Successful Treatment of a COVID-19 Case with Pneumonia and Renal Injury Using Tocilizumab
Abstract
:1. Introduction
2. Case Presentation Section
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Ou, J.; Qiu, X.; Jie, Y.; Chen, Y.; Yuan, L.; Cao, J.; Tan, M.; Xu, W.; Zheng, F.; et al. A Tool for Early Prediction of Severe Coronavirus Disease 2019 (COVID-19): A Multicenter Study Using the Risk Nomogram in Wuhan and Guangdong, China. Clin. Infect. Dis. 2020, 71, 833–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Kimura, H.; Kurusu, H.; Sada, M.; Kurai, D.; Murakami, K.; Kamitani, W.; Tomita, H.; Katayama, K.; Ryo, A. Molecular pharmacology of ciclesonide against SARS-CoV-2. J. Allergy Clin. Immunol. 2020, 146, 330–331. [Google Scholar] [CrossRef]
- Hoffmann, M.; Schroeder, S.; Kleine-Weber, H.; Muller, M.A.; Drosten, C.; Pohlmann, S. Nafamostat Mesylate Blocks Activation of SARS-CoV-2: New Treatment Option for COVID-19. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef] [Green Version]
- Coomes, E.A.; Haghbayan, H. Favipiravir, an antiviral for COVID-19? J. Antimicrob. Chemother. 2020, 75, 2013–2014. [Google Scholar] [CrossRef]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J.; HLH Across Speciality Collaboration, UK. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Hirano, T.; Matsuda, T.; Nakajima, K. Signal transduction through gp130 that is shared among the receptors for the interleukin 6 related cytokine subfamily. Stem Cells 1994, 12, 262–277. [Google Scholar] [CrossRef]
- Sun, X.; Wang, T.; Cai, D.; Hu, Z.; Chen, J.; Liao, H.; Zhi, L.; Wei, H.; Zhang, Z.; Qiu, Y.; et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev. 2020, 53, 38–42. [Google Scholar] [CrossRef]
- Toniati, P.; Piva, S.; Cattalini, M.; Garrafa, E.; Regola, F.; Castelli, F.; Franceschini, F.; Airo, P.; Bazzani, C.; Beindorf, E.A.; et al. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun. Rev. 2020, 19, 102568. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Han, M.; Li, T.; Sun, W.; Wang, D.; Fu, B.; Zhou, Y.; Zheng, X.; Yang, Y.; Li, X.; et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl. Acad. Sci. USA 2020, 117, 10970–10975. [Google Scholar] [CrossRef] [PubMed]
- Campochiaro, C.; Della-Torre, E.; Cavalli, G.; De Luca, G.; Ripa, M.; Boffini, N.; Tomelleri, A.; Baldissera, E.; Rovere-Querini, P.; Ruggeri, A.; et al. Efficacy and safety of tocilizumab in severe COVID-19 patients: A single-centre retrospective cohort study. Eur. J. Intern. Med. 2020, 76, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Colaneri, M.; Bogliolo, L.; Valsecchi, P.; Sacchi, P.; Zuccaro, V.; Brandolino, F.; Montecucco, C.; Mojoli, F.; Giusti, E.M.; Bruno, R.; et al. Tocilizumab for Treatment of Severe COVID-19 Patients: Preliminary Results from SMAtteo COvid19 REgistry (SMACORE). Microorganisms 2020, 8, 695. [Google Scholar] [CrossRef]
- Bhaskar, S.; Sinha, A.; Banach, M.; Mittoo, S.; Weissert, R.; Kass, J.S.; Rajagopal, S.; Pai, A.R.; Kutty, S. Cytokine Storm in COVID-19-Immunopathological Mechanisms, Clinical Considerations, and Therapeutic Approaches: The REPROGRAM Consortium Position Paper. Front. Immunol. 2020, 11, 1648. [Google Scholar] [CrossRef]
- Rabb, H. Kidney diseases in the time of COVID-19: Major challenges to patient care. J. Clin. Investig. 2020, 130, 2749–2751. [Google Scholar] [CrossRef] [Green Version]
