Unruh Entropy with Exponential Energy Distribution for a Spherically Symmetric Source
Abstract
:1. Introduction
2. Information Entropy
3. Model
4. Results
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The Von Neumann Entropy for Rindler Modes
Appendix B. Analytical Expressions for h(E), hQ, and hρ
References
- Fulling, S.A. Nonuniqueness of Canonical Field Quantization in Riemannian Space-Time. Phys. Rev. D 1973, 7, 2850–2862. [Google Scholar] [CrossRef]
- Davies, P.C.W. Scalar production in Schwarzschild and Rindler metrics. J. Phys. A Math. Gen. 1975, 8, 609. [Google Scholar] [CrossRef]
- Unruh, W.G. Notes on black-hole evaporation. Phys. Rev. D 1976, 14, 870–892. [Google Scholar] [CrossRef]
- Banerjee, R.; Majhi, B.R. Hawking black body spectrum from tunneling mechanism. Phys. Lett. B 2009, 675, 243–245. [Google Scholar] [CrossRef]
- Roy, D. The Unruh thermal spectrum through scalar and fermion tunneling. Phys. Lett. B 2009, 681, 185–189. [Google Scholar] [CrossRef]
- Svaiter, B.F.; Svaiter, N.F. Inertial and noninertial particle detectors and vacuum fluctuations. Phys. Rev. D 1992, 46, 5267–5277. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.S.; Leinaas, J.M. Electrons as accelerated thermometers. Nucl. Phys. B 1983, 212, 131–150. [Google Scholar] [CrossRef]
- Gooding, C.; Biermann, S.; Erne, S.; Louko, J.; Unruh, W.G.; Schmiedmayer, J.; Weinfurtner, S. Interferometric Unruh Detectors for Bose-Einstein Condensates. Phys. Rev. Lett. 2020, 125, 213603. [Google Scholar] [CrossRef] [PubMed]
- Vriend, S.; Grimmer, D.; Martín-Martínez, E. The Unruh Effect in Slow Motion. Symmetry 2021, 13, 1977. [Google Scholar] [CrossRef]
- Bunney, C.R.D.; Biermann, S.; Barroso, V.S.; Geelmuyden, A.; Gooding, C.; Ithier, G.; Rojas, X.; Louko, J.; Weinfurtner, S. Third sound detectors in accelerated motion. arXiv 2023, arXiv:2302.12023. [Google Scholar] [CrossRef]
- Chen, P.; Tajima, T. Testing Unruh Radiation with Ultraintense Lasers. Phys. Rev. Lett. 1999, 83, 256–259. [Google Scholar] [CrossRef]
- Kharzeev, D.; Tuchin, K. From Color Glass Condensate to Quark Gluon Plasma through the event horizon. Nucl. Phys. A 2005, 753, 316–334. [Google Scholar] [CrossRef]
- Castorina, P.; Kharzeev, D.; Satz, H. Thermal hadronization and Hawking–Unruh radiation in QCD. Eur. Phys. J. C 2007, 52, 187–201. [Google Scholar] [CrossRef]
- Satz, H. Thermal Hadron Production by QCD Hawking Radiation. Prog. Theor. Phys. Suppl. 2007, 168, 338–346. [Google Scholar] [CrossRef]
- Takagi, S. Vacuum Noise and Stress Induced by Uniform Acceleration: Hawking-Unruh Effect in Rindler Manifold of Arbitrary Dimension. Prog. Theor. Phys. Suppl. 1986, 88, 1–142. [Google Scholar] [CrossRef]
- Higuchi, A.; Matsas, G.E.A.; Peres, C.B. Uniformly accelerated finite-time detectors. Phys. Rev. D 1993, 48, 3731–3734. [Google Scholar] [CrossRef] [PubMed]
- Louko, J.; Satz, A. Transition rate of the Unruh–DeWitt detector in curved space-time. Class. Quantum Gravity 2008, 25, 055012. [Google Scholar] [CrossRef]
- Obadia, N.; Milgrom, M. Unruh effect for general trajectories. Phys. Rev. D 2007, 75, 065006. [Google Scholar] [CrossRef]
- Barbado, L.C.; Visser, M. Unruh-DeWitt detector event rate for trajectories with time-dependent acceleration. Phys. Rev. D 2012, 86, 084011. [Google Scholar] [CrossRef]
- Ostapchuk, D.C.M.; Lin, S.Y.; Mann, R.B.; Hu, B.L. Entanglement dynamics between inertial and non-uniformly accelerated detectors. J. High Energy Phys. 2012, 2012, 72. [Google Scholar] [CrossRef]
- Lin, S.Y. Quantum radiation by an Unruh-DeWitt detector in oscillatory motion. J. High Energy Phys. 2017, 2017, 102. [Google Scholar] [CrossRef]
- Ahmadzadegan, A.; Kempf, A. On the Unruh effect, trajectories and information. Class. Quantum Gravity 2018, 35, 184002. [Google Scholar] [CrossRef]
- Becattini, F. Thermodynamic equilibrium with acceleration and the Unruh effect. Phys. Rev. D 2018, 97, 085013. [Google Scholar] [CrossRef]
