Phytoextraction of Heavy Metals by Various Vegetable Crops Cultivated on Different Textured Soils Irrigated with City Wastewater
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sampling and Analysis
2.3. Statistical Analyses
3. Results
4. Discussion
4.1. Effect of Site/Water on Phytoextraction of Heavy Metals
4.2. Effect of Site/Water on Vegetable Transfer Factor
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Intergovernmental Panel on Climate Change, in Climate change 2014: Impacts, Adaptation, and Vulnerability: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2014. Available online: https://www.ipcc.ch/report/ar5/wg2/ (accessed on 18 June 2021).
- Chaudhry, Q.U.Z. Climate Change Profile of Pakistan; Asian Development Bank: Mandaluyong, Philippines, 2017. [Google Scholar]
- Krishnan, R.; Shrestha, A.B.; Ren, G.; Rajbhandari, R.; Saeed, S.; Sanjay, J.; Syed, M.A.; Vellore, R.; Xu, Y.; You, Q. Unravelling climate change in the Hindu Kush Himalaya: Rapid warming in the mountains and increasing extremes. In The Hindu Kush Himalaya Assessment; Springer: Berlin/Heidelberg, Germany, 2019; pp. 57–97. [Google Scholar]
- Ali, S.; Kiani, R.S.; Reboita, M.S.; Dan, L.; Eum, H.I.; Cho, J.; Dairaku, K.; Khan, F.; Shreshta, M.L. Identifying hotspots cities vulnerable to climate change in Pakistan under CMIP5 climate projections. Int. J. Climatol. 2021, 41, 559–581. [Google Scholar] [CrossRef]
- Barros, V.; Field, C.; Dokke, D.; Mastrandrea, M.; Mach, K.; Bilir, T.; Chatterjee, M.; Ebi, K.; Estrada, Y.; Genova, R. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Asif, M. Climatic Change, Irrigation Water Crisis and Food Security in Pakistan; Uppsala University: Uppsala, Sweden, 2013. [Google Scholar]
- Munir, T.M.; Perkins, M.; Kaing, E.; Strack, M. Carbon dioxide flux and net primary production of a boreal treed bog: Responses to warming and water-table-lowering simulations of climate change. Biogeosciences 2015, 12, 1091–1111. [Google Scholar] [CrossRef]
- Lone, M. Comparison of blended and cyclic use of water for agriculture. In Final Report University Grant Commission, Islamabad. Pakistan; University Grants Commission: Islamabad, Pakistan, 1995. [Google Scholar]
- Silva, H.F.; Silva, N.F.; Oliveira, C.M.; Matos, M.J. Heavy Metals Contamination of Urban Soils—A Decade Study in the City of Lisbon, Portugal. Soil Syst. 2021, 5, 27. [Google Scholar] [CrossRef]
- Mahmood, S. Waste water irrigation: Issues and constraints for sustainable irrigated agriculture. J. Ital. Agron. 2006, 3, 12–15. [Google Scholar]
- Drechsel, P.; Raschid-Sally, L.; Williams, S.; Weale, J. Recycling Realities: Managing health risks to make wastewater an asset. Water Policy Brief. 2006, 17, 1–7. [Google Scholar]
- Cooper, R.C. Public health concerns in wastewater reuse. Water Sci. Technol. 1991, 24, 55–65. [Google Scholar] [CrossRef]
