Effects of Coarse Woody Debris on Soil Temperature and Water Content in Two Reconstructed Soils in Reclaimed Boreal Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Reclamation Treatments and Experimental Design
2.3. Data Collection
2.4. Statistical Analyses
3. Results
3.1. Air Temperature and Precipitation
3.2. Soil Water Content
3.3. Soil Temperature
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, R.L.; Naeth, M.A. Woody debris amendment enhances reclamation after oil sands mining in Alberta, Canada. Restor. Ecol. 2014, 22, 40–48. [Google Scholar] [CrossRef]
- Dhar, A.; Comeau, P.G.; Karst, J.; Pinno, B.; Chang, S.; Naeth, M.A.; Vassov, R.; Bampfylde, C. Plant community development following reclamation of oil sands mine sites in the boreal forest: A review. Environ. Rev. 2018, 26, 286–298. [Google Scholar] [CrossRef]
- Pinno, B.D.; Das Gupta, S. Coarse woody debris as a land reclamation amendment at an oil sands mining operation in boreal Alberta, Canada. Sustainability 2018, 10, 1640. [Google Scholar] [CrossRef] [Green Version]
- Forsch, K.B.C.; Dhar, A.; Naeth, M.A. Effects of woody debris and cover soil types on soil properties and vegetation 4-5 years after oil sands reclamation. Restor. Ecol. 2021, 29, e13420. [Google Scholar] [CrossRef]
- Kwak, J.H.; Chang, S.X.; Naeth, M.A.; Schaaf, W. Coarse woody debris increases microbial community functional diversity but not enzyme activities in reclaimed oil sands soils. PLoS ONE 2015, 10, e0143857. [Google Scholar] [CrossRef]
- Harmon, M.E.; Franklin, J.F.; Swanson, F.J.; Sollins, P.; Gregory, S.V.; Lattin, J.D.; Anderson, N.H.; Cline, S.P.; Aumen, N.G.; Sedell, J.R.; et al. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res. 1986, 15, 133–302. [Google Scholar] [CrossRef]
- Pettit, N.E.; Naiman, R.J. Flood-deposited wood debris and its contribution to heterogeneity and regeneration in a semi-arid riparian landscape. Oecologia 2005, 145, 434–444. [Google Scholar] [CrossRef]
- Law, D.J.; Kolb, P.F. The effects of forest residual debris disposal on perennial grass emergence, growth, and survival in a ponderosa pine ecotone. Rangel. Ecol. Manag. 2007, 60, 632–643. [Google Scholar] [CrossRef]
- Niu, C.Y.; Musa, A.; Liu, Y. Analysis of soil moisture condition under different land uses in the arid region of Horqin sandy land, northern China. Solid Earth 2015, 6, 1157–1167. [Google Scholar] [CrossRef] [Green Version]
- Lakshmi, V.; Jackson, T.; Zehrfuhs, D. Soil moisture–temperature relationships: Results from two field experiments. Hydrol. Process. 2003, 17, 3041–3057. [Google Scholar] [CrossRef]
- Dhar, A.; Miller, V.S.; Wilkinson, S.R.; Naeth, M.A. 2022. Substrate and topsoil impact on soil water and soil temperature in Arctic diamond mine reclamation. Soil Syst. 2022, 6, 12. [Google Scholar] [CrossRef]
- Brevik, E.C.; Cerdà, A.; Mataix-Solera, J.; Pereg, L.; Quinton, J.N.; Six, J.; Van Oost, K. The interdisciplinary nature of Soil. Soil 2015, 1, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Plaza, A.; Alvarez-Rogel, J.; Albaladejo, J.; Castillo, V.M. Spatial patterns and temporal stability of soil moisture across a range of scales in a semi-arid environment. Hydrol. Process. 2000, 14, 1261–1277. [Google Scholar] [CrossRef]
