Phytoremediating a Wastewater-Irrigated Soil Contaminated with Toxic Metals: Comparing the Efficacies of Different Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sampling and Analysis
2.3. Statistical Analyses
3. Results
4. Discussion
4.1. Types of Irrigation Water and Phytoremediators
4.2. Effect of Wastewater on Phytoremediation or Phytoaccumulation
4.3. Metal Extraction or Accumulation by Plants
4.4. Metal Transfer or Accumulation along the Root-Stem-Leaf Continuum
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qadir, M.; Wichelns, D.; Raschid-Sally, L.; McCornick, P.G.; Drechsel, P.; Bahri, A.; Minhas, P. The challenges of wastewater irrigation in developing countries. Agric. Water Manag. 2010, 97, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Syed, A.; Raza, T.; Bhatti, T.T.; Eash, N.S. Climate Impacts on the agricultural sector of Pakistan: Risks and solutions. Environ. Chall. 2022, 6, 100433. [Google Scholar] [CrossRef]
- Gerland, P.; Raftery, A.E.; Ševčíková, H.; Li, N.; Gu, D.; Spoorenberg, T.; Alkema, L.; Fosdick, B.K.; Chunn, J.; Lalic, N.; et al. World population stabilization unlikely this century. Science 2014, 346, 234–237. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. In Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Munir, T.M.; Perkins, M.; Kaing, E.; Strack, M. Carbon dioxide flux and net primary production of a boreal treed bog: Responses to warming and water-table-lowering simulations of climate change. Biogeosciences 2015, 12, 1091–1111. [Google Scholar] [CrossRef] [Green Version]
- Cooper, R.C. Public health concerns in wastewater reuse. Water Sci. Technol. 1991, 24, 55–65. [Google Scholar] [CrossRef]
- Lone, M.; Saleem, S.; Mahmood, T.; Saifullah, K.; Hussain, G. Heavy metal contents of vegetables irrigated by sewage/tubewell water in Hassanabdal area, Pakistan. Pak. J. Arid Agric. 2003, 5, 533–535. [Google Scholar]
- DalCorso, G. Heavy Metal Toxicity in Plants. In Plants and Heavy Metals; Furini, A., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 1–25. [Google Scholar]
- Denton-Thompson, S.M.; Sayer, E.J. Micronutrients in Food Production: What Can We Learn from Natural Ecosystems? Soil Syst. 2022, 6, 8. [Google Scholar] [CrossRef]
- Saab, M.T.A.; Daou, C.; Bashour, I.; Maacaron, A.; Fahed, S.; Romanos, D.; Khairallah, Y.; Lebbous, N.; Hajjar, C.; Saad, R.A.; et al. Treated municipal wastewater reuse for eggplant irrigation. Aust. J. Crop Sci. 2021, 15, 1095–1101. [Google Scholar] [CrossRef]
- Martijn, E.-J.; Redwood, M. Wastewater irrigation in developing countries—Limitations for farmers to adopt appropriate practices. Irrig. Drain. 2005, 54, 563–570. [Google Scholar] [CrossRef]
- Weng, L.; Temminghoff, E.J.; Van Riemsdijk, W.H. Contribution of individual sorbents to the control of heavy metal activity in sandy soil. Environ. Sci. Technol. 2001, 35, 4436–4443. [Google Scholar] [CrossRef] [PubMed]
- Overesch, M.; Rinklebe, J.; Broll, G.; Neue, H.-U. Metals and arsenic in soils and corresponding vegetation at Central Elbe river floodplains (Germany). Environ. Pollut. 2007, 145, 800–812. [Google Scholar] [CrossRef] [PubMed]
- Bradl, H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 2004, 277, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Arrobas, M.; de Almeida, S.F.; Raimundo, S.; da Silva Domingues, L.; Rodrigues, M.Â. Leonardites Rich in Humic and Fulvic Acids Had Little Effect on Tissue Elemental Composition and Dry Matter Yield in Pot-Grown Olive Cuttings. Soil Syst. 2022, 6, 7. [Google Scholar] [CrossRef]
- Raskin, I.; Kumar, P.N.; Dushenkov, S.; Salt, D.E. Bioconcentration of heavy metals by plants. Curr. Opin. Biotechnol. 1994, 5, 285–290. [Google Scholar] [CrossRef]
