How Soil Freezes and Thaws at a Snow-Dominated Forest Site in the U.S.—A Synthetic Approach Using the Soil and Cold Regions Model (SCRM)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site, Meteorological Data, and Model Configuration
2.1.1. Study Site
2.1.2. Meteorological Dataset
2.1.3. Model Configuration
- Snow water flow, which depends on gravity (water) and temperature gradient (vapor).
- Soil water flow, which depends on the pressure head gradient, temperature gradient, and gravity (ignored for water vapor).
- Snow–soil heat transport, which is based on the convection and conduction. The model represents bulk snow–soil heat capacity, latent heat of vaporization, latent heat of fusion, snow–soil thermal conductivity, liquid water heat capacity, water vapor heat capacity, liquid water gravity, and water vapor flux.
- Soil–plant–atmosphere transfer, which is based on the canopy and ground surface energy balance. Here, evaporation is in terms of liquid and vapor water flow (at the upper half of the soil profile), and the water vapor heat transfer at the canopy.
- Root water uptake, which is a sink term within the soil water flow equation. This sink term is based on macroscopic root analysis.
2.2. Data Processing and Metrics Definition
- (i)
- Freeze–thaw cycles (FTCs) within a soil is when the ice water content (θi, in m3 m−3) goes above zero θi and then comes back again to zero. It was calculated as the number of annual cycles for each of the 12 soils.
- (ii)
- Maximum ice content measures the maximum ice content within the node. The first (0.01 m) and second (0.02 m) nodes were used to compute this metric because the maximum ice content can be found at these two depths.
- (iii)
- Total elapsed time (days/hours) where each soil had frost (i.e., days with ice). This value was computed within the first 5 nodes (0.01 to 0.05 m depth). It is important to note that this metric accounts for both continuous and discontinuous ice content.
- (iv)
- Temporal ice mass was calculated from the area under the curve of the ice mass time series, using the trapezoidal approximation method.
- (v)
- Maximum frost depth in each soil texture was defined as the last non-zero value within the soil profile.
3. Results
3.1. Snowfall Amount and Timing
3.2. Freeze–Thaw Metrics
3.2.1. Freeze and Thaw Cycles (FTCs)
3.2.2. Maximum Ice Content
3.2.3. Days with Ice
3.2.4. Temporal Ice Mass
3.2.5. Frost Depth
4. Discussion
4.1. Model General Results
4.2. Freeze–Thaw Metrics
4.2.1. Freeze–Thaw Cycles (FTC)
4.2.2. Maximum Ice Content
4.2.3. Days with Ice
4.2.4. Temporal Ice Mass
4.2.5. Frost Depth
4.3. Final Remarks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fouli, Y.; Cade-Menun, B.J.; Cutforth, H.W. Freeze–Thaw cycles and soil water content effects on infiltration rate of three Saskatchewan soils. Can. J. Soil Sci. 2013, 93, 485–496. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Kværnø, S.H.; Øygarden, L. The influence of freeze–thaw cycles and soil moisture on aggregate stability of three soils in Norway. CATENA 2006, 67, 175–182. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, F.; Li, H.; Cheng, D.; Sun, B. The Influence Mechanism of Freeze-Thaw on Soil Erosion: A Review. Water 2021, 13, 1010. [Google Scholar] [CrossRef]
- Zaqout, T.; Andradóttir, H.; Arnalds, O. Infiltration capacity in urban areas undergoing frequent snow and freeze–thaw cycles: Implications on sustainable urban drainage systems. J. Hydrol. 2022, 607, 127495. [Google Scholar] [CrossRef]
- Qi, J.; Ma, W.; Song, C. Influence of freeze–thaw on engineering properties of a silty soil. Cold Reg. Sci. Technol. 2008, 53, 397–404. [Google Scholar] [CrossRef]
- Ouyang, W.; Shan, Y.; Hao, F.; Chen, S.; Pu, X.; Wang, M. The effect on soil nutrients resulting from land use transformations in a freeze-thaw agricultural ecosystem. Soil Tillage Res. 2013, 132, 30–38. [Google Scholar] [CrossRef]
- Guo, Z.R.; Jing, E.C.; Nie, Z.L.; Jiao, P.C.; Dong, H. Analysis on the characteristics of soil moisture transfer during freezing and thawing period. Adv. Water Sci. 2002, 13, 298–302. [Google Scholar]
- Niu, G.-Y.; Yang, Z.-L. Effects of Frozen Soil on Snowmelt Runoff and Soil Water Storage at a Continental Scale. J. Hydrometeorol. 2006, 7, 937–952. [Google Scholar] [CrossRef]
