Cosmic Gamma Ray Constraints on the Indirect Effects of Dark Matter
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Maximal Possible Gamma-Ray Radiation from Annihilating DM Model Explaining the Positron Excess in CR
3.2. On the Suppression Due to Single-Photon Theorem
3.2.1. Considering Models
- The simplest model of dark matter particle decay into two oppositely charged leptons ( and ):
3.2.2. Contribution to the Suppression Effect by the Identity of Particles in the Final State
3.3. On the Suppression Due to DM/SM Interaction Lagrangian
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DM | Dark Matter |
CR | Cosmic rays |
HEP | High-energy physics |
MC | Monte-Carlo |
IGRB | Isotropic Gamma-Ray Background |
FSR | Final State Radiation |
SM | Standard Model |
References
- Belotsky, K.; Budaev, R.; Kirillov, A.; Laletin, M. Fermi-LAT kills dark matter interpretations of AMS-02 data. Or not? JCAP 2017, 1701, 021. [Google Scholar] [CrossRef] [Green Version]
- Alekseev, V.V.; Belotsky, K.M.; Bogomolov, Y.V.; Budaev, R.I.; Dunaeva, O.A.; Kirillov, A.A.; Kuznetsov, A.V.; Laletin, M.N.; Lukyanov, A.D.; Malakhov, V.V.; et al. High-energy cosmic antiparticle excess vs. isotropic gamma-ray background problem in decaying dark matter Universe. J. Phys. Conf. Ser. 2016, 675, 012023. [Google Scholar]
- Alekseev, V.V.; Belotsky, K.M.; Bogomolov, Y.V.; Budaev, R.I.; Dunaeva, O.A.; Kirillov, A.A.; Kuznetsov, A.V.; Laletin, M.N.; Lukyanov, A.D.; Malakhov, V.V.; et al. On a possible solution to gamma-ray overabundance arising in dark matter explanation of cosmic antiparticle excess. J. Phys. Conf. Ser. 2016, 675, 012026. [Google Scholar] [CrossRef] [Green Version]
- Alekseev, V.V.; Belotsky, K.M.; Bogomolov, Y.V.; Budaev, R.I.; Dunaeva, O.A.; Kirillov, A.A.; Kuznetsov, A.V.; Lukyanov, A.D.; Malakhov, V.V.; Mayorov, A.G.; et al. Analysis of a possible explanation of the positron anomaly in terms of dark matter. Phys. At. Nucl. 2017, 80, 713–717. [Google Scholar] [CrossRef]
- Belotsky, K.M.; Budaev, R.I.; Kirillov, A.A.; Solovyov, M.L. Gamma-rays from possible disk component of dark matter. J. Phys. Conf. Ser. 2017, 798, 012084. [Google Scholar] [CrossRef] [Green Version]
- Alekseev, V.V.; Belotsky, K.M.; Bogomolov, Y.V.; Budaev, R.I.; Galper, A.M.; Dunaeva, O.A.; Kirillov, A.A.; Kuznetsov, A.V.; Lukyanov, A.D.; Mayorov, A.G.; et al. Review of the results of measurements of the fluxes of the charged components of galactic cosmic rays in the experiments PAMELA and AMS-02. Phys. Part. Nucl. 2017, 48, 687–690. [Google Scholar] [CrossRef]
- Belotsky, K.M.; Kirillov, A.A.; Solovyov, M.L. Development of dark disk model of positron anomaly origin. Int. J. Mod. Phys. 2018, D27, 1841010. [Google Scholar] [CrossRef] [Green Version]
- Belotsky, K.; Kamaletdinov, A.; Laletin, M.; Solovyov, M. The DAMPE excess and gamma-ray constraints. Phys. Dark Universe 2019, 26, 100333. [Google Scholar] [CrossRef] [Green Version]
- Belotsky, K.M.; Esipova, E.A.; Kamaletdinov, A.K.; Shlepkina, E.S.; Solovyov, M.L. Indirect effects of dark matter. Int. J. Mod. Phys. D 2019, 28, 1941011. [Google Scholar] [CrossRef] [Green Version]
- Belotsky, K.M.; Esipova, E.A.; Kamaletdinov, A.H.; Solovyov, M.L. Studying the possibility of FSR suppression in DM decay in dependence of the mass of intermediate particle and vertex. In Proceedings of the ICPPA 2018, Moscow, Russia, 22–26 October 2018. [Google Scholar]
- Accardo, L.; Aguilar, M.; Aisa, D.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; et al. High Statistics Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–500 GeV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2014, 113, 121101. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; et al. The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV. Astrophys. J. 2015, 799, 86. [Google Scholar] [CrossRef] [Green Version]
- GALPROP, The GALPROP code for Cosmic-Ray Transport and Diffuse Emission Production. Available online: http://galprop.stanford.edu/ (accessed on 20 September 2010).