- Arduini, I.; Godbold, D.L.; Onnis, A. Influence of copper on root growth and morphology of Pinus pinea L. and Pinus pinaster Ait. seedlings. Tree Physiol. 1995, 15, 411–415. [Google Scholar] [CrossRef]
- Sharma, R.; Agrawal, M.; Marshall, F. Heavy metal contamination in vegetables grown in wastewater irrigated areas of Varanasi, India. Bull. Environ. Contam. Toxicol. 2006, 77, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.J. Accumulators and excluders-strategies in the response of plants to heavy metals. J. Plant Nutr. 1981, 3, 643–654. [Google Scholar] [CrossRef]
- Cobbett, C.; Goldsbrough, P. Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol. 2002, 53, 159–182. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, V.; Levizou, E.; Shaheen, S.M.; SikOk, Y.; Sebastian, A.; Baum, C.; Prasad, M.N.V.; Wenzel, W.W.; Rinklebe, J. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation—A review. Earth Sci. Rev. 2017, 171, 621–645. [Google Scholar] [CrossRef]
- Marchiol, L.; Assolari, S.; Sacco, P.; Zerbi, G. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ. Pollut. 2004, 132, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Salt, D.E.; Blaylock, M.; Kumar, N.P.; Dushenkov, V.; Ensley, B.D.; Chet, I.; Raskin, I. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Nat. Biotechnol. 1995, 13, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Ebbs, S.; Lasat, M.; Brady, D.; Cornish, J.; Gordon, R.; Kochian, L. Phytoextraction of cadmium and zinc from a contaminated soil. J. Environ. Qual. 1997, 26, 1424–1430. [Google Scholar] [CrossRef]
- Kumar, K.; Gupta, S.; Baidoo, S.; Chander, Y.; Rosen, C. Antibiotic uptake by plants from soil fertilized with animal manure. J. Environ. Qual. 2005, 34, 2082–2085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinmayee, M.D.; Mahesh, B.; Pradesh, S.; Mini, I.; Swapna, T. The assessment of phytoremediation potential of invasive weed Amaranthus spinosus L. Appl. Biochem. Biotechnol. 2012, 167, 1550–1559. [Google Scholar] [CrossRef] [PubMed]
- Galal, T.M.; Shehata, H.S. Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecol. Indic. 2015, 48, 244–251. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Malik, S.A.; Saeed, S.; Rehman, A.-u.; Munir, T.M. Phytoextraction of Heavy Metals by Various Vegetable Crops Cultivated on Different Textured Soils Irrigated with City Wastewater. Soil Syst. 2021, 5, 35. [Google Scholar] [CrossRef]
- Khan, Z.M.; Asif Kanwar, R.M.; Farid, H.U.; Sultan, M.; Arsalan, M.; Ahmad, M.; Shakoor, A.; Ahson Aslam, M.M. Wastewater Evaluation for Multan, Pakistan: Characterization and Agricultural Reuse. Pol. J. Environ. Stud. 2019, 28, 2159–2174. [Google Scholar] [CrossRef]
- Soncini, A.; Bocchiola, D.; Rosso, R.; Meucci, S.; Pala, F.; Valé, G. Water and Sanitation in Multan, Pakistan. In Sustainable Social, Economic and Environmental Revitalization in Multan City: A Multidisciplinary Italian–Pakistani Project; Del Bo, A., Bignami, D.F., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 149–162. [Google Scholar]
- Strack, M.; Munir, T.M.; Khadka, B. Shrub abundance contributes to shifts in dissolved organic carbon concentration and chemistry in a continental bog exposed to drainage and warming. Ecohydrology 2019, 12, e2100. [Google Scholar] [CrossRef]
- Khadka, B.; Munir, T.M.; Strack, M. Effect of environmental factors on production and bioavailability of dissolved organic carbon from substrates available in a constructed and reference fens in the Athabasca oil sands development region. Ecol. Eng. 2015, 84, 596–606. [Google Scholar] [CrossRef]
