Parameters and Pulsation Constant of Cepheid
Abstract
:1. Introduction
2. Parameters of Cepheid
3. Radius, Absolute Magnitude and Pulsation Period of Cepheid
4. Radius, Mass, Luminance, Temperature and Pulsation Period of Cepheids
5. Pulsation Constant of Cepheid
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sinitsyn, S.V. Gravitational Scale Factor and Discrete Gravitational Effects in Formation, Evolutionary Expansion, and Luminosity of Components of Detached Double-Lined Eclipsing Systems (DDLES’s). Phys. At. Nucl. 2021, 84, 381–388. [Google Scholar] [CrossRef]
- Iben, I. The life and times of an intermediate mass star—In isolation/in a close binary, Royal Astronomical Society. Q. J. 1985, 26, 1–39. [Google Scholar]
- Fernie, J.D. A new approach to the Cepheid period-luminosity law—Delta Scuti stars as small Cepheids. Astron. J. 1992, 103, 1647. [Google Scholar] [CrossRef]
- Fernie, J.D. AC Andromedae: The missing link between Scuti stars and classical Cepheids? Mon. Not. R. Astron. Soc. 1994, 271, L19–L20. [Google Scholar] [CrossRef]
- Sandage, A.; Tammann, G.A.; Reindl, B. New period-luminosity and period-color relations of classical Cepheids. II. Cepheids in LMC. Astron. Astrophys. 2004, 424, 43–71. [Google Scholar] [CrossRef]
- Kervella, P.; Mérand, A.; Gallenne, A.; Borgniet, S.; Trahin, B.; Nardetto, N.; Pietrzynski, G.; Gieren, W. Interferometry of classical pulsators. Proc. Pol. Astron. Soc. 2018, 6, 201–207. [Google Scholar]
- Breger, M. δ Scuti Stars (Review). In Delta Scuti and Related Stars; ASPC: San Francisco, CA, USA; ASP: San Francisco, CA, USA, 2000; Volume 210, pp. 3–42. [Google Scholar]
- Eddington, A. The Internal Constitution of the Stars; Cambridge University Press: Cambridge, UK, 1930. [Google Scholar]
- Stankov, A.; Handler, G. Catalog of Galactic β Cephei Stars. Astrophys. J. Suppl. Ser. 2005, 158, 193–216. [Google Scholar] [CrossRef]
- Handler, G.; Shobbrook, R.R. On the relationship between the δ Scuti and γ Doradus pulsators. Mon. Not. R. Astron. Soc. 2002, 333, 251–261. [Google Scholar] [CrossRef]
- Lub, J. RR Lirae calibrations in the light of Gaia DR2. In RR Lyrae/Cepheid 2019: Frontiers of Classical Pulsator; ASPC: San Francisco, CA, USA; ASP: San Francisco, CA, USA, 2021; Volume 529, pp. 33–37. [Google Scholar]
- Pols, O.R.; Tout, C.; Eggleton, P.P.; Han, Z. Approximate input physics for stellar modelling. Mon. Not. R. Astron. Soc. 1995, 274, 964–974. [Google Scholar] [CrossRef]
- Cox, A.N. Cepheid masses from observations and pulsation theory. Astrophys. J. 1979, 229, 212. [Google Scholar] [CrossRef]
- Dornan, V.; Lovekin, C.C. The Effects of Metallicity on Convective Overshoot Behavior in Models of δ Scuti Variable Stars. Astrophys. J. 2022, 924, 130. [Google Scholar] [CrossRef]
- Malkov, O.Y. Mass-luminosity relation of intermediate-mass stars. Mon. Not. R. Astron. Soc. 2007, 382, 1073–1086. [Google Scholar] [CrossRef]
- Torres, G.; Andersen, J.; Giménez, A. Accurate masses and radii of normal stars: Modern results and applications. Astron. Astrophys. Rev. 2009, 18, 67–126. [Google Scholar] [CrossRef]