- Sartz, R.S. Test of Three Indirect Methods of Measuring depth of frost. Soil Sci. 1967, 104, 273–278. [Google Scholar] [CrossRef]
- Flerchinger, G.N.; Lehrsch, G.A.; McCool, D.K. Freezing and thawing processes. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Oxford, UK, 2005; pp. 104–110. [Google Scholar]
- Bronfenbrener, L. The modelling of the freezing process in fine-grained porous media: Application to the frost heave estimation. Cold Reg. Sci. Technol. 2008, 56, 120–134. [Google Scholar] [CrossRef]
- Hansson, K.; Šimůnek, J.; Mizoguchi, M.; Lundin, L.C.; Genuchten, M.T.V. Water flow and heat transport in frozen soil. Vadose Zone J. 2004, 3, 693–704. [Google Scholar]
- Cox, P.M.; Betts, R.A.; Bunton, C.B.; Essery, R.L.H.; Rowntree, P.R.; Smith, J. The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim. Dyn. 1999, 15, 183–203. [Google Scholar] [CrossRef]
- Williams, P.J.; Burt, T.P. Measurement of Hydraulic Conductivity of Frozen Soils. Can. Geotech. J. 1974, 11, 647–650. [Google Scholar] [CrossRef]
- Hillel, D. Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Tokumoto, I.; Noborio, K.; Koga, K. Coupled water and heat flow in a grass field with aggregated Andisol during soil-freezing periods. Cold Reg. Sci. Technol. 2010, 62, 98–106. [Google Scholar] [CrossRef]
- Jansson, P.E.; Karlberg, L. Coupled Heat and Mass Transfer Model for Soil-Plant-Atmosphere Systems; Royal Institute of Technology: Stockholm, Sweden, 2010. [Google Scholar]
- Flerchinger, G.N. The Simultaneous Heat and Water (SHAW) Model: Technical Documentation; Technical Report for Northwest Watershed Research Center; USDA Agricultural Research Service: Washington, DC, USA, 2000.
- Kelleners, T.J.; Koonce, J.; Shillito, R.; Dijkema, J.; Berli, M.; Young, M.H.; Frank, J.M.; Massman, W. Numerical Modeling of Coupled Water Flow and Heat Transport in Soil and Snow. Soil Sci. Soc. Am. J. 2016, 80, 247–263. [Google Scholar] [CrossRef]
- Kelleners, T.J. Coupled water flow, heat transport, and solute transport in a seasonally frozen rangeland soil. Soil Sci. Soc. Am. J. 2020, 84, 399–413. [Google Scholar] [CrossRef]
- Kollet, S.J.; Maxwell, R.M. Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resour. Res. 2008, 44, W02402. [Google Scholar] [CrossRef]
- He, H.; Dyck, M.F.; Si, B.C.; Zhang, T.; Lv, J.; Wang, J. Soil freezing–thawing characteristics and snowmelt infil-tration in Cryalfs of Alberta, Canada. Geoderma Reg. 2015, 5, 198–208. [Google Scholar] [CrossRef]
- Hardy, J.P.; Groffman, P.M.; Fitzhugh, R.D.; Henry, K.S.; Welman, A.T.; Demers, J.D.; Fahey, T.J.; Driscoll, C.T.; Tierney, G.L.; Nolan, S. Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest. Biogeochemistry 2001, 56, 151–174. [Google Scholar] [CrossRef]
- Sharratt, B.; Benoit, G.; Daniel, J.; Staricka, J. Snow cover, frost depth, and soil water across a prairie pothole land-scape. Soil Sci. 1999, 164, 483–492. [Google Scholar] [CrossRef]
- Phillips, A.J.; Newlands, N.K. Spatial and temporal variability of soil freeze-thaw cycling across Southern Alberta, Canada. Agric. Sci. 2011, 2, 392. [Google Scholar] [CrossRef] [Green Version]
- Freppaz, M.; Williams, B.L.; Edwards, A.C.; Scalenghe, R.; Zanini, E. Simulating soil freeze/thaw cycles typical of winter alpine conditions: Implications for N and P availability. Appl. Soil Ecol. 2007, 35, 247–255. [Google Scholar] [CrossRef]
- Mellander, P.-E.; Löfvenius, M.O.; Laudon, H. Climate change impact on snow and soil temperature in boreal Scots pine stands. Clim. Change 2007, 85, 179–193. [Google Scholar] [CrossRef]
- Edwards, A.C.; Scalenghe, R.; Freppaz, M. Changes in the seasonal snow cover of alpine regions and its effect on soil processes: A review. Quat. Int. 2007, 162, 172–181. [Google Scholar] [CrossRef]
- Bayard, D.; Stähli, M.; Parriaux, A.; Flühler, H. The influence of seasonally frozen soil on the snowmelt runoff at two Alpine sites in southern Switzerland. J. Hydrol. 2005, 309, 66–84. [Google Scholar] [CrossRef]
- Solantie, R. Snow Depth on January 15th and March 15th in Finland 1919–98, and Its Implications for Soil Frost and Forest Ecology; Ilmatieteen Laitos: Helsinki, Finland, 2000.