- Becattini, F.; Rindori, D. Extensivity, entropy current, area law, and Unruh effect. Phys. Rev. D 2019, 99, 125011. [Google Scholar] [CrossRef]
- Lima, C.A.U.; Brito, F.; Hoyos, J.A.; Vanzella, D.A.T. Probing the Unruh effect with an accelerated extended system. Nat. Commun. 2019, 10, 3030. [Google Scholar] [CrossRef] [PubMed]
- Prokhorov, G.Y.; Teryaev, O.V.; Zakharov, V.I. Novel phase transition at the Unruh temperature. arXiv 2023, arXiv:2304.13151. [Google Scholar] [CrossRef]
- Bunney, C.R.; Parry, L.; Perche, T.R.; Louko, J. Ambient temperature versus ambient acceleration in the circular motion Unruh effect. Phys. Rev. D 2024, 109, 065001. [Google Scholar] [CrossRef]
- Crispino, L.C.B.; Higuchi, A.; Matsas, G.E.A. The Unruh effect and its applications. Rev. Mod. Phys. 2008, 80, 787–838. [Google Scholar] [CrossRef]
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black Holes and Entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Bardeen, J.M.; Carter, B.; Hawking, S.W. The four laws of black hole mechanics. Commun. Math. Phys. 1973, 31, 161–170. [Google Scholar] [CrossRef]
- Hawking, S.W. Breakdown of predictability in gravitational collapse. Phys. Rev. D 1976, 14, 2460–2473. [Google Scholar] [CrossRef]
- Ashtekar, A.; Baez, J.; Corichi, A.; Krasnov, K. Quantum Geometry and Black Hole Entropy. Phys. Rev. Lett. 1998, 80, 904–907. [Google Scholar] [CrossRef]
- Khriplovich, I.B. Entropy and area of black holes in loop quantum gravity. Phys. Lett. B 2002, 537, 125–129. [Google Scholar] [CrossRef]
- Bianchi, E. Black hole entropy, loop gravity, and polymer physics. Class. Quantum Gravity 2011, 28, 114006. [Google Scholar] [CrossRef]
- Livine, E.R.; Terno, D.R. Entropy in the classical and quantum polymer black hole models. Class. Quantum Gravity 2012, 29, 224012. [Google Scholar] [CrossRef]
- Strominger, A.; Vafa, C. Microscopic Origin of the Bekenstein-Hawking Entropy. Phys. Lett. B 1996, 379, 99–104. [Google Scholar] [CrossRef]
- Emparan, R.; Horowitz, G.T. Microstates of a Neutral Black Hole in M Theory. Phys. Rev. Lett. 2006, 97, 141601. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Lawrence, A.; Magán, J.M.; Sasieta, M. Microscopic Origin of the Entropy of Black Holes in General Relativity. Phys. Rev. X 2024, 14, 011024. [Google Scholar] [CrossRef]
- Silva, C.A.S.; Landim, R.R. A note on black-hole entropy, area spectrum, and evaporation. Europhys. Lett. 2011, 96, 10007. [Google Scholar] [CrossRef]
- Susskind, L. The World as a Hologram. J. Math. Phys. 1995, 36, 6377–6396. [Google Scholar] [CrossRef]
- Ryu, S.; Takayanagi, T. Holographic Derivation of Entanglement Entropy from the anti–de Sitter Space/Conformal Field Theory Correspondence. Phys. Rev. Lett. 2006, 96, 181602. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.; Takayanagi, T. Aspects of holographic entanglement entropy. J. High Energy Phys. 2006, 2006, 045. [Google Scholar] [CrossRef]
- ’t Hooft, G. On the quantum structure of a black hole. Nucl. Phys. B 1985, 256, 727–745. [Google Scholar] [CrossRef]
- Brustein, R.; Kupferman, J. Black hole entropy divergence and the uncertainty principle. Phys. Rev. D 2011, 83, 124014. [Google Scholar] [CrossRef]
- Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J. Black holes: Complementarity or firewalls? J. High Energy Phys. 2013, 2013, 62. [Google Scholar] [CrossRef]
- ’t Hooft, G. The Firewall Transformation for Black Holes and Some of Its Implications. Found. Phys. 2017, 47, 1503–1542. [Google Scholar] [CrossRef]
- Srednicki, M. Entropy and area. Phys. Rev. Lett. 1993, 71, 666–669. [Google Scholar] [CrossRef]
- Das, S.; Shankaranarayanan, S. Where are the black-hole entropy degrees of freedom? Class. Quantum Gravity 2007, 24, 5299. [Google Scholar] [CrossRef]
- Das, S.; Shankaranarayanan, S.; Sur, S. Black hole entropy from entanglement: A review. arXiv 2008, arXiv:0806.0402. [Google Scholar]
- Polchinski, J. The Black Hole Information Problem. In New Frontiers in Fields and Strings; World Scientific: London, UK, 2016; pp. 353–397. [Google Scholar] [CrossRef]
