Development and Validation of the Bone Tumor Surgery Complexity Score
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Development of the Bone Tumor Surgery Complexity Score (BT-SCS)
2.2.1. Patient Characteristics
2.2.2. Tumor Biology
2.2.3. Surgical Parameters
2.2.4. Methodology and Rationalization of BT-SCS Scoring Criteria
2.2.5. Conclusion
2.3. Categorization of Complexity Scores
2.4. Statistics
2.5. Validation of the Surgical Complexity Score against the Case Mix Index (CMI)
3. Results
3.1. Characteristics of Bone Tumor Patients
3.2. Application of the BS-SCS
3.3. Categorization of Bone Tumor Surgery Complexity
3.4. Validation of Complexity Scores with Case Mix Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Classification of Tumours Editorial Board. Soft Tissue and Bone Tumours, 5th ed.; WHO Classification of Tumours Series; International Agency for Research on Cancer: Lyon, France, 2020; Volume 3. Available online: https://publications.iarc.fr/588 (accessed on 7 July 2023).
- Strauss, S.J.; Frezza, A.M.; Abecassis, N.; Bajpai, J.; Bauer, S.; Biagini, R.; Bielack, S.; Blay, J.Y.; Bolle, S.; Bonvalot, S.; et al. Bone sarcomas: ESMO–EURACAN–GENTURIS–ERN PaedCan Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 1520–1536. [Google Scholar] [CrossRef] [PubMed]
- Staiger, R.D.; Schwandt, H.; Puhan, M.A.; Clavien, P.-A. Improving surgical outcomes through benchmarking. Br. J. Surg. 2019, 106, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Hecker-Nolting, S.; Ferreira, A.; Bielack, S.S. Bone sarcoma: Success through interdisciplinary collaboration. J. Child. Orthop. 2021, 15, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Theus-Steinmann, C.; Schelling, G.; Heesen, P.; Breitenstein, S.; Scaglioni, M.F.; Fuchs, B. How is the spectrum of sarcoma surgery assessed? Cancers 2023, 15, 1305. [Google Scholar] [CrossRef] [PubMed]
- Luft, H.S.; Bunker, J.P.; Enthoven, A.C. Should operations be regionalized? The empirical relation between surgical volume and mortality. N. Engl. J. Med. 1979, 301, 1364–1369. [Google Scholar] [CrossRef] [PubMed]
- Halm, E.A.; Lee, C.; Chassin, M.R. Is Volume Related to Outcome in Health Care? A Systematic Review and Methodologic Critique of the Literature. Ann. Intern. Med. 2002, 137, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Maurice, M.J.; Yih, J.M.; Ammori, J.B.; Abouassaly, R. Predictors of surgical quality for retroperitoneal sarcoma: Volume matters. J. Surg. Oncol. 2017, 116, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Osarogiagbon, R.U. Volume-Based Care Regionalization: Pitfalls and Challenges. J. Clin. Oncol. 2020, 38, 3465–3467. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Bubis, L.; Kidane, B.; Mahar, A.L.; Ringash, J.; Sutradhar, R.; Darling, G.E.; Coburn, N.G. Readmission rates following esophageal cancer resection are similar at regionalized and non-regionalized centers: A population-based cohort study. J. Thorac. Cardiovasc. Surg. 2019, 158, 934–942.e2. [Google Scholar] [CrossRef] [PubMed]
- Porter, M.E.; Lee, T.H.; Murray, A.C.A. The Value-Based Geography Model of Care. NEJM Catal. Innov. Care Deliv. 2020, 1, 1130. [Google Scholar] [CrossRef]
- Frei, A.; Scaglioni, M.F.; Giovanoli, P.; Breitenstein, S.; Heesen, P.; Fuchs, B.; on behalf of the Swiss Sarcoma Network. Definition of the Surgical Case Complexity in the Treatment of Soft Tissue Tumors of the Extremities and Trunk. Cancers 2022, 14, 1559. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, B.; Schelling, G.; Elyes, M.; Studer, G.; Bode-Lesniewska, B.; Scaglioni, M.F.; Giovanoli, P.; Heesen, P. Unlocking the Power of Benchmarking: Real-World-Time Data Analysis for Enhanced Sarcoma Patient Outcomes. Cancers 2023, 15, 4395. [Google Scholar] [CrossRef] [PubMed]
