Nonholomorphic Higgsino Mass Term Effects on Muon g − 2 and Dark Matter Relic Density in Flavor Symmetry-Based Minimal Supersymmetric Standard Model
Abstract
:1. Introduction
2. Flavor Symmetry-Based MSSM
2.1. SSB Sector of the MSSM
2.2. The Flavor Symmetry-Based NHSSM
2.3. Flavor Symmetry-Based NHSSM
3. Calculation of Low-Energy Observables
SUSY Contributions to
4. Numerical Results
4.1. Computational Strategy
4.2. and in the sNHSSM
4.3. Spin-Independent WIMP–Proton Cross-Section Constraints
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fayet, P. Supergauge Invariant Extension of the Higgs Mechanism and a Model for the electron and Its Neutrino. Nucl. Phys. B 1975, 90, 104–124. [Google Scholar] [CrossRef]
- Fayet, P. Supersymmetry and Weak, Electromagnetic and Strong Interactions. Phys. Lett. B 1976, 64, 159. [Google Scholar] [CrossRef]
- Fayet, P. Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions. Phys. Lett. B 1977, 69, 489. [Google Scholar] [CrossRef]
- Nilles, H.P. Supersymmetry, Supergravity and Particle Physics. Phys. Rept. 1984, 110, 1–162. [Google Scholar] [CrossRef]
- Haber, H.E.; Kane, G.L. The Search for Supersymmetry: Probing Physics Beyond the Standard Model. Phys. Rept. 1985, 117, 75–263. [Google Scholar] [CrossRef]
- Barbieri, R. Looking Beyond the Standard Model: The Supersymmetric Option. Riv. Nuovo Cim. 1988, 11N4, 1–45. [Google Scholar] [CrossRef]
- Glashow, S.L. Partial Symmetries of Weak Interactions. Nucl. Phys. 1961, 22, 579–588. [Google Scholar] [CrossRef]
- Weinberg, S. A Model of Leptons. Phys. Rev. Lett. 1967, 19, 1264–1266. [Google Scholar] [CrossRef]
- Salam, A. Weak and Electromagnetic Interactions. Conf. Proc. C 1968, 680519, 367–377. [Google Scholar] [CrossRef]
- Glashow, S.L.; Iliopoulos, J.; Maiani, L. Weak Interactions with Lepton-Hadron Symmetry. Phys. Rev. D 1970, 2, 1285–1292. [Google Scholar] [CrossRef]
- Kane, G.L.; Kolda, C.F.; Roszkowski, L.; Wells, J.D. Study of constrained minimal supersymmetry. Phys. Rev. D 1994, 49, 6173–6210. [Google Scholar] [CrossRef] [PubMed]
- Sekmen, S. Highlights on Supersymmetry and Exotic Searches at the LHC. In Proceedings of the 32nd Rencontres de Blois on Particle Physics and Cosmology, Blois, France, 17–22 October 2022; Volume 4. [Google Scholar]
- Matalliotakis, D.; Nilles, H.P. Implications of nonuniversality of soft terms in supersymmetric grand unified theories. Nucl. Phys. B 1995, 435, 115–128. [Google Scholar] [CrossRef]
- Olechowski, M.; Pokorski, S. Electroweak symmetry breaking with nonuniversal scalar soft terms and large tan beta solutions. Phys. Lett. B 1995, 344, 201–210. [Google Scholar] [CrossRef]
- Polonsky, N.; Pomarol, A. Nonuniversal GUT corrections to the soft terms and their implications in supergravity models. Phys. Rev. D 1995, 51, 6532–6549. [Google Scholar] [CrossRef] [PubMed]
- Nath, P.; Arnowitt, R.L. Nonuniversal soft SUSY breaking and dark matter. Phys. Rev. D 1997, 56, 2820–2832. [Google Scholar] [CrossRef]