- Eker, Z.; Bilir, S.; Soydugan, F.; Gökçe, E.Y.; Tüysüz, M.; Şenyüz, T.; Demircan, O. The Catalogue of Stellar Parameters from the Detached Double-Lined Eclipsing Binaries in the Milky Way. Publ. Astron. Soc. Aust. 2014, 31, E024. [Google Scholar] [CrossRef]
- Eker, Z.; Soydugan, F.; Bilir, S.; Gökçe, E.Y.; Steer, I.; Tüysüz, M.; Şenyüz, T.; Demircan, O. Main-sequence effective temperatures from a revised mass–luminosity relation based on accurate properties. Astron. J. 2015, 149, 131. [Google Scholar] [CrossRef]
- Ibanoǧlu, C.; Soydugan, F.; Dervisoglu, A.; Soydugan, E. Angular momentum evolution of Algol binaries. Mon. Not. R. Astron. Soc. 2006, 373, 435–448. [Google Scholar] [CrossRef]
- Bessell, M.S.; Castelli, F.; Plez, B. Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O-M stars. Astron. Astrophys. 1998, 333, 231–250. [Google Scholar]
- Cogan, B.C. The radii and temperatures of classical Cepheids. Astrophys. J. 1978, 221, 635. [Google Scholar] [CrossRef]
- Flower, P.J. Transformations from theoretical H-R diagrams to C-M diagrams. Astron. Astrophys. 1977, 54, 31–39. [Google Scholar]
- Feast, M.W.; Walker, A.R. Cepheids as Distance Indicators. Annu. Rev. Astron. Astrophys. 1987, 25, 345–375. [Google Scholar] [CrossRef]
- Buser, R.; Kurucz, R.L. A library of theoretical stellar flux spectra. I. Synthetic UBVRI photometry and the metallicity scale for F- to K-type stars. Astron. Astrophys. 1992, 264, 557–591. [Google Scholar]
- Flower, P.J. Transformations from Theoretical Hertzsprung-Russell Diagrams to Color-Magnitude Diagrams: Effective Temperatures, B-V Colors, and Bolometric Corrections. Astrophys. J. 1996, 469, 355. [Google Scholar] [CrossRef]
- Montegriffo, P.; Ferraro, F.R.; Pecci, F.F.; Origlia, L. Towards the absolute planes: A new calibration of the bolometric corrections and temperature scales for Population II giants. Mon. Not. R. Astron. Soc. 1998, 297, 872–884. [Google Scholar] [CrossRef]
- Alonso, A.; Arribas, S.; Martínez-Roger, C. The effective temperature scale of giant stars (F0–K5). II. Empirical calibration of Teff versus colours and [Fe/H]. Astron. Astrophys. Suppl. Ser. 1999, 140, 261–277. [Google Scholar] [CrossRef]
- Prša, A.; Harmanec, P.; Torres, G.; Mamajek, E.; Asplund, M.; Capitaine, N.; Christensen-Dalsgaard, J.; Depagne, É.; Haberreiter, M.; Hekker, S.; et al. Nominal values for selected solar and planetary quantities: IAU 2015 resolution B3. Astron. J. 2016, 152, 41. [Google Scholar] [CrossRef]
- Laney, C.D.; Joner, M.; Schwendiman, L. Dwarf Cepheid radii and the distance scale. In International Astronomical Union Colloquium; ASPC; Cambridge University Press: Cambridge, UK, 2002; Volume 259, pp. 112–115. [Google Scholar]
- Laney, C.D.; Joner, M.; Rodriguez, E. HADS, multiple periods, period changes and the PL relation. In Interplay of Periodic, Cyclic and Stochastic Variability in Selected Areas of the HR Diagram; ASPC: San Francisco, CA, USA; Astronomical Society of the Pacific: San Francisco, CA, USA, 2003; Volume 292, pp. 203–209. [Google Scholar]
