More Than Dirt: Soil Health Needs to Be Emphasized in Stream and Floodplain Restorations
Abstract
:1. Introduction
2. Current Restoration Approaches and Challenges for Floodplain Soil Health
2.1. Challenges for Physical Soil Conditions in Floodplain Restorations
2.2. Chemical Components of Soil Health
2.3. Biological Soil Health and Diversity
3. Recommendations for Improving Floodplain Soil Health
3.1. Soil Indices/Metrics to Characterize Physical, Chemical, and Biological Soil Health
3.2. A Top 10 List of Soil Metrics (See Table 1)
3.3. Best Practices for Healthy Soils on Restored Floodplains
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernhardt, E.S.; Palmer, M.A.; Allan, J.D.; Alexander, G.; Barnas, K.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.; Follstad-Shah, J.; et al. Synthesizing U.S. River Restoration Efforts. Science 2005, 308, 636–637. [Google Scholar] [CrossRef]
- Brown, A.G.; Lespez, L.; Sear, D.A.; Macaire, J.; Houben, P.; Klimek, K.; Brazier, R.E.; Van Oost, K.; Pears, B. Natural vs anthropogenic streams in Europe: History, ecology and implications for restoration, river-rewilding and riverine ecosystem services. Earth-Sci. Rev. 2018, 180, 185–205. [Google Scholar] [CrossRef]
- Palmer, M.A.; Bernhardt, E.S.; Allan, J.D.; Lake, P.S.; Alexander, G.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.N.; Follstad Shah, J.; et al. Standards for ecologically successful river restoration. J. Appl. Ecol. 2005, 42, 208–217. [Google Scholar] [CrossRef]
- Smith, B.; Clifford, N.J.; Mant, J. The changing nature of river restoration. WIREs Water 2014, 1, 249–261. [Google Scholar] [CrossRef]
- Lammers, R.W.; Bledsoe, B.P. What role does stream restoration play in nutrient management? Crit. Rev. Environ. Sci. Technol. 2017, 47, 335–371. [Google Scholar] [CrossRef]
- Pasternack, G.B. River Restoration: Disappointing, Nascent, Yet Desperately Needed. In Reference Module in Earth Systems and Environmental Sciences; Elsevier Inc.: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Wohl, E.; Lane, S.N.; Wilcox, A.C. The science and practice of river restoration. Water Resour. Res. 2015, 51, 5974–5997. [Google Scholar] [CrossRef] [Green Version]
- Hassett, B.; Palmer, M.; Bernhardt, E.; Smith, S.; Carr, J.; Hart, D. Hart Restoring Watersheds Project by Project: Trends in Chesapeake Bay Tributary Restoration. Front. Ecol. Environ. 2005, 3, 259–267. [Google Scholar] [CrossRef]
- As Maryland Pours Millions of Dollars into Ailing Streams, Research Shows Some Projects Don’t Help Clean the Bay. Available online: https://www.baltimoresun.com/news/environment/bs-md-stream-restoration-20200102-hqwyeoa4m5bgfhtxybgdalrhby-story.html (accessed on 9 June 2020).
- Kenney, M.A.; Wilcock, P.R.; Hobbs, B.F.; Flores, N.E.; Martínez, D.C. Is Urban Stream Restoration Worth It? JAWRA J. Am. Water Resour. Assoc. 2012, 48, 603–615. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Groffman, P.M.; Mayer, P.M.; Striz, E.; Gold, A.J. Effects of Stream Restoration on Denitrification in an Urbanizing Watershed. Ecol. Appl. 2008, 18, 789–804. Available online: https://www.jstor.org/stable/40062186 (accessed on 11 April 2023). [CrossRef] [Green Version]
- Mattern, K.; Lutgen, A.; Sienkiewicz, N.; Jiang, G.; Kan, J.; Peipoch, M.; Inamdar, S. Stream Restoration for Legacy Sediments at Gramies Run, Maryland: Early Lessons from Implementation, Water Quality Monitoring, and Soil Health. Water 2020, 12, 2164. [Google Scholar] [CrossRef]
- Filoso, S.; Palmer, M. Stream Restoration Can Improve Water Quality But is Far from Being the Silver Bullet Solution. Water Resour. Impact 2009, 11, 17–18. Available online: https://www.jstor.org/stable/wateresoimpa.11.5.0017 (accessed on 11 April 2023).
