Nonequilibrium Pion Distribution within the Zubarev Approach
Abstract
:1. Introduction
2. The Nonequilibrium Statistical Operator Method
3. Model for Pions in Heavy-Ion Collisions at Ultra High Energies
4. The Relevant Statistical Operator
4.1. Kubo Case
4.2. Pion Number as a Relevant Observable
4.3. Kinetic Equations
4.4. Nonequilibrium State with Condensate Formation
4.5. Quantum Master Equation
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Braun-Munzinger, P.; Magestro, D.; Redlich, K.; Stachel, J. Hadron production in Au–Au collisions at RHIC. Phys. Lett. B. 2001, 518, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Andronic, A.; Braun-Munzinger, P.; Redlich, K.; Stachel, J. Decoding the phase structure of QCD via particle production at high energy. Nature 2018, 561, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Stachel, J.; Andronic, A.; Braun-Munzinger, P.; Redlich, K. Confronting LHC data with the statistical hadronization model. J. Phys. Conf. Ser. 2014, 509, 012019. [Google Scholar] [CrossRef]
- Becattini, F.; Bleicher, M.; Kollegger, T.; Schuster, T.; Steinheimer, J.; Stock, R. Hadron formation in relativistic nuclear collisions and the QCD phase diagram. Phys. Lett. B. 2013, 111, 082302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleymans, J.; Kraus, I.; Oeschler, H.; Redlich, K.; Wheaton, S. Statistical model predictions for particle ratios at = 5.5 TeV. Phys. Rev. C 2006, 74, 034903. [Google Scholar] [CrossRef] [Green Version]
- Cleymans, J. The thermal-statistical model for particle production. EPJ Web Conf. 2010, 7, 01001. [Google Scholar] [CrossRef]
- Abelev, B.; Adam, J.; Adamova, D.; Adare, A.M.; Aggarwal, M.M.; Rinella, G.A.; Agocs, A.G.; Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; et al. Pion, kaon, and proton production in central Pb-Pb collisions at = 2.76 TeV. Phys. Lett. B. 2012, 109, 252301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abelev, B.; Adam, J.; Adamova, D.; ALICE Collaboration. Centrality dependence of π, K, p production in Pb-Pb collisions at = 2.76 TeV. Phys. Rev. C 2013, 88, 044910. [Google Scholar] [CrossRef] [Green Version]
- Andronic, A.; Braun-Munzinger, P.; Friman, B.; Lo, P.M.; Redlich, K.; Stachel, J. The thermal proton yield anomaly in Pb-Pb collisions at the LHC and its resolution. Phys. Lett. B. 2019, 792, 304. [Google Scholar] [CrossRef]
- Weinhold, W.; Friman, B.; Norenberg, W. Thermodynamics of Delta resonances. Phys. Lett. B. 1998, 433, 236. [Google Scholar] [CrossRef] [Green Version]
- Petran, M.; Rafelski, J. Universal hadronization condition in heavy ion collisions at = 62 GeV and at = 2.76 TeV. Phys. Rev. C 2013, 88, 021901. [Google Scholar] [CrossRef]
- Petran, M.; Letessier, J.; Petracek, V.; Rafelski, J. Hadron production and quark–gluon plasma hadronization in Pb-Pb collisions at = 2.76 TeV. Phys. Rev. C 2013, 88, 034907. [Google Scholar] [CrossRef]
- Begun, V.; Florkowski, W.; Rybczynski, M. Explanation of hadron transverse-momentum spectra in heavy-ion collisions at = 2.76 TeV within chemical non-equilibrium statistical hadronization model. Phys. Rev. C 2014, 90, 014906. [Google Scholar] [CrossRef] [Green Version]
- Kataja, M.; Ruuskanen, P.V. Nonzero Chemical Potential and the Shape of the pT Distribution of Hadrons in Heavy Ion Collisions. Phys. Lett. B. 1990, 243, 181. [Google Scholar] [CrossRef]
- Gavin, S.; Ruuskanen, P.V. Low-pT pion enhancement from partial thermalization in nuclear collision. Phys. Lett. B. 1991, 262, 326. [Google Scholar] [CrossRef]
