Gamma Irradiation with 50 kGy Has a Limited Effect on Agronomic Properties of Air-Dry Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Chemical Analysis
2.2. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Australian Government Department of Agriculture. Biosecurity Import Condition System (BICON). 2019. Available online: https://www.agriculture.gov.au/import/online-services/bicon (accessed on 17 December 2020).
- Biosecurity New Zealand. Soil, Rock, Gravel, Sand, Clay, and Water. 2020. Available online: https://www.mpi.govt.nz/importing/soil-rock-and-water/ (accessed on 11 November 2020).
- McNamara, N.P.; Black, H.I.J.; Beresford, N.A.; Parekh, N.R. Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Appl. Soil Ecol. 2003, 24, 117–132. [Google Scholar] [CrossRef]
- Trevors, J.T. Sterilization and inhibition of microbial activity in soil. J. Microbiol. Methods 1996, 26, 53–59. [Google Scholar] [CrossRef]
- Wolf, D.C.; Dao, T.H.; Scott, H.D.; Lavy, T.L. Influence of sterilization methods on selected soil microbiological, physical, and chemical properties. J. Environ. Qual. 1989, 18, 39–44. [Google Scholar] [CrossRef]
- Rechcigl, J.E.; Payne, G.G.; Sanchez, C.A. Comparison of various soil drying techniques on extractable nutrients. Commun. Soil Sci. Plant Anal. 1992, 23, 2347–2363. [Google Scholar] [CrossRef]
- Tome, J.B.; Dechen, A.R.; Atkinson, R.J. Effects of moist storage and different drying temperatures on the extractability of iron, copper, manganese, and zinc in soil samples. Commun. Soil Sci. Plant Anal. 1996, 27, 2591–2611. [Google Scholar] [CrossRef]
- Krausse, T.; Schutze, E.; Phieler, R.; Furst, D.; Merten, D.; Buchel, G.; Kothe, E. Changes in element availability induced by sterilization in heavy metal contaminated substrates: A comprehensive study. J. Hazard. Mater. 2019, 370, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Alphei, J.; Scheu, S. Effects of biocidal treatments on biological and nutritional properties of a mull-structured woodland soil. Geoderma 1993, 56, 435–448. [Google Scholar] [CrossRef]
- Lees, K.; Fitzsimons, M.; Snape, J.; Tappin, A.; Comber, S. Soil sterilisation methods for use in OECD 106: How effective are they? Chemosphere 2018, 209, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Buchan, D.; Moeskops, B.; Ameloot, N.; De Neve, S.; Sleutel, S. Selective sterilisation of undisturbed soil cores by gamma irradiation: Effects on free-living nematodes, microbial community and nitrogen dynamics. Soil Biol. Biochem. 2012, 47, 10–13. [Google Scholar] [CrossRef]
- Bank, T.L.; Kukkadapu, R.K.; Madden, A.S.; Ginder-Vogel, M.A.; Baldwin, M.E.; Jardine, P.M. Effects of gamma-sterilization on the physico-chemical properties of natural sediments. Chem. Geol. 2008, 251, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Menzies, N.W.; Bell, L.C.; Edwards, D.G. Effects of incubation time and filtration technique on soil solution composition with particular reference to inorganic and organically complexed Al. Aust. J. Soil Res. 1991, 29, 223–238. [Google Scholar] [CrossRef]
- Salonius, P.O.; Robinson, J.B.; Chase, F.E. A comparison of autoclaved and gamma-irradiated soils as media for microbial colonization experiments. Plant Soil 1967, 27, 239–248. [Google Scholar] [CrossRef]
- Staunton, S.; Barthes, M.; Leclerc-Cassac, E.; Pinel, F. Effect of sterilization and experimental conditions on the isotopic exchange of nickel in two contrasting soils. Eur. J. Soil Sci. 2002, 53, 655–661. [Google Scholar] [CrossRef]
- Gore, D.B.; Snape, I. 50 kGy of gamma irradiation does not affect the leachability of mineral soils and sediments. Powder Diffr. 2014, 29, S40–S46. [Google Scholar] [CrossRef]
- Eno, C.F.; Popenoe, H. Gamma radiation compared with steam and methyl bromide as a soil sterilizing agent. Soil Sci. Soc. Am. J. 1964, 28, 533–535. [Google Scholar] [CrossRef]
- Lensi, R.; Lescure, C.; Steinberg, C.; Savoie, J.; Faurie, G. Dynamics of residual enzyme activities, denitrification potential, and physicochemical properties in a gamma sterilized soil. Soil Biol. Biochem. 1991, 23, 367–373. [Google Scholar] [CrossRef]