- Heesen, P.; Studer, G.; Bode, B.; Windegger, H.; Staeheli, B.; Aliu, P.; Martin-Broto, J.; Gronchi, A.; Blay, J.Y.; Le Cesne, A.; et al. Quality of Sarcoma Care: Longitudinal Real-Time Assessment and Evidence Analytics of Quality Indicators. Cancers 2022, 15, 47. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, B.; Studer, G.; Bode, B.; Wellauer, H.; Frei, A.; Theus, C.; Schüpfer, G.; Plock, J.; Windegger, H.; Breitenstein, S.; et al. Development of a value-based healthcare delivery model for sarcoma patients. Swiss Med. Wkly. 2021, 151, w30047. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.; Breuer, E.; Mizuno, T.; Bartsch, F.; Ratti, F.; Benzing, C.; Ammar-Khodja, N.; Sugiura, T.; Takayashiki, T.; Hessheimer, A.; et al. Perihilar Cholangiocarcinoma—Novel Benchmark Values for Surgical and Oncological Outcomes From 24 Expert Centers. Ann. Surg. 2021, 274, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Domenghino, A.; Walbert, C.; Birrer, D.L.; Puhan, M.A.; Clavien, P.-A.; Heuskel, D.; Man, N.K.; Monteiro, J.; Perellon, J.F.; Pérez Martínez, S.; et al. Consensus recommendations on how to assess the quality of surgical interventions. Nat. Med. 2023, 29, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.E. Update on Survival in Osteosarcoma. Orthop. Clin. Clin. N. Am. 2016, 47, 283–292. [Google Scholar] [CrossRef]
- Iwata, S.; Ishii, T.; Kawai, A.; Hiruma, T.; Yonemoto, T.; Kamoda, H.; Asano, N.; Takeyama, M. Prognostic Factors in Elderly Osteosarcoma Patients: A Multi-institutional Retrospective Study of 86 Cases. Ann. Surg. Oncol. 2014, 21, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Janeway, K.A.; Barkauskas, D.A.; Krailo, M.D.; Meyers, P.A.; Schwartz, C.L.; Ebb, D.H.; Seibel, N.L.; Grier, H.E.; Gorlick, R.; Marina, N. Outcome for adolescent and young adult patients with osteosarcoma: A report from the Children’s Oncology Group. Cancer 2012, 118, 4597–4605. [Google Scholar] [CrossRef] [PubMed]
- Longhi, A.; Errani, C.; De Paolis, M.; Mercuri, M.; Bacci, G. Primary bone osteosarcoma in the pediatric age: State of the art. Cancer Treat. Rev. 2006, 32, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Paulos, J.; Poitout, D.G. Bone Tumors; Springer: London, UK, 2021; p. 9. [Google Scholar]
- McColl, M.; Fayad, L.M.; Morris, C.; Ahlawat, S. Pelvic bone tumor resection: What a radiologist needs to know. Skelet. Radiol. 2020, 49, 1023–1036. [Google Scholar] [CrossRef] [PubMed]
- Bestic, J.M.; Wessell, D.E.; Beaman, F.D.; Cassidy, R.C.; Czuczman, G.J.; Demertzis, J.L.; Lenchik, L.; Motamedi, K.; Pierce, J.L.; Sharma, A.; et al. Imaging. ACR Appropriateness Criteria® Primary Bone Tumors. J. Am. Coll. Radiol. 2020, 17, S226–S238. [Google Scholar] [CrossRef] [PubMed]
- Janu, A.; Patra, A.; Kumar, M.; Gulia, A.; Kulkarni, S.; Shetty, N.S.; Puri, A.; Nayak, P.; Pruthi, M. Imaging Recommendations for Diagnosis, Staging, and Management of Bone Tumors. Indian J. Med. Paediatr. Oncol. 2023, 44, 257–260. [Google Scholar] [CrossRef]
- Avram, G.M.; Calin, C.I.; Dobre, M.; Harabagiu, M.; Peneoaşu, C.; Marcu, D.M. Pre-surgical management of primary leiomyosarcoma of the bone. Rom. J. Mil. Med. 2022, 125, 641–645. [Google Scholar] [CrossRef]
- Stoeckle, E.; Coindre, J.-M.; Kind, M.; Kantor, G.; Bui, B.N. Evaluating surgery quality in soft tissue sarcoma. In Treatment of Bone and Soft Tissue Sarcomas; Recent Results in Cancer Research; Tunn, P.U., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 179. [Google Scholar] [CrossRef]
