Transport Properties in Magnetized Compact Stars
Abstract
:1. Introduction
2. Brief Review of AHE in the DCDW Phase
2.1. Dual Chiral Density Wave
2.2. Anomalous Hall Effect
2.3. Fermi Sea Contribution
3. Hall Conductivity in the Presence of Magnetic Field
3.1. Anomalous Hall Conductivity
3.2. Axial Anomaly
3.3. Fermi Sea Contribution
4. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lattimer, J.M.; Prakash, M. The physics of neutron stars. Science 2004, 304, 536. [Google Scholar] [CrossRef] [Green Version]
- Annala, E.; Gorda, T.; Kurkela, A.; Nattila, J.; Vuorinen, A. Evidence for quark-matter cores in massive neutron stars. Nat. Phys 2020, 16, 907. [Google Scholar] [CrossRef]
- Kaspi, V.M.; Beloborodov, A.M. Magnetars. Annu. Rev. Astron. Astrophys. 2017, 55, 261. [Google Scholar] [CrossRef] [Green Version]
- Vigano, D.; Rea, N.; Pons, J.A.; Perna, R.; Aguilera, D.N.; MIralles, J.A. Unifying the observational diversity of isolated neutron stars via magneto-thermal evolution models. Mon. Not. R. Astron. Soc. 2013, 434, 123. [Google Scholar] [CrossRef]
- Tatsumi, T. Ferromagnetism of quark liquid. Phys. Lett. 2000, B489, 280. [Google Scholar] [CrossRef] [Green Version]
- Potekhin, A.Y.; Pons, J.A.; Page, D. Neutron stars—cooling and transport. Space Sci. Rev. 2015, 191, 239. [Google Scholar] [CrossRef] [Green Version]
- Konye, V.; Ogata, M. Magnetoresistance of a three-dimensional Dirac gas. Phys. Rev. 2018, B98, 195420. [Google Scholar] [CrossRef] [Green Version]
- Konye, V.; Ogata, M. Transport properties in magnetized compact stars. arXiv 2019, arXiv:1909.11292. Available online: https://arxiv.org/pdf/2101.09874 (accessed on 19 February 2021).
- Luttinger, J.M. Theory of thermal transport coefficients. Phys. Rev. 1964, 135, A1505. [Google Scholar] [CrossRef]
- Brenig, W. Statistical Theory of Heat; Springer-Verlag: Berlin, Germany, 1989. [Google Scholar]
- Nagaosa, N.; Sinova, J.; Onoda, S.; MacDonald, A.H.; Ong, N.P. Anomalous Hall effect. Rev. Mod. Phys. 2010, 82, 1539. [Google Scholar] [CrossRef] [Green Version]
- Xiao, D.; Chang, M.-C.; Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 2010, 82, 1959. [Google Scholar] [CrossRef] [Green Version]
- Nakano, E.; Tatsumi, T. Chiral symmetry and density waves in quark matter. Phys. Rev. 2005, D71, 114006. [Google Scholar] [CrossRef] [Green Version]
- Nickel, D. How many phases meet at the chiral critical point? Phys. Rev. Lett. 2009, 103, 072301. [Google Scholar] [CrossRef]
- Buballa, M.; Carignano, S. Inhomogeneous chiral symmetry breaking in dense neutron-star matter. Prog. Part. Nucl. Phys. 2015, 81, 39. [Google Scholar] [CrossRef] [Green Version]
- Tatsumi, T. Inhomogeneous Chiral Phase in Quark Matter. JPS Conf. Proc. 2018, 20, 011008. [Google Scholar]
- Yoshiike, R.; Nishiyama, K.; Tatsumi, T. Spontaneous magnetization of quark matter in the inhomogeneous chiral phase. Phys. Lett. 2015, B751, 123. [Google Scholar] [CrossRef] [Green Version]
- Abuki, H. Chiral crystallization in an external magnetic background: Chiral spiral versus real kink crystal. Phys. Rev. 2018, D98, 054006. [Google Scholar] [CrossRef] [Green Version]
- Armitage, N.P.; Mele, E.J.; Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 2018, 90, 015001. [Google Scholar] [CrossRef] [Green Version]
- Ferrer, E.J.; de la Incera, V. Dissipationless Hall current in dense quark matter in a magnetic field. Phys. Lett. 2017, B769, 208. [Google Scholar] [CrossRef]