- Palmer, M.A.; Filoso, S.; Fanelli, R.M. From ecosystems to ecosystem services: Stream restoration as ecological engineering. Ecol. Eng. 2014, 65, 62–70. [Google Scholar] [CrossRef]
- Beauchamp, V.B.; Swan, C.M.; Szlavecz, K.; Hu, J. Riparian community structure and soil properties of restored urban streams. Ecohydrology 2015, 8, 880–895. Available online: https://api.istex.fr/ark:/67375/WNG-7M7HW7HC-V/fulltext.pdf (accessed on 11 April 2023). [CrossRef]
- Wood, D.; Schueler, T. Consensus Recommendations to Improve Protocols 2 and 3 for Defining Stream Restoration Pollutant Removal Credits. Chesap. Stormwater Netw. 2020. Available online: https://chesapeakestormwater.net/resource/consensus-recommendations-for-improving-the-application-of-the-prevented-sediment-protocol-for-urban-stream-restoration-projects-built-for-pollutant-removal-credit/ (accessed on 11 April 2023).
- Wood, K.L.; Kaushal, S.S.; Vidon, P.G.; Mayer, P.M.; Galella, J.G. Tree trade-offs in stream restoration: Impacts on riparian groundwater quality. Urban Ecosyst. 2022, 25, 773–795. [Google Scholar] [CrossRef] [PubMed]
- Berg, J. Stream Restoration as a Means of Meeting Chesapeake Bay TMDL Goals. Water Resour. Impact 2014, 16, 16–18. [Google Scholar]
- Hilderbrand, R.H.; Acord, J.; Nuttle, T.J.; Ewing, R. Quantifying the ecological uplift and effectiveness of differing stream restoration approaches in Maryland. Applachian Lab. Univ. Md. Cent. Environ. Sci. 2019. Available online: https://cbtrust.org/wp-content/uploads/Hilderbrand-et-al_Quantifying-the-Ecological-Uplift.pdf (accessed on 11 April 2023).
- Lave, R. The Controversy Over Natural Channel Design: Substantive Explanations and Potential Avenues for Resolution. JAWRA J. Am. Water Resour. Assoc. 2009, 45, 1519–1532. [Google Scholar] [CrossRef]
- Mayer, P.M.; Groffman, P.M.; Striz, E.A.; Kaushal, S.S. Nitrogen Dynamics at the Groundwater–Surface Water Interface of a Degraded Urban Stream. J. Environ. Qual. 2010, 39, 810–823. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Mayer, P.M.; Kaushal, S.S.; Wessel, B.M.; Johnson, T. Regenerative stormwater conveyance (RSC) for reducing nutrients in urban stormwater runoff depends upon carbon quantity and quality. Sci. Total Environ. 2019, 652, 134–146. [Google Scholar] [CrossRef]
- Forshay, K.J.; Weitzman, J.N.; Wilhelm, J.F.; Hartranft, J.; Merritts, D.J.; Rahnis, M.A.; Walter, R.C.; Mayer, P.M. Unearthing a stream-wetland floodplain system: Increased denitrification and nitrate retention at a legacy sediment removal restoration site, Big Spring Run, PA, USA. Biogeochemistry 2022, 161, 171–191. [Google Scholar] [CrossRef]
- Newcomer Johnson, T.; Kaushal, S.; Mayer, P.; Smith, R.; Sivirichi, G. Nutrient Retention in Restored Streams and Rivers: A Global Review and Synthesis. Water 2016, 8, 116. [Google Scholar] [CrossRef] [Green Version]
- Noe, G.B.; Hupp, C.R.; Rybicki, N.B. Hydrogeomorphology Influences Soil Nitrogen and Phosphorus Mineralization in Floodplain Wetlands. Ecosystems 2013, 16, 75–94. [Google Scholar] [CrossRef]
- Hopkins, K.G.; Noe, G.B.; Franco, F.; Pindilli, E.J.; Gordon, S.; Metes, M.J.; Claggett, P.R.; Gellis, A.C.; Hupp, C.R.; Hogan, D.M. A method to quantify and value floodplain sediment and nutrient retention ecosystem services. J. Environ. Manag. 2018, 220, 65–76. [Google Scholar] [CrossRef]
- McMillan, S.K.; Noe, G.B. Increasing floodplain connectivity through urban stream restoration increases nutrient and sediment retention. Ecol. Eng. 2017, 108, 284–295. [Google Scholar] [CrossRef]