- Ellis, J.R.; Olive, K.A.; Santoso, Y. The MSSM parameter space with nonuniversal Higgs masses. Phys. Lett. B 2002, 539, 107–118. [Google Scholar] [CrossRef]
- Ellis, J.R.; Falk, T.; Olive, K.A.; Santoso, Y. Exploration of the MSSM with nonuniversal Higgs masses. Nucl. Phys. B 2003, 652, 259–347. [Google Scholar] [CrossRef]
- Baer, H.; Mustafayev, A.; Profumo, S.; Belyaev, A.; Tata, X. Direct, indirect and collider detection of neutralino dark matter in SUSY models with non-universal Higgs masses. J. High Energy Phys. 2005, 7, 65. [Google Scholar] [CrossRef]
- Babu, K.S.; Gogoladze, I.; Raza, S.; Shafi, Q. Flavor Symmetry Based MSSM (sMSSM): Theoretical Models and Phenomenological Analysis. Phys. Rev. D 2014, 90, 056001. [Google Scholar] [CrossRef]
- Babu, K.S.; Gogoladze, I.; Shafi, Q.; Ün, C.S. Muon g − 2, 125 GeV Higgs boson, and neutralino dark matter in a flavor symmetry-based MSSM. Phys. Rev. D 2014, 90, 116002. [Google Scholar] [CrossRef]
- Babu, K.S.; Gogoladze, I.; Un, C.S. Proton lifetime in minimal SUSY SU(5) in light of LHC results. J. High Energy Phys. 2022, 2, 164. [Google Scholar] [CrossRef]
- Girardello, L.; Grisaru, M.T. Soft Breaking of Supersymmetry. Nucl. Phys. B 1982, 194, 65. [Google Scholar] [CrossRef]
- Bagger, J.; Poppitz, E. Destabilizing divergences in supergravity coupled supersymmetric theories. Phys. Rev. Lett. 1993, 71, 2380–2382. [Google Scholar] [CrossRef] [PubMed]
- Jack, I.; Jones, D.R.T. Nonstandard soft supersymmetry breaking. Phys. Lett. B 1999, 457, 101–108. [Google Scholar] [CrossRef]
- Jack, I.; Jones, D.R.T. Quasiinfrared fixed points and renormalization group invariant trajectories for nonholomorphic soft supersymmetry breaking. Phys. Rev. D 2000, 61, 095002. [Google Scholar] [CrossRef]
- Cakir, M.A.; Mutlu, S.; Solmaz, L. Phenomenological issues in supersymmetry with non-holomorphic soft breaking. Phys. Rev. D 2005, 71, 115005. [Google Scholar] [CrossRef]
- Ün, C.S.; Tanyıldızı, C.H.; Kerman, S.; Solmaz, L. Generalized Soft Breaking Leverage for the MSSM. Phys. Rev. D 2015, 91, 105033. [Google Scholar] [CrossRef]
- Chattopadhyay, U.; Dey, A. Probing Non-holomorphic MSSM via precision constraints, dark matter and LHC data. J. High Energy Phys. 2016, 10, 27. [Google Scholar] [CrossRef]
- Chattopadhyay, U.; Das, D.; Mukherjee, S. Exploring Non-Holomorphic Soft Terms in the Framework of Gauge Mediated Supersymmetry Breaking. J. High Energy Phys. 2018, 2018, 158. [Google Scholar] [CrossRef]
- Un, C.S. Low fine-tuning with heavy higgsinos in Yukawa unified SUSY GUTs. Turk. J. Phys. 2024, 48, 1–27. [Google Scholar] [CrossRef]
- Chattopadhyay, U.; Datta, A.; Mukherjee, S.; Swain, A.K. Sbottoms as probes to MSSM with nonholomorphic soft interactions. J. High Energy Phys. 2018, 10, 202. [Google Scholar] [CrossRef]
- Chattopadhyay, U.; Das, D.; Mukherjee, S. Probing Lepton Flavor Violating decays in MSSM with Non-Holomorphic Soft Terms. J. High Energy Phys. 2020, 6, 15. [Google Scholar] [CrossRef]