- Gerber, P.; Leutwyler, H.; Goity, J.L. Kinetics of an expanding pion gas. Phys. Lett. B. 1990, 246, 513. [Google Scholar] [CrossRef]
- Zubarev, D.N.; Morozov, V.; Röpke, G. Statistical Mechanics of Nonequilibrium Processes; Akademie Verlag: Berlin, Germany, 1996; Volume I, II. [Google Scholar]
- Zubarev, D.N. Nonequilibrium Statistical Thermodynamics; Nauka: Moscow, Russia, 1971. [Google Scholar]
- Voskresensky, D.N. On the possibility of Bose-condensation of pions in ultrarelativistic collisions of nuclei. J. Exp. Theor. Phys. 1994, 78, 793. [Google Scholar]
- Kolomeitsev, E.E.; Voskresensky, D.N. Fluctuations in non-ideal pion gas with dynamically fixed particle number. Nucl. Phys. A 2018, 973, 89. [Google Scholar] [CrossRef] [Green Version]
- Welke, G.M.; Venugopalan, R.; Prakash, M. The Speed of sound in an interacting pion gas. Phys. Lett. B. 1990, 245, 137. [Google Scholar] [CrossRef]
- Fore, B.; Reddy, S. Pions in hot dense matter and their astrophysical implications. Phys. Rev. C 2020, 101, 035809. [Google Scholar] [CrossRef]
- Semikoz, D.V.; Tkachev, I.I. Kinetics of Bose condensation. Phys. Rev. Lett. 1995, 74, 3093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semikoz, D.V.; Tkachev, I.I. Condensation of bosons in kinetic regime. Phys. Rev. D 1997, 55, 489. [Google Scholar] [CrossRef] [Green Version]
- Voskresensky, D.N. Kinetic description of a pion gas in ultrarelativistic collisions of nuclei: Turbulence and Bose condensation. Phys. Atom. Nucl. 1996, 59, 2015–2023. [Google Scholar]
- Berges, J.; Floerchinger, S.; Venugopalan, R. Entanglement and thermalization. Nucl. Phys. A 2019, 982, 819. [Google Scholar] [CrossRef]
- Berges, J.; Floerchinger, S.; Venugopalan, R. Dynamics of entanglement in expanding quantum fields. JHEP 2018, 1804, 145. [Google Scholar] [CrossRef] [Green Version]
- Erne, S.; Büker, R.; Gasenzer, T.; Berges, J.; Schmiedmayer, J. Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium. Nature 2018, 563, 225. [Google Scholar] [CrossRef] [Green Version]
- Mazeliauskas, A.; Berges, J. Prescaling and far-from-equilibrium hydrodynamics in the quark–gluon plasma. Phys. Rev. Lett. 2019, 122, 122301. [Google Scholar] [CrossRef] [Green Version]
- Welke, G.M.; Bertsch, G.F. Bosonic kinetics and the pion transverse momentum in heavy ion collisions. Phys. Rev. C 1992, 45, 1403. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, G.M.; Pethick, C.J. Specific heat of a normal Fermi liquid. II. Microscopic approach. Phys. Rev. B 1975, 11, 1106. [Google Scholar] [CrossRef]
- Ivanov, Y.B.; Knoll, J.; Voskresensky, D.N. Resonance transport and kinetic entropy. Nucl. Phys. A 2000, 672, 313. [Google Scholar] [CrossRef] [Green Version]
- Aouissat, Z.; Chanfray, G.; Schuck, P.; Welke, G. π-π scattering in a hot pion gas at URHIC conditions. Zeitschrift für Physik A Hadrons and Nuclei 1991, 340, 347. [Google Scholar] [CrossRef]
- Barz, H.W.; Schulz, H.; Bertsch, G.; Danielewicz, P. Pion-pion cross section in a dense and hot pionic gas. Phys. Lett. B. 1992, 275, 19. [Google Scholar] [CrossRef]
- Barz, H.W.; Danielewicz, P.; Schulz, H.; Welke, G.M. Thermalization of mesons in ultrarelativistic heavy ion reactions. Phys. Lett. B. 1992, 287, 40. [Google Scholar] [CrossRef]
- Emelyanov, V.; Pantis, G. Pion thermalization in relativistic heavy ion collisions. Nucl. Phys. A 1995, 592, 581. [Google Scholar] [CrossRef]
- Rapp, R.; Durso, J.W.; Wambach, J. Chirally constraining the ππ interaction in nuclear matter. Nucl. Phys. A 1996, 596, 436. [Google Scholar] [CrossRef] [Green Version]
- Rapp, R.M.; Wambach, J. Equation of state of an interacting pion gas with realistic ππ interactions. Phys. Rev. C 1996, 53, 3057. [Google Scholar] [CrossRef] [Green Version]