- Unruh, W.G.; Wald, R.M. Information loss. Rep. Prog. Phys. 2017, 80, 092002. [Google Scholar] [CrossRef] [PubMed]
- Stoica, O.C. Revisiting the Black Hole Entropy and the Information Paradox. Adv. High Energy Phys. 2018, 2018, 4130417. [Google Scholar] [CrossRef]
- Singleton, D.; Wilburn, S. Hawking Radiation, Unruh Radiation, and the Equivalence Principle. Phys. Rev. Lett. 2011, 107, 081102. [Google Scholar] [CrossRef] [PubMed]
- Barbado, L.C.; Barceló, C.; Garay, L.J.; Jannes, G. Hawking versus Unruh effects, or the difficulty of slowly crossing a black hole horizon. J. High Energy Phys. 2016, 2016, 161. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information Theory and Statistical Mechanics. In Lecture in Theoretical Physics: Statistical Physics; Ford, K.W., Ed.; W. A. Benjamin, Inc.: Los Angeles, CA, USA, 1963; Volume 3, pp. 181–218. [Google Scholar]
- Jaynes, E.T. Prior Probabilities. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 227–241. [Google Scholar] [CrossRef]
- Solodukhin, S.N. Entanglement Entropy of Black Holes. Living Rev. Relativ. 2011, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Parikh, M.K.; Wilczek, F. Hawking Radiation As Tunneling. Phys. Rev. Lett. 2000, 85, 5042–5045. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Cai, Q.y.; You, L.; Zhan, M.s. Hidden messenger revealed in Hawking radiation: A resolution to the paradox of black hole information loss. Phys. Lett. B 2009, 675, 98–101. [Google Scholar] [CrossRef]
- Teslyk, M.; Bravina, L.; Zabrodin, E. Unruh Effect and Information Entropy Approach. Particles 2022, 5, 157–170. [Google Scholar] [CrossRef]
- Teslyk, M.; Teslyk, O.; Bravina, L.; Zabrodin, E. Unruh Entropy of a Schwarzschild Black Hole. Particles 2023, 6, 864–875. [Google Scholar] [CrossRef]
- Rovelli, C.; Smerlak, M. Unruh effect without trans-horizon entanglement. Phys. Rev. D 2012, 85, 124055. [Google Scholar] [CrossRef]
- Chung, W.S.; Hassanabadi, H. Black hole temperature and Unruh effect from the extended uncertainty principle. Phys. Lett. B 2019, 793, 451–456. [Google Scholar] [CrossRef]
- Scully, M.O.; Svidzinsky, A.; Unruh, W. Entanglement in Unruh, Hawking, and Cherenkov radiation from a quantum optical perspective. Phys. Rev. Res. 2022, 4, 033010. [Google Scholar] [CrossRef]
- Ramakrishna, S. An observer’s perspective of the Unruh and Hawking effects—Using coherent signals to extract information from a black hole. Europhys. Lett. 2023, 144, 49003. [Google Scholar] [CrossRef]
- Chen, A. Generalized Unruh effect: A potential resolution to the black hole information paradox. Phys. Rev. D 2023, 107, 056014. [Google Scholar] [CrossRef]
- Deur, A.; Brodsky, S.J.; Roberts, C.D.; Terzić, B. Poincaré invariance, the Unruh effect, and black hole evaporation. arXiv 2024, arXiv:2405.06002. [Google Scholar] [CrossRef]
- Dowker, J.S. Remarks on geometric entropy. Class. Quantum Gravity 1994, 11, L55. [Google Scholar] [CrossRef]
- Iorio, A.; Lambiase, G.; Vitiello, G. Entangled quantum fields near the event horizon and entropy. Ann. Phys. 2004, 309, 151–165. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teslyk, M.; Bravina, L.; Zabrodin, E. Unruh Entropy with Exponential Energy Distribution for a Spherically Symmetric Source. Particles 2024, 7, 634-646. https://doi.org/10.3390/particles7030036
Teslyk M, Bravina L, Zabrodin E. Unruh Entropy with Exponential Energy Distribution for a Spherically Symmetric Source. Particles. 2024; 7(3):634-646. https://doi.org/10.3390/particles7030036
Chicago/Turabian StyleTeslyk, Maksym, Larissa Bravina, and Evgeny Zabrodin. 2024. "Unruh Entropy with Exponential Energy Distribution for a Spherically Symmetric Source" Particles 7, no. 3: 634-646. https://doi.org/10.3390/particles7030036
APA StyleTeslyk, M., Bravina, L., & Zabrodin, E. (2024). Unruh Entropy with Exponential Energy Distribution for a Spherically Symmetric Source. Particles, 7(3), 634-646. https://doi.org/10.3390/particles7030036