- Chattopadhyay, U.; Datta, A.; Mukherjee, S.; Swain, A.K. Associated production of heavy Higgs bosons with a b pair in the nonholomorphic MSSM and LHC searches. J. High Energy Phys. 2022, 8, 113. [Google Scholar] [CrossRef]
- Rehman, M.; Heinemeyer, S. Nonholomorphic soft-term contributions to the Higgs-boson masses in the Feynman diagrammatic approach. Phys. Rev. D 2023, 107, 095033. [Google Scholar] [CrossRef]
- Israr, S.; Rehman, M. Higgs Decay to Zγ in the Minimal Supersymmetric Standard Model and Its Nonholomorphic Extension. arXiv 2024, arXiv:2407.01210. [Google Scholar]
- Rehman, M.; Heinemeyer, S. Lepton Flavor Violation in Nonholomorphic Soft SUSY-Breaking Scenarios: Experimental Limits and Excesses. arXiv 2024, arXiv:2411.00479. [Google Scholar]
- Goldberg, H. Constraint on the Photino Mass from Cosmology. Phys. Rev. Lett. 1983, 50, 1419. [Google Scholar] [CrossRef]
- Ellis, J.R.; Hagelin, J.S.; Nanopoulos, D.V.; Olive, K.A.; Srednicki, M. Supersymmetric Relics from the Big Bang. Nucl. Phys. B 1984, 238, 453–476. [Google Scholar] [CrossRef]
- Aguillard, D.P.; Albahri, T.; Allspach, D.; Anisenkov, A.; Badgley, K.; Baeßler, S.; Bailey, I.; Bailey, L.; Baranov, V.A.; Barlas-Yucel, E.; et al. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm. Phys. Rev. Lett. 2023, 131, 161802. [Google Scholar] [CrossRef]
- Abi, B.; Albahri, T.; Al-Kilani, S.; Allspach, D.; Alonzi, L.P.; Anastasi, A.; Anisenkov, A.; Azfar, F.; Badgley, K.; Baeßler, S.; et al. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. Phys. Rev. Lett. 2021, 126, 141801. [Google Scholar] [CrossRef]
- Bennett, G.W.; Bousquet, B.; Brown, H.N.; Bunce, G.; Carey, R.M.; Cushman, P.; Danby, G.T.; Debevec, P.T.; Deile1, M.; Deng, H.; et al. Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL. Phys. Rev. D 2006, 73, 072003. [Google Scholar] [CrossRef]
- Aoyama, T.; Asmussen, N.; Benayoun, M.; Bijnens, J.; Blum, T.; Bruno, M.; Caprini, I.; Calame, C.C.; Cè, M.; Colangelo, G.; et al. The anomalous magnetic moment of the muon in the Standard Model. Phys. Rept. 2020, 887, 1–166. [Google Scholar] [CrossRef]
- Miranda, A. Compatibility between e+e− and τ decay data in the di-pion channel and implications for and CVC tests. In Proceedings of the 10th International Conference on Quarks and Nuclear Physics, Barcelona, Spain, 8–12 July 2024; Volume 11. [Google Scholar]
- Boccaletti, A.; Borsanyi, S.; Davier, M.; Fodor, Z.; Frech, F.; Gerardin, A.; Giusti, D.; Kotov, A.Y.; Lellouch, L.; Lippert, T.; et al. High precision calculation of the hadronic vacuum polarisation contribution to the muon anomaly. arXiv 2024, arXiv:2407.10913. [Google Scholar]
- Fodor, Z.; Gerardin, A.; Lellouch, L.; Szabo, K.K.; Toth, B.C.; Zimmermann, C. Hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon at the physical pion mass. arXiv 2024, arXiv:2411.11719. [Google Scholar]
- Coutinho, A.M.; Karan, A.; Miralles, V.; Pich, A. Light scalars within the CP-conserving Aligned-two-Higgs-doublet model. arXiv 2024, arXiv:2412.14906v2. [Google Scholar] [CrossRef]