- Xu, H.; Spitler, J.D. The relative importance of moisture transfer, soil freezing and snow cover on ground temperature predictions. Renew. Energy 2014, 72, 1–11. [Google Scholar] [CrossRef]
- Mellander, P.E.; Laudon, H.; Bishop, K. Modelling variability of snow depths and soil temperatures in Scots pine stands. Agric. For. Meteorol. 2005, 133, 109–118. [Google Scholar] [CrossRef]
- Oliva, M.; Ortiz, A.G.; Salvador, F.; Salvà, M.; Pereira, P.; Geraldes, M. Long-term soil temperature dynamics in the Sierra Nevada, Spain. Geoderma 2014, 235, 170–181. [Google Scholar] [CrossRef]
- Boike, J.; Roth, K.; Overduin, P. Thermal and hydrologic dynamics of the active layer at a continuous permafrost site (Taymyr Peninsula, Siberia). Water Resour. Res. 1998, 34, 355–363. [Google Scholar] [CrossRef]
- Stein, J.; Kane, D.L. Monitoring the unfrozen water content of soil and snow using time domain reflectometry. Water Resour. Res. 1983, 19, 1573–1584. [Google Scholar] [CrossRef]
- Motovilov, Y.G. Simulation of meltwater losses through infiltration into soil. Sov. Hydrol. 1979, 18, 217–221. [Google Scholar]
- Seyfried, M.S.; Grant, L.E.; Marks, D.; Winstral, A.; McNamara, J. Simulated soil water storage effects on streamflow generation in a mountainous snowmelt environment, Idaho, USA. Hydrol. Process. 2008, 23, 858–873. [Google Scholar] [CrossRef]
- Hirota, T.; Pomeroy, J.W.; Granger, R.J.; Maule, C.P. An extension of the force-restore method to estimating soil temperature at depth and evaluation for frozen soils under snow. J. Geophys. Res. Earth Surf. 2002, 107, ACL11. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.; Lee, J. Evaluation of the freezing–thawing effect in sand–silt mixtures using elastic waves and electrical resistivity. Cold Reg. Sci. Technol. 2015, 113, 1–11. [Google Scholar] [CrossRef]
- Tian, H.; Wei, C.; Wei, H.; Zhou, J. Freezing and thawing characteristics of frozen soils: Bound water content and hysteresis phenomenon. Cold Reg. Sci. Technol. 2014, 103, 74–81. [Google Scholar] [CrossRef]
- Bronfenbrener, L.; Bronfenbrener, R.; Alafenish, A. A model of soils freezing with allowance for freezing zone. Chem. Eng. Process. Process Intensif. 2013, 73, 38–49. [Google Scholar] [CrossRef]
- Al-Houri, Z.; Barber, M.; Yonge, D.; Ullman, J.; Beutel, M. Impacts of frozen soils on the performance of infiltration treatment facilities. Cold Reg. Sci. Technol. 2009, 59, 51–57. [Google Scholar] [CrossRef]
- Rowlandson, T.L.; Berg, A.A.; Roy, A.; Kim, E.; Lara, R.P.; Powers, J.; Lewis, K.; Houser, P.; McDonald, K.; Toose, P.; et al. Capturing agricultural soil freeze/thaw state through remote sensing and ground observations: A soil freeze/thaw validation campaign. Remote Sens. Environ. 2018, 211, 59–70. [Google Scholar] [CrossRef]
- Saygili, A.; Dayan, M. Freeze-thaw behavior of lime stabilized clay reinforced with silica fume and synthetic fibers. Cold Reg. Sci. Technol. 2019, 161, 107–114. [Google Scholar] [CrossRef]
- Ogino, Y.; Matsuoka, N. Involutions resulting from annual freeze–thaw cycles: A laboratory simulation based on observations in northeastern Japan. Permafr. Periglac. Process. 2007, 18, 323–335. [Google Scholar] [CrossRef]
- Kelleners, T.; Verma, A. Modeling Carbon Dioxide Production and Transport in a Mixed-Grass Rangeland Soil. Vadose Zone J. 2012, 11, vzj2011.0205. [Google Scholar] [CrossRef]
- Celia, M.A.; Bouloutas, E.T.; Zarba, R.L. A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. 1990, 26, 1483–1496. [Google Scholar] [CrossRef]
