 3b of baboon’s cerebral cortex. J. Physiol. 1976, 257, 199–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, E.; Porter, R. What is area 3a? Brain Res. Rev. 1980, 2, 1–43. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Brinkman, C.; Porter, R. A quantitative study of the distribution of neurons projecting to the precentral motor cortex in the monkey (M. fascicularis). J. Comp. Neurol. 1987, 259, 424–444. [Google Scholar] [CrossRef]
- Huerta, M.; Pons, T. Primary motor cortex receives input from area 3a in macaques. Brain Res. 1990, 537, 367–371. [Google Scholar] [CrossRef]
- Caliandro, P.; Celletti, C.; Padua, L.; Minciotti, I.; Russo, G.; Granata, G.; La Torre, G.; Granieri, E.; Camerota, F. Focal muscle vibration in the treatment of upper limb spasticity: A pilot randomized controlled trial in patients with chronic stroke. Arch. Phys. Med. Rehabil. 2012, 93, 1656–1661. [Google Scholar] [CrossRef]
- Kolbaşı, E.N.; Huseyinsinoglu, B.E.; Bayraktaroğlu, Z. Effect of upper limb focal muscle vibration on cortical activity: A systematic review with a focus on primary motor cortex. Eur. J. Neurosci. 2022, 56, 4141–4153. [Google Scholar] [CrossRef]
- Wang, L.; Yu, C.; Chen, H.; Qin, W.; He, Y.; Fan, F.; Zhang, Y.; Wang, M.; Li, K.; Zang, Y.; et al. Dynamic functional reorganization of the motor execution network after stroke. Brain 2010, 133, 1224–1238. [Google Scholar] [CrossRef] [Green Version]
- Heiss, W.-D. Radionuclide Imaging in Ischemic Stroke. J. Nucl. Med. 2014, 55, 1831–1841. [Google Scholar] [CrossRef] [Green Version]
- Lopez, S.; Bini, F.; Del Percio, C.; Marinozzi, F.; Celletti, C.; Suppa, A.; Ferri, R.; Staltari, E.; Camerota, F.; Babiloni, C. Electroencephalographic sensorimotor rhythms are modulated in the acute phase following focal vibration in healthy subjects. Neuroscience 2017, 352, 236–248. [Google Scholar] [CrossRef]
- Li, W.; Li, C.; Xiang, Y.; Ji, L.; Hu, H.; Liu, Y. Study of the activation in sensorimotor cortex and topological properties of functional brain network following focal vibration on healthy subjects and subacute stroke patients: An EEG study. Brain Res. 2019, 1722, 146338. [Google Scholar] [CrossRef]
- Sadeghi, M.; Sawatzky, B. Effects of vibration on spasticity in individuals with spinal cord injury. Am. J. Phys. Med. Rehabil. 2014, 93, 995–1007. [Google Scholar] [CrossRef]
- Lance, J.W.; Nurke, D. Mechanisms of spasticity. Arch. Phys. Med. Rehabil. 1974, 55, 332–337. [Google Scholar]
- Delwaide, P.J.; Oliver, E. Short-latency autogenic inhibition (IB inhibition) in human spasticity. J. Neurol. Neurosurg. Psychiatry 1988, 51, 1546–1550. [Google Scholar] [CrossRef] [Green Version]
- Mazzocchio, R.; Rossi, A. Involvement of spinal recurrent inhibition in spasticity. Further insight into the regulation of Renshaw cell activity. Brain 1997, 120, 991–1003. [Google Scholar] [CrossRef]
- Nakashima, K.; Rothwell, J.C.; Day, B.L.; Thompson, P.D.; Shannon, K.; Marsden, C.D. Reciprocal inhibition between forearm muscles IN patients with writer’s cramp and other occupational cramps, symptomatic hemidystonia and hemiparesis due to stroke. Brain 1989, 112, 681–697. [Google Scholar] [CrossRef]
- Norton, J.J.; Wolpaw, J.R. Acquisition, Maintenance, and Therapeutic Use of a Simple Motor Skill. Curr. Opin. Behav. Sci. 2018, 20, 138–144. [Google Scholar] [CrossRef]
- Souron, R.; Baudry, S.; Millet, G.Y.; Lapole, T. Vibration-induced depression in spinal loop excitability revisited. J. Physiol. 2019, 597, 5179–5193. [Google Scholar] [CrossRef] [Green Version]
- Abbruzzese, M.; Minatel, C.; Reni, L.; Favale, E. Postvibration depression of the H-reflex as a result of a dual mechanism. J. Clin. Neurophysiol. 2001, 18, 460–470. [Google Scholar] [CrossRef]