- Hussain, M.; Khalid, R. Understanding the muon anomalous magnetic moment in light of a flavor symmetry-based Minimal Supersymmetric Standard Model. Prog. Theor. Exp. Phys. 2018, 2018, 083B06. [Google Scholar] [CrossRef]
- Israr, S.; Gomez, M.E.; Rehman, M.; Arafat, Y. Interplay between MW, ΩCDMh2, and (g − 2)μ in Flavor Symmetry-Based Supersymmetric Models. arXiv 2024, arXiv:2410.09719. [Google Scholar]
- Bagnaschi, E.; Chakraborti, M.; Heinemeyer, S.; Saha, I.; Weiglein, G. Interdependence of the new “MUON G-2” result and the W-boson mass. Eur. Phys. J. C 2022, 82, 474. [Google Scholar] [CrossRef]
- Staub, F. From Superpotential to Model Files for FeynArts and CalcHep/CompHep. Comput. Phys. Commun. 2010, 181, 1077–1086. [Google Scholar] [CrossRef]
- Staub, F. Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies. Comput. Phys. Commun. 2011, 182, 808–833. [Google Scholar] [CrossRef]
- Staub, F. SARAH 3.2: Dirac Gauginos, UFO output, and more. Comput. Phys. Commun. 2013, 184, 1792–1809. [Google Scholar] [CrossRef]
- Staub, F. SARAH 4: A tool for (not only SUSY) model builders. Comput. Phys. Commun. 2014, 185, 1773–1790. [Google Scholar] [CrossRef]
- Staub, F. Exploring new models in all detail with SARAH. Adv. High Energy Phys. 2015, 2015, 840780. [Google Scholar] [CrossRef]
- Porod, W. SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+ e− colliders. Comput. Phys. Commun. 2003, 153, 275–315. [Google Scholar] [CrossRef]
- Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A. MicrOMEGAs 2.0: A Program to calculate the relic density of dark matter in a generic model. Comput. Phys. Commun. 2007, 176, 367–382. [Google Scholar] [CrossRef]
- Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A. micrOMEGAs_3: A program for calculating dark matter observables. Comput. Phys. Commun. 2014, 185, 960–985. [Google Scholar] [CrossRef]
- Barducci, D.; Belanger, G.; Bernon, J.; Boudjema, F.; Da Silva, J.; Kraml, S.; Laa, U.; Pukhov, A. Collider limits on new physics within micrOMEGAs_4.3. Comput. Phys. Commun. 2018, 222, 327–338. [Google Scholar] [CrossRef]
- Staub, F.; Ohl, T.; Porod, W.; Speckner, C. A Tool Box for Implementing Supersymmetric Models. Comput. Phys. Commun. 2012, 183, 2165–2206. [Google Scholar] [CrossRef]
- Dine, M.; Leigh, R.G.; Kagan, A. Flavor symmetries and the problem of squark degeneracy. Phys. Rev. D 1993, 48, 4269–4274. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, R.; Dvali, G.R.; Hall, L.J. Predictions from a U(2) flavor symmetry in supersymmetric theories. Phys. Lett. B 1996, 377, 76–82. [Google Scholar] [CrossRef]
- Chen, M.C.; Mahanthappa, K.T. CP violation in a supersymmetric SO(10) x U(2)(F) model. Phys. Rev. D 2002, 65, 053010. [Google Scholar] [CrossRef]
- King, S.F.; Ross, G.G. Fermion masses and mixing angles from SU (3) family symmetry and unification. Phys. Lett. B 2003, 574, 239–252. [Google Scholar] [CrossRef]
- Ross, G.G.; Velasco-Sevilla, L.; Vives, O. Spontaneous CP violation and nonAbelian family symmetry in SUSY. Nucl. Phys. B 2004, 692, 50–82. [Google Scholar] [CrossRef]