- Schaap, M.G.; Leij, F.J.; Genuchten, M.T.V. ROSETTA: A computer program for estimating soil hydraulic pa-rameters with hierarchical pedotransfer functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar] [CrossRef]
- Gouttevin, I.; Krinner, G.; Ciais, P.; Polcher, J.; Legout, C. Multi-scale validation of a new soil freezing scheme for a land-surface model with physically-based hydrology. Cryosphere 2012, 6, 407–430. [Google Scholar] [CrossRef] [Green Version]
- Azmatch, T.F.; Sego, D.C.; Arenson, L.U.; Biggar, K.W. New ice lens initiation condition for frost heave in fi-ne-grained soils. Cold Reg. Sci. Technol. 2012, 82, 8–13. [Google Scholar] [CrossRef]
- Azmatch, T.F.; Sego, D.C.; Arenson, L.U.; Biggar, K.W. Using soil freezing characteristic curve to estimate the hydraulic conductivity function of partially frozen soils. Cold Reg. Sci. Technol. 2012, 83, 103–109. [Google Scholar] [CrossRef]
- Watanabe, K.; Wake, T. Hydraulic conductivity in frozen unsaturated soil. In Proceedings of the Ninth International Conference on Permafrost, Fairbanks, AK, USA, 29 June–3 July 2008; pp. 1927–1932. [Google Scholar]
- Spaans, E.J.; Baker, J.M. The soil freezing characteristic: Its measurement and similarity to the soil moisture char-acteristic. Soil Sci. Soc. Am. J. 1996, 60, 13–19. [Google Scholar] [CrossRef]
- Guymon, G.L.; Luthin, J.N. A coupled heat and moisture transport model for Arctic soils. Water Resour. Res. 1974, 10, 995–1001. [Google Scholar] [CrossRef]
- Wang, T.-L.; Yue, Z.-R.; Ma, C.; Wu, Z. An experimental study on the frost heave properties of coarse grained soils. Transp. Geotech. 2014, 1, 137–144. [Google Scholar] [CrossRef]
- Wang, T.-L.; Liu, Y.-J.; Yan, H.; Xu, L. An experimental study on the mechanical properties of silty soils under repeated freeze–thaw cycles. Cold Reg. Sci. Technol. 2015, 112, 51–65. [Google Scholar] [CrossRef]
- Guisheng, F.; Hongji, J.; Haiyan, L. Experimental study on main factors influencing water infiltration features of freezing and thawing soils. Trans. Chin. Soc. Agric. Eng. 1999, 15, 88–94. [Google Scholar]
- Bisal, F.; Nielsen, K.F. Effect of frost action on the size of soil aggregates. Soil Sci. 1967, 104, 268–272. [Google Scholar] [CrossRef]
- Rajaei, P.; Baladi, G.Y. Frost Depth: General Prediction Model. Transp. Res. Rec. J. Transp. Res. Board 2015, 2510, 74–80. [Google Scholar] [CrossRef]
- Smits, K.M.; Sakaki, T.; Limsuwat, A.; Illangasekare, T. Thermal Conductivity of Sands under Varying Moisture and Porosity in Drainage–Wetting Cycles. Vadose Zone J. 2010, 9, 172–180. [Google Scholar] [CrossRef]
- Chen, S.X. Thermal conductivity of sands. Heat Mass Transf. 2008, 44, 1241–1246. [Google Scholar] [CrossRef]
- Vargas, W.L.; McCarthy, J. Heat conduction in granular materials. AIChE J. 2001, 47, 1052–1059. [Google Scholar] [CrossRef]
- Meentemeyer, V.; Zippin, J. Soil moisture and texture controls of selected parameters of needle ice growth. Earth Surf. Process. Landf. 1981, 6, 113–125. [Google Scholar] [CrossRef]
- Iwata, Y.; Hayashi, M.; Hirota, T. Comparison of Snowmelt Infiltration under Different Soil-Freezing Conditions Influenced by Snow Cover. Vadose Zone J. 2008, 7, 79–86. [Google Scholar] [CrossRef]
- Henry, H.A.L. Climate change and soil freezing dynamics: Historical trends and projected changes. Clim. Change 2008, 87, 421–434. [Google Scholar] [CrossRef]
- IPCC. Intergovernmental Panel on Climate Change. Climate Change 2007; IPCC: Geneva, Switzerland, 2007.