- Katagiri, D.; Ishikane, M.; Asai, Y.; Kinoshita, N.; Ota, M.; Moriyama, Y.; Ide, S.; Nakamura, K.; Nakamoto, T.; Nomoto, H.; et al. Evaluation of Coronavirus Disease 2019 Severity Using Urine Biomarkers. Crit. Care Explor. 2020, 2, e0170. [Google Scholar] [CrossRef]
- Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Investig. 2003, 111, 1805–1812. [Google Scholar] [CrossRef]
- Liu, F.; Li, L.; Xu, M.; Wu, J.; Luo, D.; Zhu, Y.; Li, B.; Song, X.; Zhou, X. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J. Clin. Virol. 2020, 127, 104370. [Google Scholar] [CrossRef]
- Rossotti, R.; Travi, G.; Ughi, N.; Corradin, M.; Baiguera, C.; Fumagalli, R.; Bottiroli, M.; Mondino, M.; Merli, M.; Bellone, A.; et al. Safety and efficacy of anti-il6-receptor tocilizumab use in severe and critical patients affected by coronavirus disease 2019: A comparative analysis. J. Infect. 2020, 81, e11–e17. [Google Scholar] [CrossRef]
- Radbel, J.; Narayanan, N.; Bhatt, P.J. Use of Tocilizumab for COVID-19-Induced Cytokine Release Syndrome: A Cautionary Case Report. Chest 2020, 158, e15–e19. [Google Scholar] [CrossRef] [PubMed]
- Shneider, A.; Kudriavtsev, A.; Vakhrusheva, A. Can melatonin reduce the severity of COVID-19 pandemic? Int. Rev. Immunol. 2020, 39, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Chen, J.; Feng, J.; Zhang, R.; Fan, M.; Han, D.; Li, X.; Li, C.; Ren, J.; Wang, Y.; et al. Melatonin Ameliorates the Progression of Atherosclerosis via Mitophagy Activation and NLRP3 Inflammasome Inhibition. Oxid. Med. Cell. Longev. 2018, 2018, 9286458. [Google Scholar] [CrossRef] [PubMed]
- Acuna-Castroviejo, D.; Escames, G.; Figueira, J.C.; de la Oliva, P.; Borobia, A.M.; Acuna-Fernandez, C. Clinical trial to test the efficacy of melatonin in COVID-19. J. Pineal Res. 2020, 69, e12683. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Truong, T.; Shah, N.; Colbert, G.B.; Thomas, B.; Velez, J.C.Q.; Lerma, E.V.; Hiremath, S. COVID-19 Extrapulmonary illness—The Impact of COVID-19 on Nephrology care. Dis. Mon. 2020, 101057. [Google Scholar] [CrossRef]
- Griffin, B.R.; Faubel, S.; Edelstein, C.L. Biomarkers of Drug-Induced Kidney Toxicity. Ther. Drug Monit. 2019, 41, 213–226. [Google Scholar] [CrossRef]
- Chagan-Yasutan, H.; Hanan, F.; Niki, T.; Bai, G.; Ashino, Y.; Egawa, S.; Telan, E.F.O.; Hattori, T. Plasma Osteopontin Levels is Associated with Biochemical Markers of Kidney Injury in Patients with Leptospirosis. Diagnostics 2020, 10, 439. [Google Scholar] [CrossRef]
- Uchibori, T.; Matsuda, K.; Shimodaira, T.; Sugano, M.; Uehara, T.; Honda, T. IL-6 trans-signaling is another pathway to upregulate Osteopontin. Cytokine 2017, 90, 88–95. [Google Scholar] [CrossRef]
- Bozkurt, B.; Kovacs, R.; Harrington, B. HFSA/ACC/AHA Statement Addresses Concerns Re: Using RAAS Antagonists in COVID-19. J. Card. Fail. 2020, 26, 370. [Google Scholar] [CrossRef]
- Danser, A.H.J.; Epstein, M.; Batlle, D. Renin-Angiotensin System Blockers and the COVID-19 Pandemic: At Present There Is No Evidence to Abandon Renin-Angiotensin System Blockers. Hypertension 2020, 75, 1382–1385. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, A.; Grubaugh, N.D. Why does Japan have so few cases of COVID-19? EMBO Mol. Med. 2020, 12, e12481. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, L.; Feng, Z.; Wan, S.; Huang, P.; Sun, X.; Wen, F.; Huang, X.; Ning, G.; Wang, W. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 2020, 6, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamikubo, Y.; Takahashi, A. Paradoxical dynamics of SARS-CoV-2 by herd immunity and antibody-dependent enhancement. Camb. Open Engag. 2020. [Google Scholar] [CrossRef]