- Lamy, J.-C.; Wargon, I.; Mazevet, D.; Ghanim, Z.; Pradat-Diehl, P.; Katz, R. Impaired efficacy of spinal presynaptic mechanisms in spastic stroke patients. Brain 2008, 132, 734–748. [Google Scholar] [CrossRef] [Green Version]
- Noma, T.; Matsumoto, S.; Etoh, S.; Shimodozono, M.; Kawahira, K. Anti-spastic effects of the direct application of vibratory stimuli to the spastic muscles of hemiplegic limbs in post-stroke patients. Brain Inj. 2009, 23, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Noma, T.; Matsumoto, S.; Shimodozono, M.; Etoh, S.; Kawahira, K. Anti-spastic effects of the direct application of vibratory stimuli to the spastic muscles of hemiplegic limbs in post-stroke patients: A proof-of-principle study. J. Rehabil. Med. 2012, 44, 325–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annino, G.; Alashram, A.R.; Alghwiri, A.A.; Romagnoli, C.; Messina, G.; Tancredi, V.; Padua, E.; Mercuri, N.B. Effect of segmental muscle vibration on upper extremity functional ability poststroke. Medicine 2019, 98, e14444. [Google Scholar] [CrossRef] [PubMed]
- Casale, R.; Damiani, C.; Maestri, R.; Fundarò, C.; Chimento, P.; Foti, C. Localized 100 Hz vibration improves function and reduces upper limb spasticity: A dou-ble-blind controlled study. Eur. J. Phys. Rehabil. Med. 2014, 50, 495–504. [Google Scholar]
- Conrad, M.O.; Gadhoke, B.; Scheidt, R.A.; Schmit, B.D. Effect of Tendon Vibration on Hemiparetic Arm Stability in Unstable Workspaces. PLoS ONE 2015, 10, e0144377. [Google Scholar] [CrossRef]
- Paoloni, M.; Tavernese, E.; Fini, M.; Sale, P.; Franceschini, M.; Santilli, V.; Mangone, M. Segmental muscle vibration modifies muscle activation during reaching in chronic stroke: A pilot study. Neurorehabilitation 2014, 35, 405–414. [Google Scholar] [CrossRef]
- Di Loreto, C.; Ranchelli, A.; Lucidi, P.; Murdolo, G.; Parlanti, N.; De Cicco, A.; Tsarpela, O.; Annino, G.; Bosco, C.; Santeusanio, F.; et al. Effects of whole-body vibration exercise on the endocrine system of healthy men. J. Endocrinol. Investig. 2004, 27, 323–327. [Google Scholar] [CrossRef]
- Elmantaser, M.; McMillan, M.; Smith, K.; Khanna, S.; Chantler, D.; Panarelli, M.; Ahmed, S.F. A comparison of the effect of two types of vibration exercise on the endocrine and musculoskeletal system. J. Musculoskelet. Neuronal Interact. 2012, 12, 144–154. [Google Scholar]
- Okuyama, K.; Kawakami, M.; Hiramoto, M.; Muraoka, K.; Fujiwara, T.; Liu, M. Relationship between spasticity and spinal neural circuits in patients with chronic hemiparetic stroke. Exp. Brain Res. 2017, 236, 207–213. [Google Scholar] [CrossRef]
- Huang, Y.-Z.; Rothwell, J.C.; Lu, C.-S.; Wang, J.; Weng, Y.-H.; Lai, S.-C.; Chuang, W.-L.; Hung, J.; Chen, R.-S. The effect of continuous theta burst stimulation over premotor cortex on circuits in primary motor cortex and spinal cord. Clin. Neurophysiol. 2009, 120, 796–801. [Google Scholar] [CrossRef]
- Wissel, J.; Manack, A.; Brainin, M. Toward an epidemiology of poststroke spasticity. Neurology 2013, 80, S13–S19. [Google Scholar] [CrossRef]
- Kwakkel, G.; Kollen, B.J. Predicting Activities after Stroke: What is Clinically Relevant? Int. J. Stroke 2012, 8, 25–32. [Google Scholar] [CrossRef]
- Hendricks, H.T.; van Limbeek, J.; Geurts, A.C.; Zwarts, M.J. Motor recovery after stroke: A systematic review of the literature. Arch. Phys. Med. Rehabil. 2002, 83, 1629–1637. [Google Scholar] [CrossRef]
- Dromerick, A.W.; Geed, S.; Barth, J.; Brady, K.; Giannetti, M.L.; Mitchell, A.; Edwardson, M.A.; Tan, M.T.; Zhou, Y.; Newport, E.L.; et al. Critical Period After Stroke Study (CPASS): A phase II clinical trial testing an optimal time for motor recovery after stroke in humans. Proc. Natl. Acad. Sci. USA 2021, 118, e2026676118. [Google Scholar] [CrossRef]