- Johnson, H.L. Astronomical Measurements in the Infrared. Annu. Rev. Astron. Astrophys. 1966, 4, 193–206. [Google Scholar] [CrossRef]
- Böhm-Vitense, E. The Effective Temperature Scale. Annu. Rev. Astron. Astrophys. 1981, 19, 295–318. [Google Scholar] [CrossRef]
- Sollazzo, C.; Russo, G.; Onnembo, A.; Caccin, B. Cepheid radii and masses by means of VBLUW photometry. Astron. Astrophys. 1981, 99, 66–72. [Google Scholar]
- Fernie, J.D. A survey of Cepheid sizes. Astrophys. J. 1984, 282, 641. [Google Scholar] [CrossRef]
- Gieren, W. Surface brightness radii, distances, and absolute magnitudes of classical Cepheids. Astrophys. J. 1984, 282, 650–654. [Google Scholar] [CrossRef]
- Gieren, W.P. Cepheid radii and masses from the surface-brightness method. Mon. Not. R. Astron. Soc. 1986, 222, 251–260. [Google Scholar] [CrossRef]
- Tsvetkov, T.G. Population-I pulsating stars. Part IV. Period–radius and period–gravity relations. Astrophys. Space Sci. 1988, 150, 357–378. [Google Scholar] [CrossRef]
- Coulson, I.M.; Caldwell, J.A.R. The radii of 27 southern galactic Cepheids. Mon. Not. R. Astron. Soc. 1989, 240, 285–302. [Google Scholar] [CrossRef]
- Gieren, W.P.; Barnes, T.G.; Moffett, T.J. The period-radius relation for classical Cepheids from the visual surface brightness technique. Astrophys. J. 1989, 342, 467–475. [Google Scholar] [CrossRef]
- Di Benedetto, G.P. Pulsational parallaxes and calibration of the cosmic distance scale by Cepheid variable stars. Astron. Astrophys. 1994, 285, 819–832. [Google Scholar]
- Arellano, E.R.; Ferro, A.A. A new approach to the surface brightness method for Cepheid radii determination. Rev. Mex. Astron. Astrofis. 1994, 29, 148–152. [Google Scholar]
- Laney, C.D.; Stobie, R.S. The radii of Galactic Cepheids. Mon. Not. R. Astron. Soc. 1995, 274, 337–360. [Google Scholar] [CrossRef]
- Ripepi, V.; Barone, F.; Milano, L.; Russo, G. Cepheid radii and the CORS method revisited. Astron. Astrophys. 1997, 318, 797–804. [Google Scholar]
- Gieren, W.P.; Fouque, P.; Gomez, M. Cepheid Period-Radius and Period-Luminosity Relations and the Distance to the Large Magellanic Cloud. Astrophys. J. 1998, 496, 17–30. [Google Scholar] [CrossRef]
- Sashkov, E.; Rastorguev, A.S.; Samus, N.N.; Gorynya, N.A. The radii of 62 classical Cepheids. Astron. Lett. 1998, 24, 377–383. [Google Scholar]
- Gieren, W.P.; Moffett, T.J.; Iii, T.G.B. Calibrating the Cepheid Period-Radius Relation with Galactic and Magellanic Cloud Cepheids. Astrophys. J. 1999, 512, 553–557. [Google Scholar] [CrossRef]
- Ferro, A.A.; Rosenzweig, P. The intermediate-band approach to the surface-brightness method for Cepheid radii and distance determination. Mon. Not. R. Astron. Soc. 2000, 315, 296–306. [Google Scholar] [CrossRef]
- Bono, G.; Gieren, W.P.; Marconi, M.; Fouqué, P. On the Pulsation Mode Identification of Short-Period Galactic Cepheids. Astrophys. J. 2001, 552, L141–L145. [Google Scholar] [CrossRef]
- Turner, D.G.; Burke, J.F. The Distance Scale for Classical Cepheid Variables. Astron. J. 2002, 124, 2931–2942. [Google Scholar] [CrossRef]