Laboratory Data | Reference Range | Day 0 | Day 3 | Day 7 | Day 14 |
---|---|---|---|---|---|
Blood test | |||||
White-cell count (/μL) | 3700~8500 | 4600 | 5400 | 7100 | 5200 |
Neutrophils (%) | 44.0–68.0 | 71 | 73.6 | 69.1 | 62.9 |
Bands (%) | 0.0–10.0 | 0 | 0 | 0 | 0 |
Metamyelocytes (%) | 0 | 0 | 0 | 0 | 0 |
Lymphocytes (%) | 27.0–44.0 | 22.7 | 17.9 | 20.1 | 29.8 |
Monocytes (%) | 3.0–12.0 | 5.9 | 8.1 | 6.9 | 4.2 |
Eosinophils (%) | 0.0–10.0 | 0.2 | 0.2 | 3.5 | 2.7 |
Basophils (%) | 0.0–3.0 | 0.2 | 0.2 | 0.4 | 0.4 |
Hematocrit (%) | 42.0–53.0 | 42.6 | 41.2 | 44.0 | 40.1 |
Hemoglobin (g/dL) | 13.5–17.5 | 14.2 | 14.2 | 15.5 | 13.8 |
Platelet count (/μL) | 150,000–355,000 | 157,000 | 179,000 | 304,000 | 271,000 |
Red-cell count (/μL) | 3,900,000–5,300,000 | 4,670,000 | 4,560,000 | 4,860,000 | 4,400,000 |
Biochemical test | |||||
Urea nitrogen (mg/dL) | 2–80 | 12 | 13 | 21 | 17 |
Creatinine (mg/dL) | 0.65–1.07 | 1.15 | 1.06 | 1.42 | 1.23 |
ALT (U/L) | 3–40 | 25 | 29 | 53 | 69 |
AST (U/L) | 8–35 | 24 | 35 | 54 | 33 |
LDH (U/L) | 124–222 | 250 | 402 | 771 | 251 |
Ferritin (ng/mL) | 14–304 | 406 | 559 | 735 | 694 |
CRP (mg/dL) | 0.00–0.3 | 1.35 | 3.19 | 0.27 | 0.05 |
Total protein (g/dL) | 6.6–8.4 | 7 | ND | 6.9 | 6.3 |
Albumin (g/dL) | 3.8–5.2 | 4 | ND | 3.7 | 3.6 |
Coagulation test | |||||
PT (s) | 11.2 | 12 | 11.8 | 11.3 | ND |
PT/INR | 70.0–110.0 | 97.3 | 95.0 | 104.6 | ND |
APTT (s) | 23.0–38.0 | 30.3 | 30.5 | 22.7 | ND |
D-dimer (µg/mL) | 0.00–1.00 | 0.85 | 1.18 | 1.25 | 1.12 |
Fibrinogen (mg/dL) | 200–400 | 568 | ND | ND | ND |
Urine test | |||||
Color | Yellow | Yellow | ND | ND | ND |
Clarity | Clear | Clear | ND | ND | ND |
Specific gravity | 1.009–1.025 | 1.03 | ND | ND | ND |
pH | 4.8–7.5 | 5.5 | ND | ND | ND |
Protein | - | ++ | ND | ND | ND |
sugar | - | - | ND | ND | ND |
White cells per high-power field | - | - | ND | ND | ND |
Red cells per high-power field | - | - | ND | ND | ND |
β2-microglobulin (µg/L) | 30–340 | 4960 | 33683 | 3817 | 508 |
SARS-CoV-2 PCR | |||||
Viral load (copy/test) | 0 | 480.9773 | ND | 219.5791 | 1.9219 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashino, Y.; Chagan-Yasutan, H.; Hatta, M.; Shirato, Y.; Kyogoku, Y.; Komuro, H.; Hattori, T. Successful Treatment of a COVID-19 Case with Pneumonia and Renal Injury Using Tocilizumab. Reports 2020, 3, 29. https://doi.org/10.3390/reports3040029
Ashino Y, Chagan-Yasutan H, Hatta M, Shirato Y, Kyogoku Y, Komuro H, Hattori T. Successful Treatment of a COVID-19 Case with Pneumonia and Renal Injury Using Tocilizumab. Reports. 2020; 3(4):29. https://doi.org/10.3390/reports3040029
Chicago/Turabian StyleAshino, Yugo, Haorile Chagan-Yasutan, Masumitsu Hatta, Yoichi Shirato, Yorihiko Kyogoku, Hanae Komuro, and Toshio Hattori. 2020. "Successful Treatment of a COVID-19 Case with Pneumonia and Renal Injury Using Tocilizumab" Reports 3, no. 4: 29. https://doi.org/10.3390/reports3040029
APA StyleAshino, Y., Chagan-Yasutan, H., Hatta, M., Shirato, Y., Kyogoku, Y., Komuro, H., & Hattori, T. (2020). Successful Treatment of a COVID-19 Case with Pneumonia and Renal Injury Using Tocilizumab. Reports, 3(4), 29. https://doi.org/10.3390/reports3040029