- Yu, Y.; Wei, W.; Chen, L.D.; Jia, F.Y.; Yang, L.; Zhang, H.D.; Feng, T.J. Responses of vertical soil moisture to rainfall pulses and land uses in a typical loess hilly area, China. Solid Earth 2015, 6, 595–608. [Google Scholar] [CrossRef] [Green Version]
- Rowland, S.M.; Prescott, C.E.; Grayston, S.J.; Quideau, S.A.; Bradfield, G. Recreating a functioning forest soil in reclaimed oil sands in northern Alberta: An approach for measuring success in ecological restoration. J. Environ. Qual. 2009, 38, 1580–1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackenzie, D.D.; Naeth, M.A. The role of the forest soil propagule bank in assisted natural recovery after oil sands mining. Restor. Ecol. 2010, 18, 418–427. [Google Scholar] [CrossRef]
- Dhar, A.; Comeau, P.G.; Vassov, R. Effects of cover soil stockpiling on plant community development following reclamation of oil sands sites in Alberta. Restor. Ecol. 2019, 27, 352–360. [Google Scholar] [CrossRef]
- Dhar, A.; Comeau, P.G.; Naeth, M.A.; Pinno, B.; Vassov, R. Plant community development following reclamation of oil sands mines using four cover soil types in northern Alberta. Restor. Ecol. 2020, 28, 82–92. [Google Scholar] [CrossRef]
- Alberta Environment and Water. Best Management Practices for Conservation of Reclamation Materials in the Mineable Oil Sands Region of Alberta. Province of Alberta, Edmonton, Alberta, Canada. 2012. Available online: https://open.alberta.ca/publications/9781460100486 (accessed on 16 May 2022).
- Mackenzie, D.D.; Naeth, M.A. Native seed, soil and atmosphere respond to boreal forest topsoil (LFH) storage. PLoS ONE 2019, 14, e0220367. [Google Scholar] [CrossRef] [Green Version]
- Shaughnessy, B.E.; Dhar, A.; Naeth, M.A. Natural recovery of vegetation on reclamation stockpiles after 26 to 34 years. Ecoscience 2022, 29, 55–67. [Google Scholar] [CrossRef]
- Dhar, A.; Comeau, P.G.; Naeth, M.A.; Vassov, R. Early boreal forest understory plant community development in reclaimed oil sands. Ecol. Eng. 2020, 158, 106014. [Google Scholar] [CrossRef]
- Environment Canada. Canadian Climate Normals 1981–2010 Station Data. 2022. Available online: http://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?searchType=stnName&txtStationName=Fort+McMurray&searchMethod=contains&txtCentralLatMin=0&txtCentralLatSec=0&txtCentralLongMin=0&txtCentraLongSec=0&stnID=2519&dispBack=1 (accessed on 12 May 2022).
- Mackenzie, D.D. Oil Sands Mine Reclamation Using Boreal Forest Surface Soil (LFH) in Northern Alberta. Ph.D. Dissertation, Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada, 2012; 232p. [Google Scholar] [CrossRef]
- Archibald, H.A. Early Ecosystem Genesis Using LFH and Peat Cover Soils in Athabasca Oil Sands Reclamation. Master’s Thesis, Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada, 2014. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2021. Available online: http://www.Rproject.org/ (accessed on 2 May 2021).