- McDonnell, M.N.; Koblar, S.; Ward, N.S.; Rothwell, J.C.; Hordacre, B.; Ridding, M.C. An investigation of cortical neuroplasticity following stroke in adults: Is there evidence for a critical window for rehabilitation? BMC Neurol. 2015, 15, 109. [Google Scholar] [CrossRef] [Green Version]
- Spittle, A.J. Critically appraised paper: Intensive motor rehabilitation after stroke is more effective within the subacute than acute or chronic phase compared with standard rehabilitation. J. Physiother. 2022, 68, 142. [Google Scholar] [CrossRef]
- Lee, S.-W.; Cho, K.-H.; Lee, W.-H. Effect of a local vibration stimulus training programme on postural sway and gait in chronic stroke patients: A randomized controlled trial. Clin. Rehabil. 2013, 27, 921–931. [Google Scholar] [CrossRef]
- Paoloni, M.; Mangone, M.; Scettri, P.; Procaccianti, R.; Cometa, A.; Santilli, V. Segmental muscle vibration improves walking in chronic stroke patients with foot drop: A randomized controlled trial. Neurorehabilit. Neural Repair 2009, 24, 254–262. [Google Scholar] [CrossRef]
- Tavernese, E.; Paoloni, M.; Mangone, M.; Mandic, V.; Sale, P.; Franceschini, M.; Santilli, V. Segmental muscle vibration improves reaching movement in patients with chronic stroke. A randomized controlled trial. Neurorehabilitation 2013, 32, 591–599. [Google Scholar] [CrossRef]
- Wang, L.; Wang, S.; Zhang, S.; Dou, Z.; Guo, T. Effectiveness and electrophysiological mechanisms of focal vibration on upper limb motor dysfunction in patients with subacute stroke: A randomized controlled trial. Brain Res. 2023, 1809, 148353. [Google Scholar] [CrossRef] [PubMed]
- Dromerick, A.W.; Lang, C.E.; Birkenmeier, R.L.; Wagner, J.M.; Miller, J.P.; Videen, T.O.; Powers, W.J.; Wolf, S.L.; Edwards, D.F. Very Early Constraint-Induced Movement during Stroke Rehabilitation (VECTORS): A single-center RCT. Neurology 2009, 73, 195–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernhardt, J.; Churilov, L.; Ellery, F.; Collier, J.; Chamberlain, J.; Langhorne, P.; Lindley, R.I.; Moodie, M.; Dewey, H.; Thrift, A.G.; et al. Prespecified dose-response analysis for A Very Early Rehabilitation Trial (AVERT). Neurology 2016, 86, 2138–2145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murillo, N.; Valls-Sole, J.; Vidal, J.; Opisso, E.; Medina, J.; Kumru, H. Focal vibration in neurorehabilitation. Eur. J. Phys. Rehabil. Med. 2014, 50, 231–242. [Google Scholar]
- Roll, J.P.; Vedel, J.P. Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp. Brain Res. 1982, 47, 177–190. [Google Scholar] [CrossRef]
- Souron, R.; Farabet, A.; Féasson, L.; Belli, A.; Millet, G.Y.; Lapole, T. Eight weeks of local vibration training increases dorsiflexor muscle cortical voluntary activation. J. Appl. Physiol. 2017, 122, 1504–1515. [Google Scholar] [CrossRef] [Green Version]
- Calabrò, R.S.; Naro, A.; Russo, M.; Milardi, D.; Leo, A.; Filoni, S.; Trinchera, A.; Bramanti, P. Is two better than one? Muscle vibration plus robotic rehabilitation to improve upper limb spasticity and function: A pilot randomized controlled trial. PLoS ONE 2017, 12, e0185936. [Google Scholar] [CrossRef]
- Choi, W.-H. Effects of repeated vibratory stimulation of wrist and elbow flexors on hand dexterity, strength, and sensory function in patients with chronic stroke: A pilot study. J. Phys. Ther. Sci. 2017, 29, 605–608. [Google Scholar] [CrossRef] [Green Version]
- Bianconi, R.; Van Der Meulen, J.P.; Pollock, R.D.; Woledge, R.C.; Martin, F.C.; Newham, D.J.; Cao, D.-Y.; Pickar, J.G.; Ivanenko, Y.P.; Grasso, R.; et al. The response to vibration of the end organs of mammalian muscle spindles. J. Neurophysiol. 1963, 26, 177–190. [Google Scholar] [CrossRef]
- Burke, D.; Hagbarth, E.K.; Löfstedt, L.; Wallin, B.G. The responses of human muscle spindle endings to vibration during isometric contraction. J. Physiol. 1976, 261, 695–711. [Google Scholar] [CrossRef]