- Mara, D.D.; Cairncross, S. Guidelines for the Safe Use of Wastewater and Excreta in Agriculture and Aquaculture; World Health Organization: London, UK, 1989. [Google Scholar]
- Curci, M.; Lavecchia, A.; Cucci, G.; Lacolla, G.; De Corato, U.; Crecchio, C. Short-Term Effects of Sewage Sludge Compost Amendment on Semiarid Soil. Soil Syst. 2020, 4, 48. [Google Scholar] [CrossRef]
- Thakur, I.S. Environmental Biotechnology: Basic Concepts and Applications; IK International: Delhi, India, 2011. [Google Scholar]
- Matzen, S.; Fakra, S.; Nico, P.; Pallud, C. Pteris vittata Arsenic Accumulation Only Partially Explains Soil Arsenic Depletion during Field-Scale Phytoextraction. Soil Syst. 2020, 4, 71. [Google Scholar] [CrossRef]
- Sharma, R.; Agrawal, M.; Marshall, F. Heavy metal contamination in vegetables grown in wastewater irrigated areas of Varanasi, India. Bull. Environ. Contam. Toxicol. 2006, 77, 312–318. [Google Scholar] [CrossRef]
- Sharma, R.K.; Agrawal, M.; Marshall, F. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol. Environ. Saf. 2007, 66, 258–266. [Google Scholar] [CrossRef]
- Ilic, Z.; Filipovic-Trajkovic, R.; Jablanovic, M. Transfer factor (coefficient) soil/plant as indicator concentration of heavy metals content in different vegetable species. Contemp. Agric. 2001, 50, 41–44. [Google Scholar]
- Cui, Y.-J.; Zhu, Y.-G.; Zhai, R.-H.; Chen, D.-Y.; Huang, Y.-Z.; Qiu, Y.; Liang, J.-Z. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ. Int. 2004, 30, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Rattan, R.; Datta, S.; Chhonkar, P.; Suribabu, K.; Singh, A. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—A case study. Agric. Ecosyst. Environ. 2005, 109, 310–322. [Google Scholar] [CrossRef]
- Vassilev, A.; Yordanov, I. Reductive analysis of factors limiting growth of cadmium-treated plants: A review. Bulg. J. Plant Physiol. 1997, 23, 114–133. [Google Scholar]
- Lone, M.I.; Saleem, S.; Mahmood, T.; Saifullah, K.; Hussain, G. Heavy metal contents of vegetables irrigated by Sewage/Tubewell water. Int. J. Agric. Biol. 2003, 5, 533–535. [Google Scholar]
- Moral, R.; Cortés, A.; Gomez, I.; Mataix-Beneyto, J. Assessing changes in Cd phytoavailability to tomato in amended calcareous soils. Bioresour. Technol. 2002, 85, 63–68. [Google Scholar] [CrossRef][Green Version]
- Das, P.; Samantaray, S.; Rout, G. Studies on cadmium toxicity in plants: A review. Environ. Pollut. 1997, 98, 29–36. [Google Scholar] [CrossRef]
- Mir, I.R.; Rather, B.A.; Masood, A.; Majid, A.; Sehar, Z.; Anjum, N.A.; Sofo, A.; D’Ippolito, I.; Khan, N.A. Soil Sulfur Sources Differentially Enhance Cadmium Tolerance in Indian Mustard (Brassica juncea L.). Soil Syst. 2021, 5, 29. [Google Scholar] [CrossRef]
- Shanker, A.K.; Cervantes, C.; Loza-Tavera, H.; Avudainayagam, S. Chromium toxicity in plants. Environ. Int. 2005, 31, 739–753. [Google Scholar] [CrossRef]
- Nolan, K.R. Copper toxicity syndrome. J. Orthomol. Psychiatry 1983, 12, 270–282. [Google Scholar]