- Schwartz, P.B.; Stahl, C.C.; Ethun, C.; Marka, N.; Poultsides, G.A.; Roggin, K.K.; Fields, R.C.; Howard, J.H.; Clarke, C.N.; Votanopoulos, K.I.; et al. Retroperitoneal sarcomaperioperative risk stratification: A United States Sarcoma Collabora-tive evaluation of the ACS-NSQIP risk calculator. J. Surg. Oncol. 2020, 122, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Angelucci, M.; Strumia, A.; Gronchi, A.; Alloni, R.; Schiavoni, L.; Improta, L.; Sgarlato, G.; Agrò, F.E.; Fairweather, M.; Valeri, S. Traditional risk scores do not properly predict perioperative morbidity and mortality for retroperitoneal sarcoma resection. J. Surg. Oncol. 2022, 126, 1367–1368. [Google Scholar] [CrossRef] [PubMed]
Points | Maximum | ||||
---|---|---|---|---|---|
Patient’s Age | ≤17 years | 1 | |||
18–64 years | 0 | ||||
≥65 years | 1 | 1 | |||
Histology/Grading | Benign | 1 | |||
Simulator | 1 | ||||
Intermediate | 2 | ||||
hematologic tumors of bone (incl. myeloma and lymphoma) | 3 | ||||
Metastasis | 5 | ||||
Malignant | G1 | 5 | |||
Malignant | G2 | 6 | |||
Malignant | G3 | 7 | 7 | ||
Prior History * | Preoperative radiotherapy | 2 | |||
Preoperative chemotherapy | 2 | ||||
Prior unplanned Excision (UE) | 2 | 6 | |||
Anatomical Location | Extremities | Upper extremity | 1 | ||
Extremities | Lower extremity | 1 | |||
Trunk | 1 | ||||
Spine/pelvis | 3 | 3 | |||
Size of Lesion | Appendicular skeleton, trunk, skull, and facial bone lesions | ||||
No evidence of primary tumor | 0 | ||||
≤8 cm | 1 | ||||
>8 cm | 2 | ||||
Discontinuous tumors in primary bone site | 3 | ||||
Pelvis | |||||
Tumor confined to one pelvic segment with no extraosseous extension | |||||
Tumor ≤ 8 cm in greatest dimension | 1 | ||||
Tumor > 8 cm in greatest dimension | 2 | ||||
Tumor confined to one pelvic segment with extraosseous extension or two segments without extraosseous extension | |||||
Tumor ≤ 8 cm in greatest dimension | 2 | ||||
Tumor > 8 cm in greatest dimension | 3 | ||||
Tumor spanning two pelvic segments with extraosseous extension | |||||
Tumor ≤ 8 cm in greatest dimension | 3 | ||||
Tumor > 8 cm in greatest dimension | 4 | ||||
Tumor spanning three pelvic segments or crossing the sacroiliac joint | |||||
Involves sacroiliac joint and extends medial to the sacral neuroforamen | 4 | ||||
Encasement of external iliac vessels or presence of gross tumor thrombus in major pelvic vessels | 5 | ||||
Spine | |||||
One vertebral segment or two adjacent vertebral segments | 1 | ||||
Confined to three adjacent vertebral segments | 2 | ||||
Four or more adjacent segments or any nonadjacent vertebral segments | 3 | ||||
Extension into spinal canal | 3 | ||||
Evidence of gross vascular invasion or tumor thrombus in the great vessels | 3 | 5 | |||
Type of Bone Resection | Biopsy, radiofrequency ablation, HIFU, cryotherapy, curettage/intralesional/piece-meal/decompression surgery | 1 | |||
Resection of muscles | 1 | ||||
Resection of vessels | 2 | ||||
Resection of nerves | 1 | ||||
Resection of tendons | 1 | ||||
Hemicortex resection | 2 | ||||
Transarticular bone resection | 4 | ||||
Joint-sparing (intercalary segmental) resection | 2 | ||||
Extra-articular resection | 5 | ||||
En bloc vertebrectomy | 5 | ||||
Rotationplasty | 6 | ||||
Epiphysiolysis | 2 | ||||
Resection–replantation | 6 | ||||
Tikhoff–Linberg resection | 6 | ||||
Internal hemipelvectomy | Type I | 6 | |||
Internal hemipelvectomy | Type II | 8 | |||
Internal hemipelvectomy | Type III | 6 | |||
Internal hemipelvectomy | Type IV | 7 | |||