- Tatsumi, T.; Yoshiike, R.; Kashiwa, K. Anomalous Hall effect in dense QCD matter. Phys. Lett. 2018, B785, 46. [Google Scholar] [CrossRef]
- Xiao, X.; Lee, K.T.; Lee, P.A. Magnetoconductivity in Weyl semimetals: Effect of chemical potential and temperature. Phys. Rev. 2017, B96, 165101. [Google Scholar] [CrossRef] [Green Version]
- Grushin, A.G. Consequences of a condensed matter realization of Lorentz-violating QED in Weyl semi-metals. Phys. Rev. 2012, D86, 045001. [Google Scholar] [CrossRef] [Green Version]
- Thouless, D.J.; Kohmoto, M.; Nightingale, M.P.; den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 1982, 49, 405. [Google Scholar] [CrossRef] [Green Version]
- Goswani, P.; Tewari, S. Axionic field theory of (3+1)-dimensional Weyl semimetals. Phys. Rev. 2013, B88, 245107. [Google Scholar] [CrossRef] [Green Version]
- Tatsumi, T.; Abuki, H. Transport Properties in Dense QCD Matter. Symmetry 2020, 12, 366. [Google Scholar] [CrossRef] [Green Version]
- Frolov, I.E.; Zhukivsky, V.C.; Klimenko, K.G. Chiral density waves in quark matter within the Nambu–Jona-Lasinio model in an external magnetic field. Phys. Rev. 2010, D82, 076002. [Google Scholar] [CrossRef] [Green Version]
- Nishiyama, K.; Karasawa, S.; Tatsumi, T. Hybrid chiral condensate in the external magnetic field. Phys. Rev. 2015, D92, 036008. [Google Scholar] [CrossRef] [Green Version]
- Bastin, A.; Lewiner, C.; Betbeder-Matibet, O.; Nozieres, P. Quantum oscillations of the Hall effect of a fermion gas with random impurity scattering. J. Phys. Chem, Solids 1971, 32, 1811. [Google Scholar] [CrossRef]
- Streda, P. Theory of quantized Hall conductivity in two dimensions. J. Phys. 1972, C15, L717. [Google Scholar]
- Niemi, A.J.; Semenoff, G.W. Fermion number fractionization in quantum field theory. Phys. Rep. 1986, 135, 99. [Google Scholar] [CrossRef]
- Tatsumi, T.; Nishiyama, K.; Karasawa, S. Novel Lifshitz point for chiral transition in the magnetic field. Phys. Lett. 2015, B743, 66. [Google Scholar] [CrossRef] [Green Version]
- Son, D.T.; Stephanov, M.A. Axial anomaly and magnetism of nuclear and quark matter. Phys. Rev. 2008, D77, 014021. [Google Scholar] [CrossRef] [Green Version]
- Tatsumi, T.; Abuki, H. in preparation. 2021. [Google Scholar]
- Goldstone, J.; Wilczek, F. Fractional Quantum Numbers on Solitons. Phys. Rev. Lett. 1981, 47, 986. [Google Scholar] [CrossRef] [Green Version]
- Zyuzin, A.A.; Burkov, A.A. Topological response in Weyl semimetals and the chiral anomaly. Phys. Rev. 2012, B86, 115133. [Google Scholar] [CrossRef] [Green Version]
- Ashcroft, N.W.; Mermin, N.D. Solid State Physics; Brooks/Cole: Boston, MA, USA, 1976. [Google Scholar]
- Tajima, T. Plasma Astrophysics; Westview Press: Boulder, CO, USA, 2002. [Google Scholar]
- Haensel, P.; Pothekhin, A.Y.; Yakovlev, D.G. Neutron Stars 1; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tatsumi, T.; Abuki, H. Transport Properties in Magnetized Compact Stars. Particles 2021, 4, 63-74. https://doi.org/10.3390/particles4010009
Tatsumi T, Abuki H. Transport Properties in Magnetized Compact Stars. Particles. 2021; 4(1):63-74. https://doi.org/10.3390/particles4010009
Chicago/Turabian StyleTatsumi, Toshitaka, and Hiroaki Abuki. 2021. "Transport Properties in Magnetized Compact Stars" Particles 4, no. 1: 63-74. https://doi.org/10.3390/particles4010009
APA StyleTatsumi, T., & Abuki, H. (2021). Transport Properties in Magnetized Compact Stars. Particles, 4(1), 63-74. https://doi.org/10.3390/particles4010009