- Kamano, H.; Lee, T.S.; Nakamura, S.X.; Sato, T. The ANL-Osaka Partial-Wave Amplitudes of πN and γN Reactions. arXiv 2019, arXiv:1909.11935. [Google Scholar]
- Voskresensky, D.N.; Blaschke, D.; Röpke, G.; Schulz, H. Nonequilibrium approach to dense hadronic matter. Int. J. Mod. Phys. E 1995, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Siemens, P.J.; Rasmussen, J.O. Evidence for a blast wave from compress nuclear matter. Phys. Rev Lett. 1979, 42, 880. [Google Scholar] [CrossRef]
- Schnedermann, E.; Heinz, U. Relativistic hydrodynamics in a global fashion. Phys. Rev. C 1993, 47, 1738. [Google Scholar] [CrossRef]
- Schnedermann, E.; Sollfrank, J.; Heinz, U. Thermal phenomenology of hadrons from 200-A/GeV S+S collisions. Phys. Rev. C 1993, 48, 2462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaiswal, A.; Koch, V. A viscous blast-wave model for heavy-ion collisions. IOP Conf. Ser. J. Phys. Conf. Ser. 2017, 779, 012065. [Google Scholar] [CrossRef]
- Florkowski, W. Phenomenology of Ultra-Relativistic Heavy-Ion Collisions; World Scientific: Singapore, 2010. [Google Scholar]
- Röpke, G. Nonequilibrium Statistical Physics; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Mermin, N.D. Lindhard Dielectric Function in the Relaxation-Time Approximation. Phys. Rev. B 1970, 1, 2362. [Google Scholar] [CrossRef]
- Selchow, A.; Röpke, G.; Wierling, A. Extended Mermin-like Dielectric Function for a Two-Component Plasma. Contrib. Plasma Phys. 2002, 42, 43. [Google Scholar] [CrossRef]
- Röpke, G. Bound states and superfluidity in strongly coupled Fermion systems. Annalen der Physik (Leipzig) 1994, 3, 145. [Google Scholar] [CrossRef]
- Akamatsu, Y. Heavy quark master equations in the Lindblad form at high temperatures. Phys. Rev. D 2015, 91, 056002. [Google Scholar] [CrossRef] [Green Version]
- Begun, V.; Florkowski, W. Bose–Einstein condensation of pions in heavy-ion collisions at the CERN Large Hadron Collider (LHC) energies. Phys. Rev. C 2015, 91, 054909. [Google Scholar] [CrossRef]
- Pena, C.; Blaschke, D. Quantum mechanical model for J/? suppression in the LHC era. Nucl. Phys. A 2014, 927, 1. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, D.; Jankowski, J.; Naskret, M. Formation of hadrons at chemical freeze-out. arXiv 2017, arXiv:1705.00169. [Google Scholar]
- Nazarova, E.; Juchnowski, L.; Blaschke, D.; Fischer, T. Low-momentum pion enhancement from schematic hadronization of a gluon-saturated initial state. Particles 2019, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Harrison, B.; Peshier, A. Bose–Einstein Condensation from the QCD Boltzmann Equation. Particles 2019, 2, 16. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blaschke, D.; Röpke, G.; Voskresensky, D.N.; Morozov, V.G. Nonequilibrium Pion Distribution within the Zubarev Approach. Particles 2020, 3, 380-393. https://doi.org/10.3390/particles3020029
Blaschke D, Röpke G, Voskresensky DN, Morozov VG. Nonequilibrium Pion Distribution within the Zubarev Approach. Particles. 2020; 3(2):380-393. https://doi.org/10.3390/particles3020029
Chicago/Turabian StyleBlaschke, David, Gerd Röpke, Dmitry N. Voskresensky, and Vladimir G. Morozov. 2020. "Nonequilibrium Pion Distribution within the Zubarev Approach" Particles 3, no. 2: 380-393. https://doi.org/10.3390/particles3020029
APA StyleBlaschke, D., Röpke, G., Voskresensky, D. N., & Morozov, V. G. (2020). Nonequilibrium Pion Distribution within the Zubarev Approach. Particles, 3(2), 380-393. https://doi.org/10.3390/particles3020029