- Assaad, R.D.A.; Saab, M.T.A.; Sellami, M.H.; Nemer, N. Kale (Brassica oleracea L. var acephala) production in soilless systems in the Mediterranean region. J. Appl. Hort. 2022, 23, 167–173. [Google Scholar] [CrossRef]
- Richards, L. Diagnosis and improving of saline and alkaline soils. In Agricultural Handbook; US, Salinity Laboratory Staff: Washington, DC, USA, 1954. [Google Scholar]
- Zia, M.H.; Meers, E.; Ghafoor, A.; Murtaza, G.; Sabir, M.; Zia-ur-Rehman, M.; Tack, F. Chemically enhanced phytoextraction of Pb by wheat in texturally different soils. Chemosphere 2010, 79, 652–658. [Google Scholar] [CrossRef]
- Rice, E.W.; Baird, R.B.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA; American Water Works Association: Denver, CO, USA; Water Environment Federation: Alexandria, VA, USA, 2017. [Google Scholar]
- Ahmad, J.U.; Goni, M.A. Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka, Bangladesh. Environ. Monit. Assess. 2010, 166, 347–357. [Google Scholar] [CrossRef]
- Pescod, M. Wastewater Treatment and Use in Agriculture-FAO Irrigation and Drainage—Paper 47; Food and Agriculture Organization of the United Nations: Rome, Italy, 1992. [Google Scholar]
- Babu, S.M.O.F.; Hossain, M.B.; Rahman, M.S.; Rahman, M.; Ahmed, A.S.S.; Hasan, M.M.; Rakib, A.; Emran, T.B.; Xiao, J.; Simal-Gandara, J. Phytoremediation of Toxic Metals: A Sustainable Green Solution for Clean Environment. Appl. Sci. 2021, 11, 10348. [Google Scholar] [CrossRef]
- Kotrba, P.; Najmanova, J.; Maceka, T.; Ruml, T.; Mackova, M. Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol. Adv. 2009, 27, 799–810. [Google Scholar] [CrossRef]
- Khan, I.; Awan, S.A.; Rizwan, M.; Ali, S.; Hassan, M.J.; Brestic, M.; Zhang, X.; Huang, L. Effects of silicon on heavy metal uptake at the soil-plant interphase: A review. Ecotoxicol. Environ. Saf. 2021, 222, 112510. [Google Scholar] [CrossRef]
- Ingwersen, J.; Streck, T. A regional-scale study on the crop uptake of cadmium from sandy soils: Measurement and modeling. J. Environ. Qual. 2005, 34, 1026–1035. [Google Scholar] [CrossRef]
- Ismael, M.A.; Elyamine, A.M.; Moussa, M.G.; Cai, M.; Zhao, X.; Hu, C. Cadmium in plants: Uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 2018, 11, 255–277. [Google Scholar] [CrossRef]
- Rattan, R.; Datta, S.; Chhonkar, P.; Suribabu, K.; Singh, A. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—A case study. Agric. Ecosyst. Environ. 2005, 109, 310–322. [Google Scholar] [CrossRef]
- Peijnenburg, W.; Baerselman, R.; De Groot, A.; Jager, T.; Leenders, D.; Posthuma, L.; Van Veen, R. Quantification of metal bioavailability for lettuce (Lactuca sativa L.) in field soils. Arch. Environ. Contam. Toxicol. 2000, 39, 420–430. [Google Scholar] [CrossRef]
- Delil, A.D.; Köleli, N.; Dağhan, H.; Bahçeci, G. Recovery of heavy metals from canola (Brassica napus) and soybean (Glycine max) biomasses using electrochemical process. Environ. Technol. Innov. 2020, 17, 100559. [Google Scholar] [CrossRef]
- Indoria, A.K.; Poonia, S.R.; Sharma, K.L. Phytoextractability of Cd from Soil by Some Oilseed Species as Affected by Sewage Sludge and Farmyard Manure. Commun. Soil Sci. Plant Anal. 2013, 44, 3444–3455. [Google Scholar] [CrossRef]
- Pulvento, C.; Sellami, M.H.; De Mastro, G.; Calandrelli, D.; Lavini, A. Quinoa Vikinga Response to Salt and Drought Stress under Field Conditions in Italy. Environ. Sci. Proc. 2022, 16, 5. [Google Scholar] [CrossRef]
- Iftikhar, A.; Abbas, G.; Saqib, M.; Shabbir, A.; Amjad, M.; Shahid, M.; Ahmad, I.; Iqbal, S.; Qaisrani, S.A. Salinity modulates lead (Pb) tolerance and phytoremediation potential of quinoa: A multivariate comparison of physiological and biochemical attributes. Environ. Geochem. Health 2022, 44, 257–272. [Google Scholar] [CrossRef]