Amputations | Forequarter | 6 | |||
Amputations | External hemipelvectomy | Transacetabular | 6 | ||
Amputations | External hemipelvectomy | Transiliac | 6 | ||
Amputations | External hemipelvectomy | Transhemisacral without spinopelvic dissociation | 6 | ||
Amputations | External hemipelvectomy | Transhemisacral with spinopelvic dissociation | 8 | ||
Amputations | External hemipelvectomy | Hemicorporectomy | 10 | ||
Amputations | Upper extremity | Transarticular shoulder/elbow—humerus | 4 | ||
Amputations | Upper extremity | Forearm/wrist | 3 | ||
Amputations | Upper extremity | Hand/finger | 2 | ||
Amputations | Lower extremity | Hip disarticulation | 5 | ||
Amputations | Lower extremity | Thigh/knee disarticulation | 5 | ||
Amputations | Lower extremity | Leg | 3 | ||
Amputations | Lower extremity | Foot/digits | 2 | 26 ** | |
Type of Reconstruction | Cementation/ORIF | 2 | |||
Artificial bone substitute/autograft/allograft chips | 2 | ||||
Bulk allograft | 3 | ||||
Pasteurized autograft | 3 | ||||
Nonvascularized fibula | 4 | ||||
Vascularized fibula based on fibular artery | 6 | ||||
Vascularized fibula based on tibialis anterior | 6 | ||||
Pedicled-tissue transfer | 3 | ||||
Free-tissue transfer | 4 | ||||
Skin/mesh graft | 1 | ||||
Nerve, vessel, and lymphovenous reconstruction | 4 | ||||
Tendon reconstruction | 2 | ||||
Conventional prosthesis | 2 | ||||
Modular tumor prosthesis | 4 | ||||
Custom-made prosthesis | 6 | ||||
Growing prosthesis | 6 | ||||
Spinal instrumentation with pedicle screws/rods | 3 | ||||
Arthrodesis | 3 | ||||
Pseudarthrosis/flail joint/cement spacer | 2 | ||||
Cañadell distraction epiphysiolysis | 4 | ||||
Distraction osteogenesis | 5 | ||||
Goretex, Trevira, etc. | 2 | ||||
Stump after amputation | 2 | 18 *** | |||
Number of Involved Disciplines **** | One discipline | 0 | |||
Two disciplines | 1 | ||||
Three disciplines | 2 | ||||
Four disciplines | 3 | ||||
Five or more disciplines | 4 | 4 | |||
Total | max. | 70 |
Parameter | Number of Patients |
---|---|
Patients (m/f) | 363 (205/158) |
Age/range | 51 (7–88) |
Soft tissue tumors | 284 |
Bone tumors | 79 |
Benign | 117 |
Intermediate | 83 |
Malignant | 163 |
SST Cat 1 1 | 18 |
SST Cat 2 | 55 |
SST Cat 3 | 88 |
SST Cat 4 | 106 |
BS Cat 1 2 | 7 |
BS Cat 2 | 23 |
BS Cat 3 | 26 |
BS Cat 4 | 14 |
CMI 3 | |
| 1.5 (SD) |
| 0.38, 13.98 |
| 0.86 (0.71, 1.38) |
Category | Complexity Score | Number of Patients | Percentage (%) |
---|---|---|---|
1 | ≤8 | 117 | 23.4% |
2 | 9–11 | 117 | 23.4% |
3 | 12–19 | 133 | 26.5% |
4 | ≥20 | 134 | 26.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frei, A.; Schelling, G.; Heesen, P.; Giovanoli, P.; Fuchs, B., on behalf of Swiss Sarcoma Network. Development and Validation of the Bone Tumor Surgery Complexity Score. Reports 2024, 7, 35. https://doi.org/10.3390/reports7020035
Frei A, Schelling G, Heesen P, Giovanoli P, Fuchs B on behalf of Swiss Sarcoma Network. Development and Validation of the Bone Tumor Surgery Complexity Score. Reports. 2024; 7(2):35. https://doi.org/10.3390/reports7020035
Chicago/Turabian StyleFrei, Annika, Georg Schelling, Philip Heesen, Pietro Giovanoli, and Bruno Fuchs on behalf of Swiss Sarcoma Network. 2024. "Development and Validation of the Bone Tumor Surgery Complexity Score" Reports 7, no. 2: 35. https://doi.org/10.3390/reports7020035
APA StyleFrei, A., Schelling, G., Heesen, P., Giovanoli, P., & Fuchs, B., on behalf of Swiss Sarcoma Network. (2024). Development and Validation of the Bone Tumor Surgery Complexity Score. Reports, 7(2), 35. https://doi.org/10.3390/reports7020035