- Andersland, O.B.; Ladanyi, B. An Introduction to Frozen Ground Engineering; John Wiley and Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Penner, E. Ground Freezing and Frost Heaving (No. CBD-26); National Research Council of Canada: Ottawa, ON, Canada, 1962.
- Manohar, K.; Ramroop, K.; Yarbrough, D.W. Apparent Thermal Conductivity of Sand. In Proceedings of the Thermal Conductivity 27: Thermal Expansion 15: Joint Conferences, Knoxville, TN, USA, 26–29 October 2003; p. 461. [Google Scholar]
- Zhang, B.; Han, C.; Yu, X. A non-destructive method to measure the thermal properties of frozen soils during phase transition. J. Rock Mech. Geotech. Eng. 2015, 7, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Tavman, I. Effective thermal conductivity of granular porous materials. Int. Commun. Heat Mass Transf. 1996, 23, 169–176. [Google Scholar] [CrossRef]
- Yun, T.S.; Santamarina, J.C. Fundamental study of thermal conduction in dry soils. Granul. Matter. 2008, 10, 197–207. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H.; Reeder, R.C. Soil Thermal Conductivity Effects of Density, Moisture, Salt Concentration, and Organic Matter. Soil Sci. Soc. Am. J. 2000, 64, 1285–1290. [Google Scholar] [CrossRef]
- Cleavitt, N.L.; Fahey, T.J.; Groffman, P.M.; Hardy, J.P.; Henry, K.S.; Driscoll, C.T. Effects of soil freezing on fine roots in a northern hardwood forest. Can. J. For. Res. 2008, 38, 82–91. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, S.F.; Xue, Y. Development and Testing of a Frozen Soil Parameterization for Cold Region Studies. J. Hydrometeorol. 2007, 8, 690–701. [Google Scholar] [CrossRef]
- Groffman, P.; Driscoll, C.T.; Fahey, T.J.; Hardy, J.P.; Fitzhugh, R.D.; Tierney, G.L. Colder soils in a warmer world: A snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 2001, 56, 135–150. [Google Scholar] [CrossRef]
- Iwata, Y.; Hayashi, M.; Suzuki, S.; Hirota, T.; Hasegawa, S. Effects of snow cover on soil freezing, water movement, and snowmelt infiltration: A paired plot experiment. Water Resour. Res. 2010, 46, W09504. [Google Scholar] [CrossRef] [Green Version]
- Sinha, T.; Cherkauer, K.A. Impacts of future climate change on soil frost in the midwestern United States. J. Geophys. Res. Earth Surf. 2010, 115, D08105. [Google Scholar] [CrossRef] [Green Version]
- Decker, K.L.M.; Wang, D.; Waite, C.; Scherbatskoy, T. Snow Removal and Ambient Air Temperature Effects on Forest Soil Temperatures in Northern Vermont. Soil Sci. Soc. Am. J. 2003, 67, 1234–1242. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, A.; Witter, E. Sources of C and N contributing to the flush in mineralization upon freeze–thaw cycles in soils. Soil Biol. Biochem. 2002, 34, 1495–1505. [Google Scholar] [CrossRef]
- Weih, M.; Karlsson, P.S. Low winter soil temperature affects summertime nutrient uptake capacity and growth rate of mountain birch seedlings in the subarctic, Swedish lapland. Arct. Antarct. Alp. Res. 2002, 34, 434–439. [Google Scholar] [CrossRef]