- Noe, G.B.; Hupp, C.R. Carbon, Nitrogen, and Phosphorus Accumulation in Floodplains of Atlantic Coastal Plain Rivers, USA. Ecol. Appl. 2005, 15, 1178–1190. [Google Scholar] [CrossRef]
- Gift, D.M.; Groffman, P.M.; Kaushal, S.S.; Mayer, P.M. Denitrification Potential, Root Biomass, and Organic Matter in Degraded and Restored Urban Riparian Zones. Restor. Ecol. 2010, 18, 113–120. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.; Kogel-Knober, I.; Rillig, M. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Welsh, M.K.; McMillan, S.K.; Vidon, P.G. Impact of Riparian and Stream Restoration on Denitrification in Geomorphic Features of Agricultural Streams. Trans. ASABE 2020, 63, 1157–1167. [Google Scholar] [CrossRef]
- Welsh, M.K.; McMillan, S.K.; Vidon, P.G. Denitrification along the Stream-Riparian Continuum in Restored and Unrestored Agricultural Streams. J. Environ. Qual. 2017, 46, 1010–1019. [Google Scholar] [CrossRef]
- Naiman, R.J.; Décamps, H. The ecology of interfaces: Riparian Zones. Annu. Rev. Ecol. Syst. 1997, 28, 621–658. [Google Scholar] [CrossRef] [Green Version]
- Mcmahon, P.; Beauchamp, V.B.; Casey, R.E.; Salice, C.J.; Bucher, K.; Marsh, M.; Moore, J. Effects of stream restoration by legacy sediment removal and floodplain reconnection on water quality. Environ. Res. Lett. 2021, 16, 035009. [Google Scholar] [CrossRef]
- Sudduth, E.B.; Hassett, B.A.; Cada, P.; Bernhardt, E.S. Testing the Field of Dreams Hypothesis: Functional responses to urbanization and restoration in stream ecosystems. Ecol. Appl. 2011, 21, 1972–1988. [Google Scholar] [CrossRef] [PubMed]
- Callaham, M.A.J.; Rhoades, C.C.; Heneghan, L. Striking Profile: Soil Ecological Knowledge in Restoration Management and Science. Restor. Ecol. 2008, 16, 604–607. [Google Scholar] [CrossRef]
- Heneghan, L.; Miller, S.P.; Baer, S.; Callaham, M.A.J.; Montgomery, J.; Pavao-Zuckerman, M.; Rhoades, C.C.; Richardson, S. Integrating Soil Ecological Knowledge into Restoration Management. Restor. Ecol. 2008, 16, 608–617. [Google Scholar] [CrossRef]
- Farrell, H.L.; Léger, A.; Breed, M.F.; Gornish, E.S. Restoration, soil organisms, and soil processes: Emerging approaches. Restor. Ecol. 2020, 28, S307–S310. [Google Scholar] [CrossRef]
- Laub, B.G.; McDonough, O.T.; Needelman, B.A.; Palmer, M.A. Comparison of Designed Channel Restoration and Riparian Buffer Restoration Effects on Riparian Soils. Restor. Ecol. 2013, 21, 695–703. [Google Scholar] [CrossRef]
- Unghire, J.M.; Sutton-Grier, A.E.; Flanagan, N.E.; Richardson, C.J. Spatial Impacts of Stream and Wetland Restoration on Riparian Soil Properties in the North Carolina Piedmont. Restor. Ecol. 2011, 19, 738–746. [Google Scholar] [CrossRef]
- Vidon, P.; Allan, C.; Burns, D.; Duval, T.; Gurwick, N.; Inamdar, S.; Lowrance, R.; Okay, J.; Scott, D.; Sebestyen, S. Hot Spots and Hot Moments in Riparian Zones: Potential for Improved Water Quality Management. J. Am. Water Resour. Assoc. 2010, 46, 278–298. [Google Scholar] [CrossRef]
- Malone, M. A Comparison of the Vegetation and Soils of Restored Streams and Their References in the NC Piedmont. Master’s Thesis, NC State University, Raliegh, NC, USA, 2011. [Google Scholar]
- James, L.A. Legacy sediment: Definitions and processes of episodically produced anthropogenic sediment. Anthropocene 2013, 2, 16–26. [Google Scholar] [CrossRef]
- Walter, R.C.; Merritts, D.J. Natural Streams and the Legacy of Water-Powered Mills. Science 2008, 319, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G.; Lutgen, A.; Sienkiewicz, N.; Mattern, K.; Kan, J.; Inamdar, S. Streambank legacy sediment contributions to sediment-bound nutrient yields from a Mid-Atlantic, Piedmont Watershed. J. Am. Water Resour. Assoc. 2020, 56, 820–841. [Google Scholar] [CrossRef]