- Barnes, T.G.; Jefferys, W.H.; Berger, J.; Mueller, P.J.; Orr, K.; Rodriguez, R. A Bayesian Analysis of the Cepheid Distance Scale. Astrophys. J. 2003, 592, 539–554. [Google Scholar] [CrossRef]
- Storm, J.; Carney, B.W.; Gieren, W.P.; Fouqué, P.; Latham, D.W.; Fry, A.M. The effect of metallicity on the Cepheid Period-Luminosity relation from a Baade-Wesselink analysis of Cepheids in the Galaxy and in the Small Magellanic Cloud. Astron. Astrophys. 2004, 415, 531–547. [Google Scholar] [CrossRef]
- Ruoppo, A.; Ripepi, V.; Marconi, M.; Russo, G. Improvement of the CORS method for Cepheids radii determination based on Strömgren photometry. Astron. Astrophys. 2004, 422, 253–265. [Google Scholar] [CrossRef]
- Kervella, P. Cepheid distances from interferometry. Mem. Soc. Astron. 2006, 77, 227–230. [Google Scholar]
- Groenewegen, M. The projection factor, period–radius relation, and surface–brightness colour relation in classical cepheids. Astron. Astrophys. 2007, 474, 975–981. [Google Scholar] [CrossRef]
- Segan, S.; Glisovic, P. PR and PL (PMv) relations for classical Cepheids revisited. Serbian Astron. J. 2009, 179, 101–106. [Google Scholar] [CrossRef]
- Molinaro, R.; Ripepi, V.; Marconi, M.; Bono, G.; Lub, J.; Pedicelli, S.; Pel, J.W. CORS Baade-Wesselink method in the Walraven photometric system: The period-radius and the period-luminosity relation of classical Cepheids. Mon. Not. R. Astron. Soc. 2011, 413, 942–956. [Google Scholar] [CrossRef]
- Pejcha, O.; Kochanek, C.S. A global physical model for Cepheids. Astrophys. J. 2012, 748, 107. [Google Scholar] [CrossRef]
- Groenewegen, M.A.T. Baade-Wesselink distances to Galactic and Magellanic Cloud Cepheids and the effect of metallicity. Astron. Astrophys. 2013, 550, A70. [Google Scholar] [CrossRef]
- Gallenne, A.; Kervella, P.; Mérand, A.; Pietrzynski, G.; Gieren, W.; Nardetto, N.; Trahin, B. Observational calibration of the projection factor of Cepheids. IV. Period-projection factor relation of Galactic and Magellanic Cloud Cepheids. Astron. Astrophys. 2017, 608, A18. [Google Scholar] [CrossRef]
- Lazovik, Y.A.; Rastorguev, A.S. Calibrating the Galactic Cepheid Period–Luminosity Relation from the Maximum-likelihood Technique. Astron. J. 2020, 160, 136. [Google Scholar] [CrossRef]
- Trahin, B.; Breuval, L.; Kervella, P.; Mérand, A.; Nardetto, N.; Gallenne, A.; Hocdé, V.; Gieren, W. Inspecting the Cepheid parallax of pulsation using Gaia EDR3 parallaxes. Projection factor and period-luminosity and period-radius relations. Astron. Astrophys. 2021, 656, A102. [Google Scholar] [CrossRef]
- Carson, T.R.; Stothers, R.B. Classical bump Cepheids—Reconciliation of theory with observations. Astrophys. J. 1988, 328, 196. [Google Scholar] [CrossRef]
- Gieren, W.P. The Galactic Cepheid period-luminosity relation from the visual surface brightness method. Astrophys. J. 1988, 329, 790–796. [Google Scholar] [CrossRef]