- Mackenzie, M.D.; Quideau, S.A. Laboratory-based nitrogen mineralization and biogeochemistry of two soils used in oil sands reclamation. Can. J. Soil Sci. 2012, 92, 131–142. [Google Scholar] [CrossRef]
- Ohu, J.O.; Raghavan, G.S.V.; Prasher, S.; Mehuys, G. Prediction of water retention characteristics from soil compaction data and organic matter content. J. Agric. Eng. Res. 1987, 38, 27–35. [Google Scholar] [CrossRef]
- Rawls, W.J.; Pachepsky, Y.A.; Ritchie, J.C.; Sobecki, T.M.; Bloodworth, H. Effect of soil organic carbon on water retention. Geoderma 2003, 116, 61–76. [Google Scholar] [CrossRef]
- Brais, S.; Sadi, F.; Bergeron, Y.; Grenier, Y. Coarse woody debris dynamics in a post-fire jack pine chronosequence and its relation with site productivity. For. Ecol. Manag. 2005, 220, 216–226. [Google Scholar] [CrossRef]
- Goldin, S.R.; Hutchinson, M.F. Coarse woody debris reduces the rate of moisture loss from surface soils of cleared temperate Australian woodlands. Soil Res. 2014, 52, 637–644. [Google Scholar] [CrossRef]
- Prkhurst, T.; Prober, S.; Farrell, M.; Standish, R. Responses of soil, herbaceous vegetation and ants to woody debris additions in restored old fields in a multi-site Before-After-Control-Impact experiment. Authorea 2022. [Google Scholar] [CrossRef]
- Bowman, A.S.; Facelli, J.M. Fallen logs as sources of patchiness in chenopod shrublands of South Australia. J. Arid Environ. 2013, 97, 66–72. [Google Scholar] [CrossRef]
- Lindenmayer, D.; Claridge, A.; Gilmore, A.; Michael, D.; Lindenmayer, B.D. The ecological roles of logs in Australian forests and the potential impacts of harvesting intensification on log-using biota. Pac. Conserv. Biol. 2002, 8, 121–140. [Google Scholar] [CrossRef]
- Xu, S.; Liu, L.; Sayer, E. Variability of aboveground litter inputs alters soil physicochemical and biological processes: A meta-analysis of litterfall-manipulation experiments. Biogeosciences 2013, 10, 7423–7433. [Google Scholar] [CrossRef] [Green Version]
- Colloff, M.J.; Pullen, K.R.; Cunningham, S.A. Restoration of an ecosystem function to revegetation communities: The role of invertebrate macropores in enhancing soil water infiltration. Restor. Ecol. 2010, 18, 65–72. [Google Scholar] [CrossRef]
- Prober, S.; Stol, J.; Piper, M.; Gupta, V.V.S.R.; Cunningham, S. Enhancing soil biophysical condition for climate-resilient restoration in mesic woodlands. Ecol. Eng. 2014, 71, 246–255. [Google Scholar] [CrossRef]
- Manning, A.D.; Cunningham, R.B.; Lindenmayer, D.B. Bringing forward the benefits of coarse woody debris in ecosystem recovery under different levels of grazing and vegetation density. Biol. Conserv. 2013, 157, 204–214. [Google Scholar] [CrossRef]
- Snyder, B.A.; Hendrix, P.F. Current and potential roles of soil macroinvertebrates (earthworms, millipedes, and isopods) in ecological restoration. Restor. Ecol. 2008, 16, 629–636. [Google Scholar] [CrossRef]
- Fekete, I.; Varga, C.; Biró, B.; Tóth, J.A.; Várbíró, G.; Lajtha, K.; Szabó, G.; Kotroczó, Z. The effects of litter production and litter depth on soil microclimate in a central European deciduous forest. Plant Soil 2016, 398, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Vinge, T.; Pyper, M. Managing Woody Materials on Industrial Sites: Meeting Economic, Ecological and Forest Health Goals Through a Collaborative Approach; Report; Department of Renewable Resources, University of Alberta: Edmonton, AB, Canada, 2012; 47p. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhar, A.; Forsch, K.B.C.; Naeth, M.A. Effects of Coarse Woody Debris on Soil Temperature and Water Content in Two Reconstructed Soils in Reclaimed Boreal Forest. Soil Syst. 2022, 6, 62. https://doi.org/10.3390/soilsystems6030062
Dhar A, Forsch KBC, Naeth MA. Effects of Coarse Woody Debris on Soil Temperature and Water Content in Two Reconstructed Soils in Reclaimed Boreal Forest. Soil Systems. 2022; 6(3):62. https://doi.org/10.3390/soilsystems6030062
Chicago/Turabian StyleDhar, Amalesh, Katryna B. C. Forsch, and M. Anne Naeth. 2022. "Effects of Coarse Woody Debris on Soil Temperature and Water Content in Two Reconstructed Soils in Reclaimed Boreal Forest" Soil Systems 6, no. 3: 62. https://doi.org/10.3390/soilsystems6030062
APA StyleDhar, A., Forsch, K. B. C., & Naeth, M. A. (2022). Effects of Coarse Woody Debris on Soil Temperature and Water Content in Two Reconstructed Soils in Reclaimed Boreal Forest. Soil Systems, 6(3), 62. https://doi.org/10.3390/soilsystems6030062