- Lutgen, A.; Jiang, G.; Siekiewicz, N.; Mattern, K.; Kan, J.; Inamdar, S. Nutrients and Heavy Metals in Legacy Sediments: Concentrations, Comparisons with Upland Soils, and Implications for Water Quality. J. Am. Water Resour. Assoc. 2020, 56, 669–691. [Google Scholar] [CrossRef]
- Wegmann, K.; Lewis, R.; Hunt, M. Historic mill ponds and piedmont stream water quality: Making the connection near Raleigh, North Carolina. In From the Blue Ridge to the Coastal Plain: Field Excursions in the Southeastern United States; Geological Society of America: Boulder, CO, USA, 2012; Volume 29. [Google Scholar]
- Merritts, D.; Walter, R.; Rahnis, M.; Hartranft, J.; Cox, S.; Gellis, A.; Potter, N.; Hilgartner, W.; Langland, M.; Manion, L.; et al. Anthropocene streams and base-level controls from historic dams in the unglaciated mid-Atlantic region, USA. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 976–1009. [Google Scholar] [CrossRef]
- Merritts, D.; Walter, R.; Rahnis, M.; Cox, S.; Hartranft, J.; Scheid, C.; Potter, N.; Jenschke, M.; Reed, A.; Matuszewski, D.; et al. The rise and fall of Mid-Atlantic streams: Millpond sedimentation, milldam breaching, channel incision, and stream bank erosion. Geol. Soc. Am. Rev. Eng. Geol. 2013, 21, 183–203. [Google Scholar]
- Hartranft, J.; Merritts, D.; Walter, R.; Rahnis, M. The Big Spring Run Restoration Experiment: Policy, Geomorphology, and Aquatic Ecosystems in the Big Spring Run Watershed, Lancaster County, PA. Sustain 2011, 24, 24–30. [Google Scholar]
- Clague, J.C.; Stenger, R.; Clough, T.J. The Impact of Relict Organic Materials on the Denitrification Capacity in the Unsaturated–Saturated Zone Continuum of Three Volcanic Profiles. J. Environ. Qual. 2013, 42, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Bernal, B.; Mckinley, D.C.; Hungate, B.A.; White, P.M.; Mozdzer, T.J.; Megonigal, J.P. Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs. Soil Biol. Biochem. 2016, 98, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Elliott, S.J.; Wilf, P.; Walter, R.C.; Merritts, D.J. Subfossil leaves reveal a new upland hardwood component of the pre-European Piedmont landscape, Lancaster County, Pennsylvania. PLoS ONE 2013, 8, e79317. [Google Scholar] [CrossRef] [Green Version]
- Scott, B.; Baldwin, A.H.; Ballantine, K.; Palmer, M.; Yarwood, S. The role of organic amendments in wetland restorations. Restor. Ecol. 2020, 28, 776–784. [Google Scholar] [CrossRef]
- Hintz, W.D.; Fay, L.; Relyea, R.A. Road salts, human safety, and the rising salinity of our fresh waters. Front. Ecol. Environ. 2021, 20, 22–30. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Likens, G.E.; Pace, M.L.; Utz, R.M.; Haq, S.; Gorman, J.; Grese, M. Freshwater salinization syndrome on a continental scale. Proc. Natl. Acad. Sci. USA 2018, 115, E574. [Google Scholar] [CrossRef] [Green Version]
- Kaushal, S.S.; Mayer, P.M.; Likens, G.E.; Reimer, J.E.; Maas, C.M.; Rippy, M.A.; Grant, S.B.; Hart, I.; Utz, R.M.; Shatkay, R.R.; et al. Five state factors control progressive stages of freshwater salinization syndrome. Limnol. Oceanogr. Lett. 2022, 8, 190–211. [Google Scholar] [CrossRef]
- Inamdar, S.P.; Peck, E.K.; Peipoch, M.; Gold, A.J.; Sherman, M.; Hripto, J.; Groffman, P.M.; Trammell, T.L.E.; Merritts, D.J.; Addy, K.; et al. Saturated, Suffocated, and Salty: Human Legacies Produce Hot Spots of Nitrogen in Riparian Zones. J. Geophys. Res. Biogeosciences 2022, 127, e2022JG007138. [Google Scholar] [CrossRef]