- Gieren, W.P.; Fouque, P. Comparison of the open cluster and surface-brightness distance scales for galactic classical Cepheids. Astron. J. 1993, 106, 734–739. [Google Scholar] [CrossRef]
- Feast, M.W.; Catchpole, R.M. The Cepheid period-luminosity zero-point from Hipparcos trigonometrical parallaxes. Mon. Not. R. Astron. Soc. 1997, 286, L1–L5. [Google Scholar] [CrossRef]
- Lanoix, P.; Paturel, G.; Garnier, R. Direct calibration of the Cepheid period-luminosity relation. Mon. Not. R. Astron. Soc. 1999, 308, 969–978. [Google Scholar] [CrossRef]
- Fouqué, P.; Storm, J.; Gieren, W. Calibration of the Distance Scale from Cepheids. In Stellar Candles for the Extragalactic Distance Scale; Springer: Berlin/Heidelberg, Germany, 2003; Volume 635, pp. 21–44. [Google Scholar] [CrossRef]
- Tammann, G.A.; Sandage, A.; Reindl, B. New Period-Luminosity and Period-Color relations of classical Cepheids: I. Cepheids in the Galaxy. Astron. Astrophys. 2003, 404, 423–448. [Google Scholar] [CrossRef]
- Kervella, P.; Bersier, D.; Mourard, D.; Nardetto, N.; Du Foresto, V.C. Cepheid distances from infrared long-baseline interferometry. II. Calibration of the period-radius and period-luminosity relations. Astron. Astrophys. 2004, 423, 327–333. [Google Scholar] [CrossRef]
- Benedict, G.F.; McArthur, B.E.; Feast, M.W.; Barnes, T.G.; Harrison, T.E.; Patterson, R.J.; Menzies, J.W.; Bean, J.L.; Freedman, W.L. Hubble Space Telescope Fine Guidance Sensor Parallaxes of Galactic Cepheid Variable Stars: Period-Luminosity Relations. Astron. J. 2007, 133, 1810–1827. [Google Scholar] [CrossRef]
- Fouqué, P.; Arriagada, P.; Storm, J.; Barnes, T.G.; Nardetto, N.; Mérand, A.; Kervella, P.; Gieren, W.; Bersier, D.; Benedict, G.F.; et al. A new calibration of Galactic Cepheid period-luminosity relations from B to K bands, and a comparison to LMC relations. Astron. Astrophys. 2007, 476, 73–81. [Google Scholar] [CrossRef]
- Fiorentino, G.; Marconi, M.; Musella, I.; Caputo, F. Classical Cepheid pulsation models. XI. Effects of convection and chemical composition on the period-luminosity and period-Wesenheit relations. Astron. Astrophys. 2007, 476, 863–879. [Google Scholar] [CrossRef]
- DMcNamara, H.; Clementini, G.; Marconi, M. A δ Scuti distance to the Large Magellanic Cloud. Astron. J. 2007, 133, 2752–2763. [Google Scholar] [CrossRef]
- Valle, G.; Marconi, M.; Degl’Innocenti, S.; Moroni, P.G.P. Uncertainties on the theoretical predictions for classical Cepheid pulsational quantities. Astron. Astrophys. 2009, 507, 1541–1554. [Google Scholar] [CrossRef]
- Turner, D.G. The PL calibration for Milky Way Cepheids and its implications for the distance scale. Astrophys. Space Sci. 2010, 326, 219–231. [Google Scholar] [CrossRef]
- Turner, D.G.; Majaess, D.J.; Lane, D.J.; Rosvick, J.; Henden, A.; Balam, D. The Galactic calibration of the Cepheid period-luminosity relation and its implications for the Universal distance scale. Odessa Astron. Publ. 2010, 23, 119–124. [Google Scholar]
- McNamara, D.H. Delta Scuti, SX Phoenicis, and RR Lyrae stars in Galaxies and globular clusters. Astron. J. 2011, 142, 110. [Google Scholar] [CrossRef]