- Belyaev, A.; Christensen, N.D.; Pukhov, A. CalcHEP 3.4 for collider physics within and beyond the Standard Model. Comput. Phys. Commun. 2013, 184, 1729–1769. [Google Scholar] [CrossRef] [Green Version]
- Semenov, A. LanHEP—A package for automatic generation of Feynman rules from the Lagrangian. Comput. Phys. Commun. 1998, 115, 124–139. [Google Scholar] [CrossRef]
- Christensen, N.D.; Duhr, C. FeynRules–Feynman rules made easy. Comput. Phys. Commun. 2009, 180, 1614–1641. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. A Universal density profile from hierarchical clustering. Astrophys. J. 1997, 490, 493–508. [Google Scholar] [CrossRef]
- Read, J.I.; Lake, G.; Agertz, O.; Debattista, V.P. Thin, thick and dark discs in ΛCDM. Mon. Not. R. Astron. Soc. 2008, 389, 1041–1057. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M.Y. Composite dark matter from the fourth generation. JETP Lett. 2006, 83, 1–4. [Google Scholar] [CrossRef]
- Belotsky, K.; Khlopov, M.; Kouvaris, C.; Laletin, M. Decaying Dark Atom constituents and cosmic positron excess. Adv. High Energy Phys. 2014, 2014, 214258. [Google Scholar] [CrossRef]
- Khlopov, M.Y.; Stephan, C.; Fargion, D. Dark matter with invisible light from heavy double charged leptons of almost-commutative geometry? Class. Quantum Gravity 2006, 23, 7305. [Google Scholar] [CrossRef]
- Belotsky, K.; Khlopov, M.; Laletin, M. Dark atoms and their decaying constituents. arXiv 2014, arXiv:1411.3657. [Google Scholar]
- Brown, R.W. Understanding something about nothing: Radiation zeros. AIP Conf. Proc. 1995, 350, 261–272. [Google Scholar]
- Doncheski, M.; Robinett, R.W. Radiation zeros and scalar particles beyond the standard model. Phys. Lett. B 1998, 435, 364–372. [Google Scholar] [CrossRef] [Green Version]
- Stirling, W.J.; Werthenbach, A. Radiation zeros in W+W−γ production at high-energy colliders. Eur. Phys. J. C-Part Fields 2000, 12, 441–450. [Google Scholar] [CrossRef] [Green Version]
- Heyssler, M.; Stirling, W. Radiation zeros in high-energy e+e− annihilation into hadrons. Eur. Phys. J. C-Part Fields 1998, 5, 475–484. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belotsky, K.M.; Kamaletdinov, A.K.; Shlepkina, E.S.; Solovyov, M.L. Cosmic Gamma Ray Constraints on the Indirect Effects of Dark Matter. Particles 2020, 3, 336-344. https://doi.org/10.3390/particles3020025
Belotsky KM, Kamaletdinov AK, Shlepkina ES, Solovyov ML. Cosmic Gamma Ray Constraints on the Indirect Effects of Dark Matter. Particles. 2020; 3(2):336-344. https://doi.org/10.3390/particles3020025
Chicago/Turabian StyleBelotsky, Konstantin M., Airat Kh. Kamaletdinov, Ekaterina S. Shlepkina, and Maxim L. Solovyov. 2020. "Cosmic Gamma Ray Constraints on the Indirect Effects of Dark Matter" Particles 3, no. 2: 336-344. https://doi.org/10.3390/particles3020025
APA StyleBelotsky, K. M., Kamaletdinov, A. K., Shlepkina, E. S., & Solovyov, M. L. (2020). Cosmic Gamma Ray Constraints on the Indirect Effects of Dark Matter. Particles, 3(2), 336-344. https://doi.org/10.3390/particles3020025