- Zhang, S.X.; Cui, S.Y.; Gong, X.M.; Chang, L.; Jia, S.X.; Yang, X.M.; Wu, D.H.; Zhang, X.P. Effects of gamma irradiation on soil biological communities and C and N pools in a clay loam soil. Appl. Soil Ecol. 2016, 108, 352–360. [Google Scholar] [CrossRef]
- Berns, A.E.; Philipp, H.; Narres, H.D.; Burauel, P.; Vereecken, H.; Tappe, W. Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy. Eur. Soil Sci. 2008, 59, 540–550. [Google Scholar] [CrossRef]
- Borisover, M.; Keren, Y.; Usyskin, A.; Bukhanovsky, N. Effects of gamma-irradiation of original and organic matter-amended soils on the sorption of triclosan and diuron from aqueous solutions. Chemosphere 2016, 152, 62–70. [Google Scholar] [CrossRef]
- Stroetmann, I.; Kämpfer, P.; Dott, W. Untersuchung zur Effizienz von Sterilisationsverfahren an unterschiedlichen Boden. Int. J. Hyg. Environ. Med. 1994, 195, 111–120. [Google Scholar]
- Plötze, M.; Kahr, G.; Hermanns-Stengele, R. Alteration of clay minerals—gamma-irradiation effects on physicochemical properties. Appl. Clay Sci. 2003, 23, 195–202. [Google Scholar] [CrossRef]
- Mirzayev, M.N.; Mehdiyeva, R.N.; Garibov, R.G.; Ismayilova, N.A.; Jabarov, S.H. Influence of gamma irradiation on the surface morphology, XRD and thermophysical properties of silicide hexoboride. Mod. Phys. Lett. B 2018, 32, 1850151. [Google Scholar] [CrossRef]
- Gardner, W.H. Water Content. In Methods of Soil Analysis; Klute, A., Ed.; SSSA: Madison, WI, USA, 1986; pp. 493–544. [Google Scholar]
- Skulcova, L.; Scherr, K.E.; Chrast, L.; Hofman, J.; Bielska, L. Influence of soil gamma-irradiation and spiking on sorption of p,p′-DDE and soil organic matter chemistry. Ecotoxicol. Environ. Saf. 2018, 155, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Soil Survey Staff. Illustrated Guide to Soil Taxonomy; Version 2; US Department of Agriculture, NRCS. 681: Lincoln, NE, USA, 2015.
- ISO 11464:2006, Soil Quality—Pretreatment of Samples for Physico-Chemical Analysis. 2006. Available online: https://www.iso.org (accessed on 11 November 2020).
- Soil Survey Staff. Kellogg Soil Survey Laboratory Methods Manual. In Soil Survey Investigations Report No. 42; Version 5.0; Burt, R., Ed.; US Department of Agriculture, NRCS. 1031: Lincoln, NE, USA, 2014. [Google Scholar]
- Ayres, E. Quantitative Guidelines for Establishing and Operating Soil Archives. Soil Sci. Soc. Am. J. 2019, 83, 973–981. [Google Scholar] [CrossRef] [Green Version]
- ISO 11137-1:2006, Sterilization of Health Care Products—Radiation—Part 1: Requirements for Development, Validation and Routine Control of a Sterilization Process for Medical Devices. 2006. Available online: https://www.iso.org/standard/33952.html (accessed on 11 November 2020).
- ISO 13485:2016, Medical Devices—Quality Management Systems—Requirements for Regulatory Purposes. 2016. Available online: https://www.iso.org/standard/59752.html (accessed on 11 November 2020).
- ISO 10390:2005, Soil Quality—Determination of pH. 2005. Available online: https://www.iso.org/standard/40879.html (accessed on 11 November 2020).
- ISO 11265:1994, Soil Quality—Determination of the Specific Electrical Conductivity. 1994. Available online: https://www.iso.org/standard/19243.html (accessed on 11 November 2020).
- ISO 11263:1994, Soil Quality—Determination of Phosphorus—Spectrometric Determination of Phosphorus Soluble in Sodium Hydrogen Carbonate Solution. 1994. Available online: https://www.iso.org/standard/19241.html (accessed on 11 November 2020).
- Rayment, G.E.; Lyons, D.J. Soil Chemical Methods: Australasia; CSIRO Publishing: Collingwood, Australian, 2011. [Google Scholar]
- ISO 10694:1995, Soil quality—Determination of Organic and Total Carbon after Dry Combustion (Elementary Analysis). 1995. Available online: https://www.iso.org/standard/18782.html (accessed on 11 November 2020).
- ISO 13878:1998, Soil quality—Determination of Total Nitrogen Content by Dry Combustion (Elemental Analysis). 1998. Available online: https://www.iso.org/standard/23117.html (accessed on 11 November 2020).
- ISO 14870:2001, Soil quality—Extraction of Trace Elements by Buffered DTPA Solution. 2001. Available online: https://www.iso.org/standard/25232.html (accessed on 11 November 2020).