- Martin, S.P.; Wells, J.D. Muon Anomalous Magnetic Dipole Moment in Supersymmetric Theories. Phys. Rev. D 2001, 64, 035003. [Google Scholar] [CrossRef]
- Moroi, T. The Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model. Phys. Rev. D 1996, 53, 6565–6575. [Google Scholar] [CrossRef] [PubMed]
- Stockinger, D. The Muon Magnetic Moment and Supersymmetry. J. Phys. G 2007, 34, R45–R92. [Google Scholar] [CrossRef]
- Fargnoli, H.; Gnendiger, C.; Paßehr, S.; Stöckinger, D.; Stöckinger-Kim, H. Two-loop corrections to the muon magnetic moment from fermion/sfermion loops in the MSSM: Detailed results. J. High Energy Phys. 2014, 2, 70. [Google Scholar] [CrossRef]
- Cho, G.C.; Hagiwara, K.; Matsumoto, Y.; Nomura, D. The MSSM confronts the precision electroweak data and the muon g − 2. J. High Energy Phys. 2011, 11, 68. [Google Scholar] [CrossRef]
- Beuria, J.; Dey, A. Exploring Charge and Color Breaking vacuum in Non-Holomorphic MSSM. J. High Energy Phys. 2017, 10, 154. [Google Scholar] [CrossRef]
- Slavich, P.; Heinemeyer, S.; Bagnaschi, E.; Bahl, H.; Goodsell, M.; Haber, H.E.; Hahn, T.; Harlander, R.; Hollik, W.; Lee, G.; et al. Higgs-mass predictions in the MSSM and beyond. Eur. Phys. J. C 2021, 81, 450. [Google Scholar] [CrossRef]
- Workman, R.L.; Burkert, V.D.; Crede, V.; Klempt, E.; Thoma, U.; Tiator, L.; Agashe, K.; Aielli, G.; Allanach, B.C.; et al.; Particle Data Group Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [Google Scholar] [CrossRef]
- ATLAS, CMS and LHCb Collaborations. Combination of the ATLAS, CMS and LHCb Results on the Decays. ATLAS-CONF-2020-049. 2020. Available online: https://cds.cern.ch/record/2727216 (accessed on 26 November 2024).
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2021, 641, A6. [Google Scholar] [CrossRef]
Parameter | |||
---|---|---|---|
1.285–7.562 | 3.064–9.379 | 2.541–8.160 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Israr, S.; Gómez, M.E.; Rehman, M. Nonholomorphic Higgsino Mass Term Effects on Muon g − 2 and Dark Matter Relic Density in Flavor Symmetry-Based Minimal Supersymmetric Standard Model. Particles 2025, 8, 30. https://doi.org/10.3390/particles8010030
Israr S, Gómez ME, Rehman M. Nonholomorphic Higgsino Mass Term Effects on Muon g − 2 and Dark Matter Relic Density in Flavor Symmetry-Based Minimal Supersymmetric Standard Model. Particles. 2025; 8(1):30. https://doi.org/10.3390/particles8010030
Chicago/Turabian StyleIsrar, Sajid, Mario E. Gómez, and Muhammad Rehman. 2025. "Nonholomorphic Higgsino Mass Term Effects on Muon g − 2 and Dark Matter Relic Density in Flavor Symmetry-Based Minimal Supersymmetric Standard Model" Particles 8, no. 1: 30. https://doi.org/10.3390/particles8010030
APA StyleIsrar, S., Gómez, M. E., & Rehman, M. (2025). Nonholomorphic Higgsino Mass Term Effects on Muon g − 2 and Dark Matter Relic Density in Flavor Symmetry-Based Minimal Supersymmetric Standard Model. Particles, 8(1), 30. https://doi.org/10.3390/particles8010030