- Iriki, A.; Pavlides, C.; Keller, A.; Asanuma, H. Long-Term Potentiation in the Motor Cortex. Science 1989, 245, 1385–1387. [Google Scholar] [CrossRef]
- Fallon, J.B.; Macefield, V.G. Vibration sensitivity of Human Muscle Spindles and Golgi. Muscle Nerve 2007, 36, 21–29. [Google Scholar] [CrossRef]
- Manzo, N.; Celletti, C.; Conte, A.; Camerota, F. Comment to paper by Moggio et al “vibration therapy role in neurological diseases rehabilitation: An umbrella review of systematic reviews”. Disabil. Rehabil. 2022, 44, 4947–4948. [Google Scholar] [CrossRef]
- Moggio, L.; de Sire, A.; Marotta, N.; Demeco, A.; Ammendolia, A. Vibration therapy role in neurological diseases rehabilitation: An umbrella review of systematic reviews. Disabil. Rehabil. 2021, 44, 5741–5749. [Google Scholar] [CrossRef]
- Fattorini, L.; Ferraresi, A.; Rodio, A.; Azzena, G.B.; Filippi, G.M. Motor performance changes induced by muscle vibration. Eur. J. Appl. Physiol. 2006, 98, 79–87. [Google Scholar] [CrossRef]
- Thompson, A.K.; Wolpaw, J.R. Targeted neuroplasticity for rehabilitation. Prog. Brain Res. 2015, 218, 157–172. [Google Scholar] [CrossRef] [Green Version]
- Boychuk, J.A.; Schwerin, S.C.; Thomas, N.; Roger, A.; Silvera, G.; Liverpool, M.; Adkins, D.L.; Kleim, J.A. Enhanced motor recovery after stroke with combined cortical stimulation and rehabilitative training is dependent on infarct location. Neurorehabilit. Neural Repair 2015, 30, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Hamada, M.; Terao, Y.; Hanajima, R.; Shirota, Y.; Nakatani-Enomoto, S.; Furubayashi, T.; Matsumoto, H.; Ugawa, Y. Bidirectional long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation. J. Physiol. 2008, 586, 3927–3947. [Google Scholar] [CrossRef]
- Murakami, T.; Müller-Dahlhaus, F.; Lu, M.-K.; Ziemann, U. Homeostatic metaplasticity of corticospinal excitatory and intracortical inhibitory neural circuits in human motor cortex. J. Physiol. 2012, 590, 5765–5781. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viganò, A.; Celletti, C.; Giuliani, G.; Jannini, T.B.; Marenco, F.; Maestrini, I.; Zumpano, R.; Vicenzini, E.; Altieri, M.; Camerota, F.; et al. Focal Muscle Vibration (fMV) for Post-Stroke Motor Recovery: Multisite Neuroplasticity Induction, Timing of Intervention, Clinical Approaches, and Prospects from a Narrative Review. Vibration 2023, 6, 645-658. https://doi.org/10.3390/vibration6030040
Viganò A, Celletti C, Giuliani G, Jannini TB, Marenco F, Maestrini I, Zumpano R, Vicenzini E, Altieri M, Camerota F, et al. Focal Muscle Vibration (fMV) for Post-Stroke Motor Recovery: Multisite Neuroplasticity Induction, Timing of Intervention, Clinical Approaches, and Prospects from a Narrative Review. Vibration. 2023; 6(3):645-658. https://doi.org/10.3390/vibration6030040
Chicago/Turabian StyleViganò, Alessandro, Claudia Celletti, Giada Giuliani, Tommaso B. Jannini, Francesco Marenco, Ilaria Maestrini, Rosaceleste Zumpano, Edoardo Vicenzini, Marta Altieri, Filippo Camerota, and et al. 2023. "Focal Muscle Vibration (fMV) for Post-Stroke Motor Recovery: Multisite Neuroplasticity Induction, Timing of Intervention, Clinical Approaches, and Prospects from a Narrative Review" Vibration 6, no. 3: 645-658. https://doi.org/10.3390/vibration6030040
APA StyleViganò, A., Celletti, C., Giuliani, G., Jannini, T. B., Marenco, F., Maestrini, I., Zumpano, R., Vicenzini, E., Altieri, M., Camerota, F., Di Piero, V., & Toscano, M. (2023). Focal Muscle Vibration (fMV) for Post-Stroke Motor Recovery: Multisite Neuroplasticity Induction, Timing of Intervention, Clinical Approaches, and Prospects from a Narrative Review. Vibration, 6(3), 645-658. https://doi.org/10.3390/vibration6030040