- Di Toppi, L.S.; Gabbrielli, R. Response to cadmium in higher plants. Environ. Exp. Bot. 1999, 41, 105–130. [Google Scholar] [CrossRef]
- Rahman, M.A.; Rahman, M.M.; Reichman, S.M.; Lim, R.P.; Naidu, R. Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: Health hazard. Ecotoxicol. Environ. Saf. 2014, 100, 53–60. [Google Scholar] [CrossRef]
- Chaney, R.L.; Malik, M.; Li, Y.M.; Brown, S.L.; Brewer, E.P.; Angle, J.S.; Baker, A.J. Phytoremediation of soil metals. Curr. Opin. Biotechnol. 1997, 8, 279–284. [Google Scholar] [CrossRef]
- Salt, D.E.; Blaylock, M.; Kumar, N.P.; Dushenkov, V.; Ensley, B.D.; Chet, I.; Raskin, I. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Nat. Biotechnol. 1995, 13, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Richards, L. Diagnosis and improving of saline and alkaline soils. US, Salinity Laboratory Staff. Agric. Handb. 1954, 46, 290. [Google Scholar]
- Zia, M.H.; Meers, E.; Ghafoor, A.; Murtaza, G.; Sabir, M.; Zia-ur-Rehman, M.; Tack, F. Chemically enhanced phytoextraction of Pb by wheat in texturally different soils. Chemosphere 2010, 79, 652–658. [Google Scholar]
- APHA. Standard methods for the examination of water and wastewater. Water Environ. Fed. 2005, 21, 258–259. [Google Scholar]
- Yargholi, B. Investigation of the Firozabad Wastewater Quality-Quantity Variation for Agricultural Use; Final Report; Iranian Agricultural Engineering Research Institute: Tehran, Iran, 2007. [Google Scholar]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Iqbal, Z.; Abbas, F.; Ibrahim, M.; Qureshi, T.I.; Gul, M.; Mahmood, A. Human health risk assessment of heavy metals in raw milk of buffalo feeding at wastewater-irrigated agricultural farms in Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 29567–29579. [Google Scholar] [CrossRef]
- Liang, J.; Chen, C.; Song, X.; Han, Y.; Liang, Z. Assessment of heavy metal pollution in soil and plants from Dunhua sewage irrigation area. Int. J. Electrochem. Sci. 2011, 6, 5314–5324. [Google Scholar]
- Ng, C.C.; Rahman, M.M.; Boyce, A.N.; Abas, M.R. Heavy metals phyto-assessment in commonly grown vegetables: Water spinach (I. aquatica) and okra (A. esculentus). SpringerPlus 2016, 5, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Strack, M.; Munir, T.M.; Khadka, B. Shrub abundance contributes to shifts in dissolved organic carbon concentration and chemistry in a continental bog exposed to drainage and warming. Ecohydrology 2019, 12, e2100. [Google Scholar] [CrossRef]
Study Site | Soil Texture/Water | Chemistry | Heavy Metal Concentration (mg kg−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Soil/Water | ECs/ECiw (dSm−1) | pHs/pHiw | Zn | Cu | Fe | Mn | Cd | Cr | Ni | Pb | |
Khan village | |||||||||||
Soil | Sandy loam | 1.4 | 8.3 | 1.80 | 0.94 | 6.80 | 2.90 | 0.66 | 1.10 | 0.42 | 1.40 |
Water | Normal | 0.3 | 7.2 | 0.03 | 0.04 | 0.03 | 0.06 | 0.02 | - | - | 0.02 |
Vehari road | |||||||||||
