Scattering-Based Machine Learning Algorithms for Momentum Estimation in Muon Tomography
Abstract
:1. Introduction
2. Muon Scattering and Momentum
2.1. Muon Flux at Sea Level
2.2. Muon Momentum in Muon Scattering Tomography
2.3. Muon Momentum in Muon Transmission Tomography
2.4. Muon Momentum Measurement
3. Machine Learning Methods
3.1. Deviations as Features
3.2. Deviations as a Sequence
3.3. Deviations as a Geometry
3.4. Model Comparison
4. Real-Life Experiment Considerations
4.1. Hit Detection Efficiency
4.2. Hit Spatial Resolution
4.3. Momentum Resolution
5. Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Deviations’ Bases
Appendix B. Network Hyperparameters
Parameter | Value |
---|---|
Number of layers | 6 |
Neurons per layer | 64 |
Hidden activation | GELU |
Output activation | None |
Batchnorm | True |
Parameter | Value |
---|---|
Embedding | |
Normalize inputs (batchnorm) | True |
Neurons for each layer | 32,64 |
Activation | ReLU |
Recurrent cell | |
Cell type | GRU |
Dimension | 64 |
Layers | 6 |
Bidirectional | False |
Output (DNN) | |
Layers | 3 |
Neurons per layer | 64 |
Hidden activation | ReLU |
Output activation | None |
Parameter | Value |
---|---|
Embedding/position encoding | |
Normalize inputs (batchnorm) | True |
Neurons for each layer | 32, 64 |
Activation | GELU |
Encoder | |
Dimension | 64 |
Encoder layers/class layers | 6/2 |
Heads | 8 |
Feed-forward dimension | 128 |
Layernorm | True |
Output (DNN) | |
Layers | 3 |
Neurons per layer | 64 |
Hidden activation | GELU |
Output activation | None |
Parameter | Value |
---|---|
Graph blocks | |
Block type | EdgeConv |
Feature dimension | 64 |
Number of blocks | 6 |
DNN feedforward dimension | 128 |
DNN batchnorm | True |
Graphnorm | True |
Activation | GELU |
Node aggregation | Mean |
Graph pooling | |
Aggregation | Mean |
Jumping knowledge | Concatenation |
Output (DNN) | |
Layers | 3 |
Neurons per layer | 64 |
Hidden activation | GELU |
Output activation | None |
References
- Oláh, L.; Tanaka, H.K.M.; Varga, D. (Eds.) Muography: Exploring Earth’s Subsurface with Elementary Particles; American Geophysical Union: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Poulson, D.; Durham, J.; Guardincerri, E.; Morris, C.; Bacon, J.; Plaud-Ramos, K.; Morley, D.; Hecht, A. Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 842, 48–53. [Google Scholar] [CrossRef]
- Morishima, K.; Kuno, M.; Nishio, A.E.A. Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons. Nature 2017, 552, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Niederleithinger, E.; Gardner, S.; Kind, T.; Kaiser, R.; Grunwald, M.; Yang, G.; Redmer, B.; Waske, A.; Mielentz, F.; Effner, U.; et al. Muon tomography of a reinforced concrete block—First experimental proof of concept. arXiv 2020, arXiv:2008.07251. [Google Scholar] [CrossRef]
- Barnes, S.; Georgadze, A.; Giammanco, A.; Kiisk, M.; Kudryavtsev, V.A.; Lagrange, M.; Pinto, O.L. Cosmic-Ray Tomography for Border Security. Instruments 2023, 7, 13. [Google Scholar] [CrossRef]
- Gaisser, T. Cosmic Rays and Particle Physics; Cambridge University Press: Cambridge, UK, 1990; Chapter Muons; p. 69. [Google Scholar]
- Hagmann, C.; Lange, D.; Wright, D. Cosmic-ray shower generator (CRY) for Monte Carlo transport codes. In Proceedings of the 2007 IEEE Nuclear Science Symposium Conference Record, Honolulu, HI, USA, 26 October–3 November 2007; Volume 2, pp. 1143–1146. [Google Scholar]
- Lynch, G.R.; Dahl, O.I. Approximations to multiple Coulomb scattering. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1991, 58, 6–10. [Google Scholar] [CrossRef]
- Navas, S.; Amsler, C.; Gutsche, T.; Hanhart, C.; Hernández-Rey, J.J.; Lourenço, C.; Masoni, A.; Mikhasenko, M.; Mitchell, R.E.; Patrignani, C.; et al. Review of particle physics. Phys. Rev. D 2024, 110, 030001. [Google Scholar] [CrossRef]
- Stapleton, M.; Burns, J.; Quillin, S.; Steer, C. Angle Statistics Reconstruction: A robust reconstruction algorithm for Muon Scattering Tomography. J. Instrum. 2014, 9, P11019. [Google Scholar] [CrossRef]