- Lasat, M.M. Phytoextraction of Heavy Metals from Contaminated Soil: A Review of plant/Soil/Metal Interaction and Assessment of Pertinent Agronomic Issues. J. Hazard. Subst. Res. 1999, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.-B.; He, J.; Polle, A.; Rennenberg, H. Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency. Biotechnol. Adv. 2016, 34, 1131–1148. [Google Scholar] [CrossRef]
- Broadley, M.R.; Willey, N.J.; Wilkins, J.C.; Baker, A.J.M.; Mead, A.; White, P.J. Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytol. 2001, 152, 9–27. [Google Scholar] [CrossRef]
- Neilson, S.; Rajakaruna, N. Roles of Rhizospheric Processes and Plant Physiology in Applied Phytoremediation of Contaminated Soils Using Brassica Oilseeds. In The Plant Family Brassicaceae: Contribution towards Phytoremediation; Anjum, N., Ahmad, I., Pereira, M., Duarte, A., Umar, S., Khan, N., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 313–330. [Google Scholar]
- Awa, S.H.; Hadibarata, T. Removal of heavy metals in contaminated soil by phytoremediation mechanism: A review. Water Air Soil Pollut. 2020, 231, 47. [Google Scholar] [CrossRef]
- Page, V.; Feller, U. Selective Transport of Zinc, Manganese, Nickel, Cobalt and Cadmium in the Root System and Transfer to the Leaves in Young Wheat Plants. Ann. Bot. 2005, 96, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Guo, Z.; Li, R.; Ali, A.; Guo, D.; Lahori, A.H.; Wang, P.; Liu, X.; Wang, X.; Zhang, Z. Screening of Chinese mustard (Brassica juncea L.) cultivars for the phytoremediation of Cd and Zn based on the plant physiological mechanisms. Environ. Pollut. 2020, 261, 114213. [Google Scholar] [CrossRef]
- Mehes-Smith, M.; Nkongolo, K.K. Physiological and Cytological Responses of Deschampsia cespitosa and Populus tremuloides to Soil Metal Contamination. Water Air Soil Pollut. 2015, 226, 125. [Google Scholar] [CrossRef]
- Dierssen, M.; Herault, Y.; Estivill, X. Aneuploidy: From a physiological mechanism of variance to Down syndrome. Physiol. Rev. 2009, 89, 887–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, C.; Wang, Y.; Zhu, Y.; Tang, J.; Hu, B.; Liu, L.; Ou, S.; Wu, H.; Sun, X.; Chu, J. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc. Natl. Acad. Sci. USA 2014, 111, 10013–10018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munir, T.M.; Westbrook, C.J. Comparison of Soil Nutrient Supply Patterns among Full and Drained Beaver Ponds and Undisturbed Peat in a Rocky Mountain Fen. Wetlands 2022, 42, 25. [Google Scholar] [CrossRef]
Soil Texture or Water Source | Salinity | Heavy Metal Concentration (mg L−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ECs/ECiw (dSm−1) | pHs/ pHiw | Zn | Cu | Fe | Mn | Cd | Cr | Ni | Pb | |
Silt loam soil | 3.84 | 8.64 | 4.52 | 1.74 | 15.36 | 4.62 | 1.02 | 0.18 | 0.20 | 2.76 |
Canal water | 1.02 | 7.20 | 0.01 | 0.01 | 0.03 | 0.04 | 0.07 | 0.02 | 0.02 | 0.06 |
Wastewater | 4.18 | 7.41 | 0.26 | 0.12 | 1.28 | 0.24 | 0.19 | 0.11 | 0.29 | 1.14 |
1:1 mix water | 2.72 | 7.34 | 0.13 | 0.08 | 0.67 | 0.15 | 0.15 | 0.07 | 0.16 | 0.63 |
Permissible limits (water) † | 1.5 | 6.5–8.5 | 2.00 | 0.20 | 5.00 | 0.20 | 0.01 | 0.01 | 0.20 | 0.50 |
Source | F/p | Zn | Cu | Fe | Mn | Cd | Cr | Ni | Pb |
---|---|---|---|---|---|---|---|---|---|
Water (df2,24) | p≤ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
root | F | 13.81 | 64.06 | 44.35 | 134.21 | 4.71 | 8.17 | 3.68 | 12.47 |
p≤ | 0.000 | 0.000 | 0.000 | 0.000 | 0.020 | 0.000 | 0.040 | 0.000 | |
stem | F | 57.28 | 207.92 | 186.86 | 268.56 | 8.91 | 23.26 | 16.04 | 61.93 |
p≤ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
leaf | F | 170.84 | 179.71 | 236.73 | 398.76 | 7.59 | 31.51 | 4.91 | 33.17 |