- Groffman, P.; Hardy, J.P.; Nolan, S.; Fitzhugh, R.D.; Driscoll, C.T.; Fahey, T.J. Snow depth, soil frost and nutrient loss in a northern hardwood forest. Hydrol. Process. 1999, 13, 2275–2286. [Google Scholar] [CrossRef]
- Shanley, J.B.; Chalmers, A. The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont. Hydrol. Process. 1999, 13, 1843–1857. [Google Scholar] [CrossRef]
- Stadler, D.; Wunderli, H.; Auckenthaler, A.; Flühler, H.; Bründl, M. Measurement of frost-induced snowmelt runoff in a forest soil. Hydrol. Process. 1996, 10, 1293–1304. [Google Scholar] [CrossRef]
- Sutinen, R.; Hänninen, P.; Venäläinen, A. Effect of mild winter events on soil water content beneath snowpack. Cold Reg. Sci. Technol. 2008, 51, 56–67. [Google Scholar] [CrossRef]
- Vaganov, E.A.; Hughes, M.K.; Kirdyanov, A.V.; Schweingruber, F.H.; Silkin, P.P. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 1999, 400, 149–151. [Google Scholar] [CrossRef]
- Harder, P.; Pomeroy, J.W.; Westbrook, C.J. Hydrological resilience of a Canadian Rockies headwaters basin subject to changing climate, extreme weather, and forest management. Hydrol. Process. 2015, 29, 3905–3924. [Google Scholar] [CrossRef]
- Nogués-Bravo, D.; Araújo, M.B.; Errea, M.P.; Martínez-Rica, J.P. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Change 2007, 17, 420–428. [Google Scholar] [CrossRef]
Soil # | Clay % | Sand % | θr (m3 m−3) | θs (m3 m−3) | Alpha (1 m−1) | n | Ksat (m s−1) |
---|---|---|---|---|---|---|---|
1 | 5 | 90 | 0.051535 | 0.376943 | 3.3207 | 2.5032 | 3.06 × 10−5 |
2 | 5 | 85 | 0.044628 | 0.382347 | 3.8190 | 2.0024 | 1.77 × 10−5 |
3 | 10 | 65 | 0.041513 | 0.386307 | 3.0492 | 1.4038 | 5.77 × 10−6 |
4 | 30 | 60 | 0.071651 | 0.385478 | 2.7089 | 1.2740 | 2.28 × 10−6 |
5 | 45 | 50 | 0.084738 | 0.408392 | 2.9633 | 1.1924 | 2.97 × 10−6 |
6 | 20 | 40 | 0.062679 | 0.406259 | 0.9704 | 1.4966 | 1.89 × 10−6 |
7 | 35 | 30 | 0.084063 | 0.443478 | 1.2939 | 1.3892 | 1.52 × 10−6 |
8 | 60 | 20 | 0.097124 | 0.485228 | 2.1038 | 1.2058 | 3.01 × 10−6 |
9 | 20 | 20 | 0.069263 | 0.4327265 | 0.4932 | 1.6382 | 2.63 × 10−6 |
10 | 35 | 10 | 0.09205 | 0.479122 | 0.9078 | 1.4813 | 2.25 × 10−6 |
11 | 50 | 5 | 0.103863 | 0.509586 | 1.4156 | 1.3335 | 2.93 × 10−6 |
12 | 10 | 5 | 0.060647 | 0.486972 | 0.6897 | 1.6471 | 4.16 × 10−6 |
Hydrologic Year | 2010–2011 | 2011–2012 | ||
---|---|---|---|---|
Soil Texture | Snow Height (days*m) | Snow Water Equivalent (days*m) | Snow Height (days*m) | Snow Water Equivalent (days*m) |
Sand | 598.751 | 204.735 | 171.925 | 47.175 |
Loamy Sand | 597.284 | 204.591 | 170.475 | 46.391 |
Sandy Clay Loam | 588.703 | 201.180 | 165.708 | 44.876 |
Sandy Loam | 585.536 | 199.899 | 163.761 | 44.876 |
Sandy Clay | 584.888 | 199.552 | 162.717 | 44.410 |
Loam | 587.246 | 200.521 | 164.303 | 44.615 |
Clay Loam | 587.706 | 200.769 | 165.233 | 45.278 |
Clay | 587.829 | 200.830 | 164.972 | 44.663 |
Silty Loam | 589.067 | 201.323 | 165.693 | 45.426 |
Silty Clay Loam | 590.139 | 201.706 | 166.422 | 45.700 |
Silty Clay | 590.568 | 201.851 | 166.733 | 45.814 |
Silt | 592.179 | 202.648 | 166.996 | 45.641 |
Difference | 14.903 | 5.693 | 9.676 | 2.882 |