- Storm, J.; Gieren, W.; Fouqué, P.; Barnes, T.G.; Pietrzyński, G.; Nardetto, N.; Weber, M.; Granzer, T.; Strassmeier, K.G. Calibrating the Cepheid period-luminosity relation from the infrared surface brightness technique. I. The p-factor, the Milky Way relations, and a universal K-band relation. Astron. Astrophys. 2011, 534, A94. [Google Scholar] [CrossRef]
- Anderson, R.I.; Eyer, L.; Mowlavi, N. Cepheids in open clusters: An 8D all-sky census. Mon. Not. R. Astron. Soc. 2013, 434, 2238–2261. [Google Scholar] [CrossRef]
- Gaia Collaboration; Clementini, G.; Eyer, L.; Ripepi, V.; Marconi, M.; Muraveva, T.; Garofalo, A.; Sarro, L.M.; Palmer, M.; Luri, X.; et al. Gaia Data Release 1. Testing parallaxes with local Cepheids and RR Lyrae stars. Astron. Astrophys. 2017, 605, A79. [Google Scholar] [CrossRef]
- Gieren, W.; Storm, J.; Konorski, P.; Górski, M.; Pilecki, B.; Thompson, I.; Pietrzynski, G.; Graczyk, D.; Barnes, T.G.; Fouqué, P.; et al. The effect of metallicity on Cepheid period-luminosity relations from a Baade-Wesselink analysis of Cepheids in the Milky Way and Magellanic Clouds. Astron. Astrophys. 2018, 620, A99. [Google Scholar] [CrossRef]
- Groenewegen, M.A.T. The Cepheid period–luminosity–metallicity relation based on Gaia DR2 data. Astron. Astrophys. 2018, 619, A8. [Google Scholar] [CrossRef]
- Ziaali, E.; Bedding, T.R.; Murphy, S.J.; Van Reeth, T.; Hey, D.R. The period–luminosity relation for δ Scuti stars using Gaia DR2 parallaxes. Mon. Not. R. Astron. Soc. 2019, 486, 4348–4353. [Google Scholar] [CrossRef]
- Breuval, L.; Kervella, P.; Anderson, R.I.; Riess, A.G.; Arenou, F.; Trahin, B.; Mérand, A.; Gallenne, A.; Gieren, W.; Storm, J.; et al. The Milky Way Cepheid Leavitt law based on Gaia DR2 parallaxes of companion stars and host open cluster populations. Astron. Astrophys. 2020, 643, A115. [Google Scholar] [CrossRef]
- Jayasinghe, T.; Stanek, K.Z.; Kochanek, C.S.; Vallely, P.J.; Shappee, B.J.; Holoien, T.W.-S.; A Thompson, T.; Prieto, J.L.; Pejcha, O.; Fausnaugh, M.; et al. The ASAS-SN catalogue of variable stars VI: An all-sky sample of δ Scuti stars. Mon. Not. R. Astron. Soc. 2020, 493, 4186–4208. [Google Scholar] [CrossRef]
- Poro, A.; Paki, E.; Mazhari, G.; Sarabi, S.; Alicavus, F.K.; Farahani, F.A.; Guilani, H.; Popov, A.A.; Zubareva, A.M.; Jalalabadi, B.Z.; et al. Observational and Theoretical Studies of 27 δ Scuti Stars with Investigation of the Period–Luminosity Relation. Publ. Astron. Soc. Pac. 2021, 133, 084201. [Google Scholar] [CrossRef]
- Mamajek, E.E. On the Age and Binarity of Fomalhaut. Astrophys. J. 2012, 754, L20. [Google Scholar] [CrossRef]
- Pecaut, M.; Mamajek, E.E. Intrinsic colors, temperatures, and bolometric corrections of pre-main-sequence stars. Astrophys. J. Suppl. Ser. 2013, 208, 9. [Google Scholar] [CrossRef]
- Petersen, J.O.; Jorgensen, H.E. Pulsation of models in the lower part of the Cepheid instability strip and properties of AI Velorum and delta Scuti stars. Astron. Astrophys. 1972, 17, 367–377. [Google Scholar]