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G.; Bland, J.M. Measurement in Medicine: The Analysis of Method Comparison Studies. J. R. Stat. Soc. Ser. D 1983, 32, 307–317. [Google Scholar] [CrossRef]
- Krouwer, J.S. Why Bland–Altman plots should use X, not (Y + X)/2 when X is a reference method. Stat. Med. 2008, 27, 778–780. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Shukla, M.K.; Mexal, J.G. Spatial Variability of Soil Properties in Agricultural Fields of Southern New Mexico. Soil Sci. 2011, 176, 288–302. [Google Scholar] [CrossRef]
- Rosemary, F.; Vitharana, U.W.A.; Indraratne, S.P.; Weerasooriya, R.; Mishra, U. Exploring the spatial variability of soil properties in an Alfisol soil catena. Catena 2017, 150, 53–61. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Characterizing soil spatial variability with apparent soil electrical conductivity: I. Survey protocols. Comput. Electron. Agric. 2005, 46, 103–133. [Google Scholar] [CrossRef]
- Eno, C.F.; Popenoe, H. The effect of gamma irradiation on the availability of nitrogen and phosphorus in soil. Soil Sci. Soc. Am. J. 1963, 27, 299–301. [Google Scholar] [CrossRef]
- Sajwan, K.S.; Lindsay, W.L. Effect of redox, zinc fertilization and incubation time on DTPA-extractable zinc, iron and manganese. Commun. Soil Sci. Plant Anal. 1988, 19, 1–11. [Google Scholar] [CrossRef]
- Ogner, G.; Randem, G.; Remedios, G.; Wickstrøm, T. Increase of soil acidity and concentrations of extractable elements by 1M ammonium nitrate after storage of dry soil for up to 5 years at 22 °C. Commun. Soil Sci. Plant Anal. 2001, 32, 675–684. [Google Scholar] [CrossRef]
Soil Property | Gamma-Irradiated Samples | Non Irradiated Samples | Mean % Change | p | ||||
---|---|---|---|---|---|---|---|---|
Mean | Min | Max | Mean | Min | Max | (Min–Max Range) | ||
pH (1:5, H2O) | 6.90 | 4.80 | 9.31 | 6.93 | 4.88 | 9.31 | −0.5 (−3.7–+1.8) | <0.001 |
EC (1:5), dS/m | 0.15 | 0.04 | 1.26 | 0.15 | 0.03 | 1.29 | 3.9 (−17.4–+33.7) | <0.001 |
Total C, % | 1.97 | 0.13 | 9.33 | 1.96 | 0.10 | 9.45 | 0.2 (−8.1–+33.4) | 0.346 |
Total N, % | 0.18 | 0.05 | 0.60 | 0.18 | 0.05 | 0.61 | −0.4 (−16.0–+13.4) | 0.428 |
Colwell P, ppm | 46.96 | 0.63 | 191.72 | 45.06 | 0.74 | 191.1 | 4.2 (−48.0–+43.4) | <0.001 |
Exchangeable Ca, cmolc/kg | 13.68 | 0.78 | 34.12 | 13.67 | 0.81 | 34.21 | 0.1 (−9.2–+6.6) | 0.683 |
Exchangeable K, cmolc/kg | 0.60 | 0.14 | 3.03 | 0.59 | 0.16 | 2.98 | 1.3 (−13.4–+27.7) | 0.255 |
Exchangeable Mg, cmolc/kg | 6.47 | 0.84 | 27.06 | 6.45 | 0.84 | 27.05 | 0.2 (−9.2–+7.8) | 0.332 |
Exchangeable Na, cmolc/kg | 0.92 | 0.01 | 11.06 | 0.91 | 0.01 | 10.73 | 1.4 (−85.8–+349.4) | 0.422 |
CEC, cmolc/kg | 21.67 | 2.24 | 62.59 | 21.63 | 2.24 | 62.38 | 0.2 (−6.9–+5.1) | 0.463 |
DTPA Cu, mg/kg | 1.35 | 0.13 | 3.80 | 1.33 | 0.13 | 3.89 | 1.3 (−12.1–+17.9) | <0.001 |
DTPA Fe, mg/kg | 30.62 | 1.26 | 228.47 | 31.10 | 1.23 | 232.28 | −1.5 (−15.4–+15.3) | <0.001 |
DTPA Zn, mg/kg | 1.34 | 0.09 | 17.91 | 1.33 | 0.10 | 17.70 | 0.1 (−21.5–+28.6) | 0.985 |
DTPA Mn, mg/kg | 69.28 | 1.33 | 223.92 | 68.14 | 1.01 | 216.66 | 1.6 (−25.4–+31.2) | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wehr, J.B.; Kirchhof, G. Gamma Irradiation with 50 kGy Has a Limited Effect on Agronomic Properties of Air-Dry Soil. Soil Syst. 2021, 5, 28. https://doi.org/10.3390/soilsystems5020028
Wehr JB, Kirchhof G. Gamma Irradiation with 50 kGy Has a Limited Effect on Agronomic Properties of Air-Dry Soil. Soil Systems. 2021; 5(2):28. https://doi.org/10.3390/soilsystems5020028
Chicago/Turabian StyleWehr, J. Bernhard, and Gunnar Kirchhof. 2021. "Gamma Irradiation with 50 kGy Has a Limited Effect on Agronomic Properties of Air-Dry Soil" Soil Systems 5, no. 2: 28. https://doi.org/10.3390/soilsystems5020028
APA StyleWehr, J. B., & Kirchhof, G. (2021). Gamma Irradiation with 50 kGy Has a Limited Effect on Agronomic Properties of Air-Dry Soil. Soil Systems, 5(2), 28. https://doi.org/10.3390/soilsystems5020028