- Thomay, C.; Velthuis, J.J.; Baesso, P.; Cussans, D.; Morris, P.A.W.; Steer, C.; Burns, J.; Quillin, S.; Stapleton, M. A binned clustering algorithm to detect high-Z material using cosmic muons. J. Instrum. 2013, 8, P10013. [Google Scholar] [CrossRef]
- Bae, J.; Montgomery, R.; Chatzidakis, S. Image reconstruction algorithm for momentum dependent muon scattering tomography. Nuclear Eng. Technol. 2024, 56, 1553–1561. [Google Scholar] [CrossRef]
- Bae, J.; Montgomery, R.; Chatzidakis, S. Momentum informed muon scattering tomography for monitoring spent nuclear fuels in dry storage cask. Sci. Rep. 2024, 14, 6717. [Google Scholar] [CrossRef]
- Bae, J.; Montgomery, R.; Chatzidakis, S. A New Momentum-Integrated Muon Tomography Imaging Algorithm. arXiv 2023, arXiv:2304.14427. [Google Scholar]
- Agostinelli, S.; Allison, J.; Amako, K.A.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.J.N.I.; et al. GEANT4—A simulation toolkit. Nucl. Inst. Meth. A 2003, 506, 250. [Google Scholar] [CrossRef]
- Ambrosino, F.; Anastasio, A.; Bross, A.; Béné, S.; Boivin, P.; Bonechi, L.; Cârloganu, C.; Ciaranfi, R.; Cimmino, L.; Combaret, C.; et al. Joint measurement of the atmospheric muon flux through the Puy de Dôme volcano with plastic scintillators and Resistive Plate Chambers detectors. J. Geophys. Res. Solid Earth 2015, 120, 7290–7307. [Google Scholar] [CrossRef]
- Giammanco, A.; Al Moussawi, M.; Hong, Y.; Ambrosino, F.; Anastasio, A.; Basnet, S.; Bonechi, L.; Bongi, M.; Borselli, D.; Bross, A.; et al. First Results, and Experimental Status of the MURAVES Experiment 2024. J. Adv. Instrum. Sci. 2024, 2024, 1–11. [Google Scholar] [CrossRef]
- Gibert, D.; de Bremond d’Ars, J.; Carlus, B.; Deroussi, S.; Ianigro, J.C.; Jessop, D.E.; Jourde, K.; Kergosien, B.; Le Gonidec, Y.; Lesparre, N.; et al. Observation of the Dynamics of Hydrothermal Activity in La Soufrière of Guadeloupe Volcano with Joint Muography, Gravimetry, Electrical Resistivity Tomography, Seismic and Temperature Monitoring. In Muography; American Geophysical Union (AGU): Washington, DC, USA, 2022; Chapter 5; pp. 55–73. [Google Scholar] [CrossRef]
- Oláh, L.; Tanaka, H.; Suenaga, H.; Miyamoto, S.; Galgóczi, G.; Hamar, G.; Varga, D. Development of Machine Learning-Assisted Spectra Analyzer for the NEWCUT Muon Spectrometer. J. Adv. Instrum. Sci. 2022, 2022. [Google Scholar] [CrossRef]
- Lo Presti, D.; Gallo, G.; Bonanno, D.L.; Bonanno, G.; Ferlito, C.; La Rocca, P.; Reito, S.; Riggi, F.; Romeo, G. Three Years of Muography at Mount Etna, Italy. In Muography; American Geophysical Union (AGU): Washington, DC, USA, 2022; Chapter 7; pp. 93–108. [Google Scholar] [CrossRef]
- Bae, J.; Chatzidakis, S. Momentum-Dependent Cosmic Ray Muon Computed Tomography Using a Fieldable Muon Spectrometer. Energies 2022, 15, 2666. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Li, Y.; Liu, P. Towards a muon scattering tomography system for both low-Z and high-Z materials. J. Instrum. 2023, 18, P08008. [Google Scholar] [CrossRef]
- Vanini, S.; Calvini, P.; Checchia, P.; Garola, A.R.; Klinger, J.A.; Zumerle, G.; Bonomi, G.; Donzella, A.; Zenoni, A. Muography of different structures using muon scattering and absorption algorithms. Philos. Trans. R. Soc. A 2018, 377, 20180051. [Google Scholar] [CrossRef]
- Rand, E.T.; Kamaev, O.; Valente, A.; Bhullar, A. Nonparametric Dense-Object Detection Algorithm for Applications of Cosmic-Ray Muon Tomography. Phys. Rev. Appl. 2020, 14, 064032. [Google Scholar] [CrossRef]
- Anghel, V.; Armitage, J.; Baig, F.; Boniface, K.; Boudjemline, K.; Bueno, J.; Charles, E.; Drouin, P.L.; Erlandson, A.; Gallant, G.; et al. A plastic scintillator-based muon tomography system with an integrated muon spectrometer. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 2015, 798, 12–23. [Google Scholar] [CrossRef]
- Ankowski, A.; Antonello, M.; Aprili, P.; Arneodo, F.; Badertscher, A.; Baiboussinov, B.; Baldo Ceolin, M.; Battistoni, G.; Benetti, P.; Borio di Tigliole, A.; et al. Measurement of through-going particle momentum by means of multiple scattering with the ICARUS T600 TPC. Eur. Phys. J. C 2006, 48, 667–676. [Google Scholar] [CrossRef]