- de Coca, P.L.; Rolland, A.; Rodriguez, E.; Garrido, R. Empirical P-L-C relationfor delta Scutistars. A catalogue. Astron. Astrophys. Suppl. Ser. 1990, 83, 51–69. [Google Scholar]
- McNamara, D. Luminosities of SX Phoenicis, Large-Amplitude Delta Scuti, and RR Lyrae Stars. Publ. Astron. Soc. Pac. 1997, 109, 1221. [Google Scholar] [CrossRef]
- Gallenne, A.; Mérand, A.; Kervella, P.; Pietrzyński, G.; Gieren, W.; Hocdé, V.; Breuval, L.; Nardetto, N.; Lagadec, E. Extended envelopes around Galactic Cepheids. V. Multi-wavelength and time-dependent analysis of IR excess. Astron. Astrophys. 2021, 651, A113. [Google Scholar] [CrossRef]
- Faulkner, D.J. Cepheid studies. II—A third period in the beat Cepheid TU Cassiopeiae. Astrophys. J. 1977, 218, 209. [Google Scholar] [CrossRef]
- Pamyatnykh, A.A. Pulsational instability domains in the upper Main Sequence. Acta Astron. 1999, 49, 119–148. [Google Scholar]
- Rogers, F.J.; Iglesias, C.A. The OPAL opacity code: New results. Astron. Soc. Pac. Conf. Ser. 1995, 78, 31–50. [Google Scholar]
- Kollath, Z.; Buchler, J.R.; Feuchtinger, M. RR Lyrae: Theory versus Observation. Astrophys. J. 2000, 540, 468–473. [Google Scholar] [CrossRef]
- Rodríguez, E.; López-González, M.J.; de Coca, P.L. A revised catalogue of δ Sct stars. Astron. Astrophys. Suppl. Ser. 2000, 144, 469–474. [Google Scholar] [CrossRef]
- Deng, Z.-L.; Gao, Z.-F.; Li, X.-D.; Shao, Y. On the Formation of PSR J1640+2224: A Neutron Star Born Massive? Astrophys. J. 2020, 892, 4. [Google Scholar] [CrossRef]
- Shi, X.-D.; Qian, S.-B.; Zhu, L.-Y.; Liu, L.; Li, L.-J.; Zang, L. Observational Properties of 155 O- and B-type Massive Pulsating Stars. Astrophys. J. Suppl. Ser. 2023, 265, 33. [Google Scholar] [CrossRef]
- Gao, Z.F.; Wang, H.; Zhao, X.J.; Yang, X.F. Equation of state and surface thermal emission of magnetized white dwarfs. Astron. Nachrichten 2023, 344, asna.20220112. [Google Scholar] [CrossRef]
- Deng, Z.-L.; Li, X.-D.; Gao, Z.-F.; Shao, Y. Evolution of LMXBs under Different Magnetic Braking Prescriptions. Astrophys. J. 2021, 909, 174. [Google Scholar] [CrossRef]
- Gao, Z.F.; Li, X.-D.; Wang, N.; Yuan, J.P.; Wang, P.; Peng, Q.H.; Du, Y.J. Constraining the braking indices of magnetars. Mon. Not. R. Astron. Soc. 2016, 456, 55–65. [Google Scholar] [CrossRef]
- Gao, Z.-F.; Wang, N.; Shan, H.; Li, X.-D.; Wang, W. The Dipole Magnetic Field and Spin-down Evolutions of the High Braking Index Pulsar PSR J1640–4631. Astrophys. J. 2017, 849, 19. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinitsyn, S.V. Parameters and Pulsation Constant of Cepheid. Particles 2023, 6, 595-610. https://doi.org/10.3390/particles6020034
Sinitsyn SV. Parameters and Pulsation Constant of Cepheid. Particles. 2023; 6(2):595-610. https://doi.org/10.3390/particles6020034
Chicago/Turabian StyleSinitsyn, Sergei V. 2023. "Parameters and Pulsation Constant of Cepheid" Particles 6, no. 2: 595-610. https://doi.org/10.3390/particles6020034
APA StyleSinitsyn, S. V. (2023). Parameters and Pulsation Constant of Cepheid. Particles, 6(2), 595-610. https://doi.org/10.3390/particles6020034