p≤ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.010 | 0.000 | |
Crop (df2,24) | p≤ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
root | F | 121.30 | 429.21 | 861.94 | 80.14 | 86.18 | 17.21 | 11.29 | 65.25 |
p≤ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
stem | F | 243.51 | 305.18 | 640.30 | 333.54 | 31.82 | 33.66 | 9.05 | 114.00 |
p≤ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
leaf | F | 497.12 | 189.28 | 537.08 | 273.62 | 15.78 | 23.48 | 8.59 | 263.15 |
p≤ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Water × Crop (df6,24) | p≤ | ns | 0.000 | 0.000 | 0.00 | ns | ns | ns | ns |
root | F | 0.99 | 14.85 | 3.29 | 9.71 | 0.80 | 0.95 | 0.06 | 0.32 |
p | ns | 0.00 | 0.02 | 0.00 | ns | ns | ns | ns | |
stem | F | 2.48 | 27.80 | 13.61 | 16.51 | 0.27 | 1.70 | 0.24 | 0.81 |
p | 0.05 | 0.00 | 0.00 | 0.00 | ns | ns | ns | ns | |
leaf | F | 6.83 | 24.04 | 1.18 | 26.50 | 0.43 | 1.45 | 0.08 | 0.35 |
p | 0.00 | 0.00 | ns | 0.00 | ns | ns | ns | ns |
Source | F/p | Zn | Cu | Fe | Mn | Cd | Cr | Ni | Pb |
---|---|---|---|---|---|---|---|---|---|
Water (df2,24) | |||||||||
BAC | F | 164.65 | 322.04 | 427.26 | 690.84 | 14.89 | 34.19 | 20.59 | 98.36 |
p | 0.000 | 0.000 | 0.007 | 0.001 | 0.007 | 0.000 | 0.002 | 0.001 | |
BTC | F | 11.41 | 41.91 | 65.83 | 83.42 | 1.33 | 1.13 | 3.68 | 4.562 |
p | 0.000 | 0.006 | 0.007 | 0.007 | ns | ns | 0.042 | 0.021 | |
MI (soil-root) | F | 22.20 | 60.70 | 20.10 | 118.08 | 1.73 | 5.69 | 2.79 | 16.72 |
p | 0.000 | 0.005 | 0.005 | 0.009 | ns | 0.010 | 0.081 | 0.000 | |
MI (root-stem) | F | 3.69 | 29.86 | 54.87 | 94.57 | 1.84 | 1.16 | 4.71 | 10.53 |
p | 0.040 | 0.004 | 0.001 | 0.007 | ns | ns | 0.022 | 0.000 | |
MI (stem-leaf) | F | 0.57 | 22.43 | 22.89 | 40.80 | 0.24 | 0.00 | 0.34 | 2.19 |
p | ns | 0.000 | 0.001 | 0.001 | ns | ns | ns | ns | |
Crop (df3,24) | |||||||||
BAC | p | 0.002 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 |
BTC | p | 0.001 | 0.000 | 0.001 | 0.000 | 0.029 | ns | 0.000 | 0.000 |
MI (soil-root) | p | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.001 | 0.000 | 0.000 |
MI (root-stem) | p | 0.000 | 0.001 | 0.009 | 0.000 | 0.068 | ns | 0.001 | 0.005 |
MI (stem-leaf) | p | 0.001 | 0.008 | 0.005 | 0.000 | 0.008 | 0.007 | 0.011 | 0.088 |
Water × Crop (df6,24) | |||||||||
BAC | p | ns | 0.000 | 0.000 | 0.004 | ns | ns | ns | ns |
BTC | p | ns | 0.000 | ns | 0.002 | ns | ns | ns | ns |
MI (soil-root) | p | ns | 0.005 | ns | 0.000 | ns | ns | ns | ns |
MI (root-stem) | p | ns | 0.010 | 0.010 | 0.000 | ns | ns | ns | ns |
MI (stem-leaf) | p | 0.0100 | 0.001 | 0.000 | 0.007 | ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, I.; Malik, S.A.; Saeed, S.; Rehman, A.-u.; Munir, T.M. Phytoremediating a Wastewater-Irrigated Soil Contaminated with Toxic Metals: Comparing the Efficacies of Different Crops. Soil Syst. 2022, 6, 77. https://doi.org/10.3390/soilsystems6040077
Ahmad I, Malik SA, Saeed S, Rehman A-u, Munir TM. Phytoremediating a Wastewater-Irrigated Soil Contaminated with Toxic Metals: Comparing the Efficacies of Different Crops. Soil Systems. 2022; 6(4):77. https://doi.org/10.3390/soilsystems6040077
Chicago/Turabian StyleAhmad, Iftikhar, Saeed Ahmad Malik, Shafqat Saeed, Atta-ur Rehman, and Tariq Muhammad Munir. 2022. "Phytoremediating a Wastewater-Irrigated Soil Contaminated with Toxic Metals: Comparing the Efficacies of Different Crops" Soil Systems 6, no. 4: 77. https://doi.org/10.3390/soilsystems6040077
APA StyleAhmad, I., Malik, S. A., Saeed, S., Rehman, A. -u., & Munir, T. M. (2022). Phytoremediating a Wastewater-Irrigated Soil Contaminated with Toxic Metals: Comparing the Efficacies of Different Crops. Soil Systems, 6(4), 77. https://doi.org/10.3390/soilsystems6040077