- Ardón, M.; Morse, J.L.; Colman, B.P.; Bernhardt, E.S. Drought-induced saltwater incursion leads to increased wetland nitrogen export. Glob. Chang. Biol. 2013, 19, 2976–2985. [Google Scholar] [CrossRef] [PubMed]
- Weissman, D.; Ouyang, T.; Tully, K.L. Saltwater intrusion affects nitrogen, phosphorus and iron transformations under oxic and anoxic conditions: An incubation experiment. Biogeochemistry 2021, 154, 451–469. [Google Scholar] [CrossRef]
- Herbert, E.R.; Boon, P.; Burgin, A.J.; Neubauer, S.C.; Franklin, R.B.; Ardón, M.; Hopfensperger, K.N.; Lamers, L.P.M.; Gell, P. A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere 2015, 6, art206. [Google Scholar] [CrossRef]
- Noe, G.B.; Krauss, K.W.; Lockaby, B.G.; Conner, W.H.; Hupp, C.R. Effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands. Biogeochemistry 2013, 114, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Lozano-Baez, S.E.; Domínguez-Haydar, Y.; Meli, P.; Meerveld, I.; Vásquez Vásquez, K.; Castellini, M. Key gaps in soil monitoring during forest restoration in Colombia. Restor. Ecol. 2021, 29, e13391. [Google Scholar] [CrossRef]
- Wolf, E.C.; Rejmánková, E.; Cooper, D.J. Wood chip soil amendments in restored wetlands affect plant growth by reducing compaction and increasing dissolved phenolics. Restor. Ecol. 2019, 27, 1128–1136. [Google Scholar] [CrossRef]
- Williams, M.; Bhatt, G.; Filoso, S.; Yactayo, G. Stream Restoration Performance and Its Contribution to the Chesapeake Bay TMDL: Challenges Posed by Climate Change in Urban Areas. Estuaries Coasts 2017, 40, 1227–1246. [Google Scholar] [CrossRef]
- Baer, S.G.; Heneghan, L.; Eviner, V.T. Applying Soil Ecological Knowledge to Restore Ecosystem Services. In Soil Ecology and Ecosystem Services; Oxford University Press: Oxford, UK, 2012; p. 377. [Google Scholar]
- Paul, E.A. Soil Microbiology, Ecology, and Biochemistry; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Orr, C.H.; Stanley, E.H.; Wilson, K.A.; Finlay, J.C. Effects of restoration and reflooding on soil denitrification in a leveed Midwestern floodplain. Ecol. Appl. 2007, 17, 2365–2376. [Google Scholar] [CrossRef]
- Peralta, A.L.; Matthews, J.W.; Kent, A.D. Microbial community structure and denitrification in a wetland mitigation bank. Appl. Environ. Microbiol. 2010, 76, 4207–4215. [Google Scholar] [CrossRef] [Green Version]
- Song, K.; Lee, S.; Kang, H. Denitrification rates and community structure of denitrifying bacteria in a newly constructed wetland. Eur. J. Soil Biol. 2010, 47, 24–29. [Google Scholar] [CrossRef]
- Dandie, C.E.; Wertz, S.; Leclair, C.L.; Goyer, C.; Burton, D.L.; Patten, C.L.; Zebarth, B.J.; Trevors, J.T. Abundance, diversity and functional gene expression of denitrifier communities in adjacent riparian and agricultural zones. FEMS Microbiol. Ecol. 2011, 77, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Epstein, S.S. Microbial awakenings. Nature 2009, 457, 1083. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.F.; Upadhyaya, A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 1998, 198, 97–107. [Google Scholar] [CrossRef]
- Evans, M. Soil: The Incredible Story of What Keeps the Earth, and Us, Healthy; Murdoch Books: London, UK, 2021. [Google Scholar]
- The Rhizosphere—Roots, Soil and Everything in Between. Nature Education Knowledge. Available online: https://www.nature.com/scitable/knowledge/library/the-rhizosphere-roots-soil-and-67500617/ (accessed on 11 April 2023).