- Mondal, S.; Mastrolorenzo, L. Machine learning in high energy physics: A review of heavy-flavor jet tagging at the LHC. Eur. Phys. J. ST 2024, 233, 2657–2686. [Google Scholar] [CrossRef]
- Kasieczka, G.; Plehn, T.; Russell, M.; Schell, T. Deep-learning Top Taggers or The End of QCD? J. High Energy Phys. 2017, 5, 006. [Google Scholar] [CrossRef]
- The ATLAS Collaboration. Identification of Jets Containing b-Hadrons with Recurrent Neural Networks at the ATLAS Experiment; ATLAS collaboration; Technical Report; CERN: Geneva, Switzerland, 2017; ATL-PHYS-PUB-2017-003. [Google Scholar]
- Bols, E.; Kieseler, J.; Verzetti, M.; Stoye, M.; Stakia, A. Jet Flavour Classification Using DeepJet. J. Instrum. 2020, 15, P12012. [Google Scholar] [CrossRef]
- Cheng, T. Recursive Neural Networks in Quark/Gluon Tagging. Comput. Softw. Big Sci. 2018, 2, 3. [Google Scholar] [CrossRef]
- Qu, H.; Gouskos, L. ParticleNet: Jet Tagging via Particle Clouds. Phys. Rev. D 2020, 101, 056019. [Google Scholar] [CrossRef]
- Qu, H.; Li, C.; Qian, S. Particle Transformer for Jet Tagging. arXiv 2022, arXiv:2202.03772. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran Associates, Inc.: Sydney, Australia, 2019; pp. 8024–8035. [Google Scholar]
- Fey, M.; Lenssen, J.E. Fast Graph Representation Learning with PyTorch Geometric. In Proceedings of the ICLR Workshop on Representation Learning on Graphs and Manifolds, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Falcon, W.; The PyTorch Lightning Team. PyTorch Lightning. Zenodo. 2019. Available online: https://zenodo.org/records/3828935 (accessed on 28 March 2025).
- Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; Han, J. On the Variance of the Adaptive Learning Rate and Beyond. arXiv 2019, arXiv:1908.03265. [Google Scholar] [CrossRef]
- Touvron, H.; Cord, M.; Sablayrolles, A.; Synnaeve, G.; Jégou, H. Going deeper with Image Transformers. arXiv 2021, arXiv:2103.17239. [Google Scholar] [CrossRef]
- Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view Convolutional Neural Networks for 3D Shape Recognition. arXiv 2015, arXiv:1505.00880. [Google Scholar] [CrossRef]
- Tumasyan, A.; Adam, W.; Andrejkovic, J.W.; Bergauer, T.; Chatterjee, S.; Dragicevic, M.; Escalante Del Valle, A.; Frühwirth, R.; Jeitler, M.; Krammer, N.; et al. Identification of hadronic tau lepton decays using a deep neural network. J. Instrum. 2022, 17, P07023. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic Graph CNN for Learning on Point Clouds. arXiv 2018, arXiv:1801.07829. [Google Scholar] [CrossRef]
- Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.I.; Jegelka, S. Representation Learning on Graphs with Jumping Knowledge Networks. arXiv 2018, arXiv:1806.03536. [Google Scholar] [CrossRef]
- Li, G.; Müller, M.; Thabet, A.; Ghanem, B. DeepGCNs: Can GCNs Go as Deep as CNNs? arXiv 2019, arXiv:1904.03751. [Google Scholar] [CrossRef]
- Buterez, D.; Janet, J.P.; Kiddle, S.J.; Oglic, D.; Liò, P. Graph Neural Networks with Adaptive Readouts. arXiv 2022, arXiv:2211.04952. [Google Scholar] [CrossRef]
- Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive Representation Learning on Large Graphs. arXiv 2017, arXiv:1706.02216. [Google Scholar] [CrossRef]
Model | # Params | Size [MB] | Time [μs] |
---|---|---|---|
DNN | 19 K | 0.07 | 12 |
RNN | 165 K | 0.63 | 50 |
TNN | 420 K | 1.61 | 17 |
GNN | 100 K | 0.40 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bury, F.; Lagrange, M. Scattering-Based Machine Learning Algorithms for Momentum Estimation in Muon Tomography. Particles 2025, 8, 43. https://doi.org/10.3390/particles8020043
Bury F, Lagrange M. Scattering-Based Machine Learning Algorithms for Momentum Estimation in Muon Tomography. Particles. 2025; 8(2):43. https://doi.org/10.3390/particles8020043
Chicago/Turabian StyleBury, Florian, and Maxime Lagrange. 2025. "Scattering-Based Machine Learning Algorithms for Momentum Estimation in Muon Tomography" Particles 8, no. 2: 43. https://doi.org/10.3390/particles8020043
APA StyleBury, F., & Lagrange, M. (2025). Scattering-Based Machine Learning Algorithms for Momentum Estimation in Muon Tomography. Particles, 8(2), 43. https://doi.org/10.3390/particles8020043