Soil | Clay loam | 1.5 | 8.4 | 1.66 | 1.28 | 9.64 | 3.68 | 1.40 | 1.62 | 0.46 | 1.74 |
Water | Normal | 0.3 | 7.1 | 0.04 | 0.03 | 0.09 | 0.02 | 0.02 | 0.02 | - | - |
Shujabad road | |||||||||||
Soil | Sandy loam | 3.1 | 8.4 | 2.48 | 1.70 | 12.60 | 3.38 | 4.30 | 2.60 | 1.04 | 2.66 |
Water | Sewage | 2.8 | 6.9 | 0.06 | 0.14 | 0.31 | 0.11 | 0.04 | 0.09 | 0.06 | 0.06 |
Industrial estate | |||||||||||
Soil | Clay loam | 3.9 | 8.4 | 3.90 | 2.58 | 17.34 | 4.04 | 4.76 | 4.36 | 1.72 | 3.38 |
Water | Sewage | 3.6 | 6.8 | 0.10 | 0.11 | 0.34 | 0.19 | 0.06 | 0.08 | 0.09 | 0.11 |
Suraj miani | |||||||||||
Soil | Sandy loam | 2.7 | 8.3 | 2.12 | 2.04 | 11.66 | 3.36 | 2.28 | 3.98 | 1.34 | 2.60 |
Water | Normal + Sewage | 2.0 | 7.1 | 0.05 | 0.04 | 0.18 | 0.16 | 0.04 | 0.02 | 0.05 | 0.08 |
Sameeja abad | |||||||||||
Soil | Clay loam | 3.5 | 8.2 | 1.82 | 0.48 | 7.52 | 2.30 | 1.94 | 1.72 | 0.46 | 1.28 |
Water | Normal + Sewage | 2.1 | 7.1 | 0.40 | 0.08 | 0.07 | 0.14 | 0.07 | 0.40 | 0.07 | 0.05 |
UNESCAP * | -- | 6.1 | 5.00 | 1.00 | 2.00 | 1.50 | 0.10 | 1.00 | 1.00 | 0.50 | |
Pescod, MD ** | -- | 2.00 | 0.20 | 5.00 | 0.20 | 0.01 | 0.01 | 0.20 | 5.00 |
Site/Vegetable | Zn | Cu | Fe | Mn | Cd | Cr | Ni | Pb |
---|---|---|---|---|---|---|---|---|
Khan Village | ||||||||
Brinjal | 8.6 ± 3.9 | 9.8 ± 0.6 | 13.3 ± 0.9 | 8.4 ± 0.5 | 7.8 ± 0.4 | 5.9 ± 5.8 | 6.0 ± 0.1 | 2.8 ± 0.2 |
Cauliflower | 11.4 ± 1.7 | 11.8 ± 0.6 | 6.2 ± 0.9 | 8.2 ± 3.5 | 7.0 ± 5.3 | 9.5 ± 10.0 | 9.3 ± 0.5 | 9.2 ± 7.5 |
Lettuce | 6.5 ± 3.8 | 3.2 ± 0.4 | 12.1 ± 0.3 | 7.2 ± 3.2 | 14.7 ± 0.4 | 9.0 ± 10.0 | 7.5 ± 1.0 | 4.6 ± 0.3 |
Spinach | 19.0 ± 1.6 | 11.0 ± 0.1 | 11.7 ± 8.5 | 15.9 ± 1.0 | 15.1 ± 0.6 | 10.0 ± 8.8 | 15.0 ± 0.0 | 9.0 ± 0.1 |
Vehari road | ||||||||
Brinjal | 11.2 ± 2.6 | 4.8 ± 0.7 | 8.1 ± 0.9 | 8.0 ± 0.0 | 3.3 ± 1.2 | 1.2 ± 0.5 | 8.0 ± 0.1 | 1.9 ± 0.2 |
Cauliflower | 13.4 ± 4.6 | 10.5 ± 0.7 | 8.5 ± 0.6 | 11.5 ± 0.5 | 1.5 ± 0.6 | 4.6 ± 1.3 | 5.9 ± 0.7 | 3.6 ± 0.5 |
Lettuce | 12.9 ± 6.8 | 3.1 ± 0.4 | 10.6 ± 0.5 | 3.7 ± 0.5 | 4.7 ± 0.5 | 0.9 ± 0.0 | 4.8 ± 0.5 | 2.1 ± 0.2 |
Spinach | 19.2 ± 2.2 | 12.0 ± 0.1 | 14.6 ± 0.5 | 13.1 ± 0.1 | 7.9 ± 0.0 | 2.6 ± 0.5 | 7.1 ± 0.3 | 5.0 ± 0.2 |
Shujabad road | ||||||||
Brinjal | 7.1 ± 1.4 | 5.0 ± 0.2 | 7.7 ± 0.5 | 12.0 ± 4.2 | 0.9 ± 0.0 | 2.2 ± 1.3 | 6.7 ± 0.5 | 0.9 ± 0.1 |
Cauliflower | 19.0 ± 0.8 | 8.6 ± 0.8 | 4.8 ± 1.7 | 6.1 ± 0.9 | 0.9 ± 0.1 | 7.0 ± 4.8 | 6.0 ± 0.1 | 3.3 ± 3.1 |
Lettuce | 6.4 ± 1.2 | 1.5 ± 0.6 | 7.5 ± 0.5 | 7.1 ± 3.2 | 1.9 ± 0.2 | 1.5 ± 1.0 | 4.0 ± 0.1 | 1.3 ± 0.5 |
Spinach | 20.1 ± 5.5 | 6.3 ± 0.5 | 14.7 ± 6.9 | 21.5 ± 3.7 | 3.3 ± 0.5 | 9.9 ± 5.8 | 8.0 ± 0.1 | 4.6 ± 0.5 |
Industrial estate | ||||||||
Brinjal | 9.0 ± 0.1 | 4.5 ± 1.7 | 8.6 ± 0.5 | 13.3 ± 1.4 | 1.8 ± 0.3 | 1.0 ± 0.1 | 4.6 ± 0.5 | 2.6 ± 1.0 |
Cauliflower | 14.4 ± 0.5 | 6.5 ± 1.0 | 11.3 ± 3.3 | 22.3 ± 2.5 | 1.1 ± 0.3 | 2.4 ± 1.0 | 8.8 ± 0.2 | 4.9 ± 2.1 |