Soil Type | 2010–2011 Hydrologic Year (Hy) | 2011–2012 Hydrologic Year (Hy) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Soil Depth (cm) | Soil Depth (cm) | ||||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | ||
Freeze–Thaw Cycles | Sandy | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 3 |
Loamy Sand | 1 | 1 | 1 | 2 | 2 | 3 | 2 | 2 | 2 | 3 | |
Sandy Clay Loam | 2 | 3 | 3 | 1 | 1 | 5 | 3 | 5 | 5 | 4 | |
Sandy Loam | 2 | 2 | 2 | 1 | 1 | 6 | 6 | 5 | 4 | 1 | |
Sandy Clay | 2 | 2 | 2 | 1 | 1 | 5 | 5 | 4 | 4 | 3 | |
Loam | 3 | 2 | 2 | 1 | 1 | 6 | 5 | 5 | 6 | 4 | |
Clay Loam | 3 | 2 | 2 | 1 | 1 | 6 | 4 | 4 | 5 | 3 | |
Clay | 4 | 2 | 2 | 2 | 1 | 5 | 5 | 6 | 4 | 5 | |
Silty Loam | 6 | 6 | 6 | 5 | 6 | 4 | 3 | 2 | 3 | 2 | |
Silty Clay Loam | 2 | 3 | 2 | 1 | 1 | 8 | 7 | 7 | 4 | 4 | |
Silty Clay | 3 | 3 | 2 | 1 | 1 | 5 | 5 | 5 | 3 | 7 | |
Silt | 7 | 7 | 7 | 5 | 6 | 3 | 3 | 3 | 2 | 2 | |
Maximum Ice Content | Sandy | 0.325 | 0.325 | 0.241 | 0.18 | 0.145 | 0.214 | 0.177 | 0.152 | 0.154 | 0.108 |
Loamy Sand | 0.338 | 0.338 | 0.252 | 0.153 | 0.136 | 0.288 | 0.337 | 0.221 | 0.197 | 0.164 | |
Sandy Clay Loam | 0.299 | 0.225 | 0.21 | 0.201 | 0.191 | 0.311 | 0.307 | 0.306 | 0.303 | 0.303 | |
Sandy Loam | 0.251 | 0.223 | 0.215 | 0.211 | 0.162 | 0.253 | 0.148 | 0.138 | 0.125 | 0.115 | |
Sandy Clay | 0.23 | 0.219 | 0.216 | 0.206 | 0.194 | 0.216 | 0.196 | 0.191 | 0.188 | 0.188 | |
Loam | 0.289 | 0.21 | 0.192 | 0.183 | 0.175 | 0.304 | 0.302 | 0.301 | 0.296 | 0.292 | |
Clay Loam | 0.318 | 0.248 | 0.241 | 0.2 | 0.188 | 0.249 | 0.179 | 0.165 | 0.152 | 0.222 | |
Clay | 0.282 | 0.268 | 0.257 | 0.244 | 0.227 | 0.236 | 0.27 | 0.266 | 0.265 | 0.26 | |
Silty Loam | 0.304 | 0.208 | 0.206 | 0.173 | 0.17 | 0.216 | 0.179 | 0.163 | 0.144 | 0.119 | |
Silty Clay Loam | 0.356 | 0.27 | 0.25 | 0.223 | 0.207 | 0.261 | 0.228 | 0.203 | 0.184 | 0.165 | |
Silty Clay | 0.331 | 0.294 | 0.277 | 0.252 | 0.212 | 0.272 | 0.241 | 0.204 | 0.186 | 0.168 | |
Silt | 0.376 | 0.268 | 0.255 | 0.243 | 0.236 | 0.398 | 0.398 | 0.393 | 0.4 | 0.417 |
Soil Type | 2010–2011 Hydrologic Year | 2011–2012 Hydrologic Year | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Soil Depth (cm) | Soil Depth (cm) | ||||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | ||
Days with Ice | Sandy | 240.58 | 244.17 | 257.67 | 255.75 | 254.58 | 151.00 | 200.17 | 198.92 | 197.33 | 189.08 |
Loamy Sand | 224.50 | 257.83 | 256.50 | 221.17 | 193.17 | 158.58 | 198.58 | 196.92 | 195.25 | 181.92 | |
Sandy Clay Loam | 169.33 | 134.92 | 120.50 | 114.08 | 113.75 | 168.67 | 167.33 | 160.58 | 148.00 | 141.17 | |
Sandy Loam | 171.08 | 165.08 | 158.67 | 152.83 | 150.33 | 173.25 | 167.92 | 160.17 | 129.92 | 118.83 | |
Sandy Clay | 169.83 | 164.92 | 159.25 | 152.75 | 150.25 | 150.92 | 141.08 | 127.58 | 107.67 | 94.08 | |
Loam | 164.08 | 131.00 | 128.33 | 127.58 | 127.58 | 165.75 | 163.75 | 151.17 | 139.50 | 131.25 | |
Clay Loam | 177.75 | 154.83 | 146.58 | 132.58 | 133.50 | 154.67 | 148.83 | 137.75 | 124.42 | 128.83 | |
Clay | 183.33 | 168.58 | 164.17 | 153.83 | 149.75 | 157.83 | 161.17 | 145.00 | 128.92 | 110.17 | |