Lettuce | 6.1 ± 0.4 | 3.0 ± 2.1 | 7.6 ± 0.5 | 8.21 ± 0.5 | 2.3 ± 0.5 | 0.9 ± 0.1 | 4.6 ± 0.5 | 2.7 ± 1.5 |
Spinach | 23.2 ± 5.2 | 6.0 ± 0.2 | 16.7 ± 1.5 | 39.2 ± 1.4 | 2.9 ± 0.2 | 9.9 ± 5.8 | 10.9 ± 0.0 | 8.1 ± 0.6 |
Soraj miani | ||||||||
Brinjal | 13.3 ± 0.5 | 3.2 ± 1.0 | 11.1 ± 1.6 | 13.0 ± 0.7 | 1.6 ± 0.5 | 0.9 ± 0.1 | 3.1 ± 0.2 | 1.3 ± 0.5 |
Cauliflower | 10.0 ± 0.1 | 5.8 ± 0.6 | 8.3 ± 0.9 | 14.9 ± 0.8 | 1.3 ± 0.5 | 2.5 ± 0.5 | 4.5 ± 0.7 | 12.2 ± 1.4 |
Lettuce | 11.8 ± 4.0 | 1.8 ± 0.6 | 8.7 ± 1.0 | 5.1 ± 0.6 | 2.0 ± 0.0 | 3.5 ± 5.7 | 2.2 ± 0.5 | 2.3 ± 0.8 |
Spinach | 17.8 ± 0.6 | 8.6 ± 0.8 | 13.8 ± 5.9 | 32.1 ± 0.6 | 2.7 ± 0.5 | 6.3 ± 4.4 | 8.0 ± 0.2 | 7.3 ± 0.5 |
Sameeja abad | ||||||||
Brinjal | 7.5 ± 1.8 | 18.7 ± 1.5 | 17.2 ± 3.8 | 10.7 ± 0.9 | 3.0 ± 0.1 | 2.0 ± 0.1 | 13.6 ± 0.5 | 3.1 ± 0.5 |
Cauliflower | 17.1 ± 1.1 | 19.3 ± 0.9 | 10.5 ± 5.3 | 31.8 ± 2.1 | 1.9 ± 0.0 | 3.9 ± 0.1 | 11.2 ± 1.0 | 15.1 ± 0.6 |
Lettuce | 9.8 ± 1.6 | 12.5 ± 1.7 | 11.0 ± 2.0 | 8.5 ± 0.6 | 2.3 ± 0.5 | 1.8 ± 0.2 | 9.7 ± 0.5 | 2.2 ± 0.5 |
Spinach | 21.8 ± 2.5 | 29.7 ± 0.5 | 30.7 ± 4.9 | 60.1 ± 0.2 | 4.5 ± 0.5 | 6.5 ± 5.0 | 5.9 ± 0.1 | 7.2 ± 0.5 |
Source | df | Zn | Cu | Fe | Mn | Cd | Cr | Ni | Pb |
---|---|---|---|---|---|---|---|---|---|
Site | |||||||||
F | 5, 96 | 2.69 | 93.99 | 6.13 | 66.17 | 168.86 | 3.07 | 243.52 | 20.86 |
p | 5, 96 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
Vegetable | |||||||||
F | 5, 96 | 52.50 | 131.85 | 13.59 | 257.04 | 108.95 | 17.64 | 213.05 | 90.90 |
p | 5, 96 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Site × Vegetable | |||||||||
F | 5, 96 | 3.31 | 4.20 | 2.59 | 13.13 | 4.30 | 0.88 | 68.92 | 4.55 |
p | 5, 96 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.59 | 0.00 | 0.00 |
R2 | 5, 96 | 0.75 | 0.93 | 0.61 | 0.95 | 0.95 | 0.53 | 0.98 | 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, I.; Malik, S.A.; Saeed, S.; Rehman, A.-u.; Munir, T.M. Phytoextraction of Heavy Metals by Various Vegetable Crops Cultivated on Different Textured Soils Irrigated with City Wastewater. Soil Syst. 2021, 5, 35. https://doi.org/10.3390/soilsystems5020035
Ahmad I, Malik SA, Saeed S, Rehman A-u, Munir TM. Phytoextraction of Heavy Metals by Various Vegetable Crops Cultivated on Different Textured Soils Irrigated with City Wastewater. Soil Systems. 2021; 5(2):35. https://doi.org/10.3390/soilsystems5020035
Chicago/Turabian StyleAhmad, Iftikhar, Saeed Ahmad Malik, Shafqat Saeed, Atta-ur Rehman, and Tariq Muhammad Munir. 2021. "Phytoextraction of Heavy Metals by Various Vegetable Crops Cultivated on Different Textured Soils Irrigated with City Wastewater" Soil Systems 5, no. 2: 35. https://doi.org/10.3390/soilsystems5020035
APA StyleAhmad, I., Malik, S. A., Saeed, S., Rehman, A.-u., & Munir, T. M. (2021). Phytoextraction of Heavy Metals by Various Vegetable Crops Cultivated on Different Textured Soils Irrigated with City Wastewater. Soil Systems, 5(2), 35. https://doi.org/10.3390/soilsystems5020035