Silty Loam | 204.17 | 182.42 | 166.50 | 159.83 | 151.83 | 184.58 | 180.83 | 168.58 | 157.92 | 149.17 | |
Silty Clay Loam | 202.58 | 168.08 | 142.17 | 131.25 | 132.42 | 185.08 | 180.83 | 166.50 | 152.50 | 146.17 | |
Silty Clay | 219.75 | 195.17 | 167.92 | 153.92 | 150.58 | 185.33 | 180.83 | 163.17 | 151.08 | 136.67 | |
Silt | 228.67 | 221.33 | 198.92 | 168.92 | 156.00 | 176.58 | 172.75 | 173.92 | 159.42 | 153.25 | |
Temporal Ice Mass | Sandy | 62.18 | 66.73 | 53.32 | 40.72 | 31.25 | 28.63 | 33.19 | 27.88 | 23.49 | 16.58 |
Loamy Sand | 62.93 | 73 | 49.63 | 26.47 | 21.85 | 35.50 | 43.73 | 36.59 | 31.41 | 24.60 | |
Sandy Clay Loam | 26 | 18.3 | 16.03 | 14.62 | 13.76 | 21.20 | 18.67 | 15.65 | 13.44 | 12.56 | |
Sandy Loam | 29.02 | 25.19 | 22.58 | 22.82 | 17.73 | 20.54 | 12.28 | 10.90 | 6.65 | 5.92 | |
Sandy Clay | 30.43 | 28.01 | 24.93 | 23.57 | 21.03 | 11.76 | 9.86 | 7.55 | 5.72 | 4.61 | |
Loam | 23.31 | 17.79 | 15.34 | 14.62 | 14.04 | 19.08 | 16.20 | 13.19 | 11.54 | 9.76 | |
Clay Loam | 30.5 | 25.72 | 22.27 | 17.18 | 15.63 | 18.73 | 14.64 | 11.60 | 8.82 | 10.15 | |
Clay | 37.94 | 34.12 | 31.22 | 27.56 | 23.96 | 19.23 | 15.30 | 12.91 | 8.63 | 6.49 | |
Silty Loam | 25.43 | 23.05 | 20.62 | 18.43 | 16.44 | 23.35 | 20.24 | 16.51 | 14.48 | 12.18 | |
Silty Clay Loam | 35.22 | 27.39 | 22.13 | 18.49 | 17.1 | 26.82 | 21.26 | 16.79 | 14.22 | 11.44 | |
Silty Clay | 40.32 | 34.78 | 30.63 | 26.07 | 21.47 | 27.87 | 22.57 | 16.42 | 13.04 | 10.22 | |
Silt | 37.11 | 31.92 | 28.11 | 24.87 | 22.66 | 32.87 | 28.72 | 26.40 | 25.11 | 22.97 |
Soil Type | 2010–2011 Hy | 2011–2012 Hy |
---|---|---|
Frost Depth (cm) | ||
Sandy | 129 | 112 |
Loamy Sand | 76 | 129 |
Sandy Clay Loam | 35 | 35 |
Sandy Loam | 29 | 15 |
Sandy Clay | 14 | 19 |
Loam | 35 | 27 |
Clay Loam | 30 | 29 |
Clay | 14 | 36 |
Silty Loam | 41 | 26 |
Silty Clay Loam | 31 | 22 |
Silty Clay | 28 | 20 |
Silt | 37 | 24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balocchi, F.; Ferré, T.P.A.; Meixner, T.; Arumí, J.L. How Soil Freezes and Thaws at a Snow-Dominated Forest Site in the U.S.—A Synthetic Approach Using the Soil and Cold Regions Model (SCRM). Soil Syst. 2022, 6, 52. https://doi.org/10.3390/soilsystems6020052
Balocchi F, Ferré TPA, Meixner T, Arumí JL. How Soil Freezes and Thaws at a Snow-Dominated Forest Site in the U.S.—A Synthetic Approach Using the Soil and Cold Regions Model (SCRM). Soil Systems. 2022; 6(2):52. https://doi.org/10.3390/soilsystems6020052
Chicago/Turabian StyleBalocchi, Francisco, Ty P. A. Ferré, Thomas Meixner, and José Luis Arumí. 2022. "How Soil Freezes and Thaws at a Snow-Dominated Forest Site in the U.S.—A Synthetic Approach Using the Soil and Cold Regions Model (SCRM)" Soil Systems 6, no. 2: 52. https://doi.org/10.3390/soilsystems6020052
APA StyleBalocchi, F., Ferré, T. P. A., Meixner, T., & Arumí, J. L. (2022). How Soil Freezes and Thaws at a Snow-Dominated Forest Site in the U.S.—A Synthetic Approach Using the Soil and Cold Regions Model (SCRM). Soil Systems, 6(2), 52. https://doi.org/10.3390/soilsystems6020052