- Grman, E.; Allen, J.; Galloway, E.; Mcbride, J.; Bauer, J.T.; Price, P.A. Inoculation with remnant prairie soils increased the growth of three native prairie legumes but not necessarily their associations with beneficial soil microbes. Restor. Ecol. 2020, 28, S393–S399. [Google Scholar] [CrossRef]
- Norris, C.E.; Bean, G.M.; Cappellazzi, S.B.; Cope, M.; Greub, K.L.H.; Liptzin, D.; Rieke, E.L.; Tracy, P.W.; Morgan, C.L.S.; Honeycutt, C.W. Introducing the North American project to evaluate soil health measurements. Agron. J. 2020, 112, 3195–3215. [Google Scholar] [CrossRef]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Hale, R.; Reich, P.; Daniel, T.; Lake, P.S.; Cavagnaro, T.R. Scales that matter: Guiding effective monitoring of soil properties in restored riparian zones. Geoderma 2014, 228–229, 173–181. [Google Scholar] [CrossRef]
- Muñoz-Rojas, M.; Erickson, T.E.; Dixon, K.W.; Merritt, D.J. Soil quality indicators to assess functionality of restored soils in degraded semiarid ecosystems. Restor. Ecol. 2016, 24, S43–S52. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis: Part Physical and Mineralogical Methods; Klute, A., Ed.; ASA and SSSA: Madison, WI, USA, 1986; pp. 363–382. [Google Scholar]
- Vazquez, L.; Myhre, D.L.; Hanlon, E.A.; Gallaher, R.N. Soil penetrometer resistance and bulk density relationships after long-term no tillage. Commun. Soil Sci. Plant Anal. 1991, 22, 2101–2117. [Google Scholar] [CrossRef]
- Weil, R.R.; Brady, N.C. Nature and Properties of Soils, 15th ed.; Pearson: London, UK, 2016; p. 1104. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-size Analysis. In Methods of Soil Analysis; SSSA Book Series; American Society of Agronomy: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Kemper, W.D.; Rosenau, R.C. Aggregate Stability and Size Distribution. In Methods of Soil Analysis; American Society of Agronom: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar]
- Reynolds, W.D.; Elrick, D.E. Ponded Infiltration from a Single Ring: I. Analysis of Steady Flow. Soil Sci. Soc. Am. J. 1990, 54, 1233–1241. [Google Scholar] [CrossRef]
- Thomas, G.W. Soil pH and Soil Acidity. In Methods of Soil Analysis; SSSA Book Series; American Society of Agronomy: Madison, WI, USA, 1996; pp. 475–490. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis; SSSA Book Series; American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Saha, U.K.; Sonon, L.; Biswas, B.K. A Comparison of Diffusion-Conductimetric and Distillation-Titration Methods in Analyzing Ammonium- and Nitrate-Nitrogen in the KCl-Extracts of Georgia Soils. Commun. Soil Sci. Plant Anal. 2018, 49, 63–75. [Google Scholar] [CrossRef]
- Sikora, F.S.; Moore, K. Soil test methods from the southeastern United States. South. Coop. Ser. Bull. 2014, 419, 54–58. [Google Scholar]
- Buyer, J.S.; Sasser, M. High throughput phospholipid fatty acid analysis of soils. Appl. Soil Ecol. Microorg. Sustain. Manag. Soil 2012, 61, 127–130. [Google Scholar] [CrossRef]
- Thompson, L.R.; Sanders, J.G.; McDonald, D.; Amir, A.; Ladau, J.; Locey, K.J.; Prill, R.J.; Tripathi, A.; Gibbons, S.M.; Ackermann, G.; et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 2017, 551, 457–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frasier, I.; Noellemeyer, E.; Fernández, R.; Quiroga, A. Direct field method for root biomass quantification in agroecosystems. MethodsX 2016, 3, 513–519. [Google Scholar] [CrossRef]
- Mozaffari, M.; Sims, J.T. Phosphorus availability and sorption in an Atlantic coastal plain watershed dominated by animal-based agriculture. Soil Sci. 1994, 157, 97–107. [Google Scholar] [CrossRef]
- Sims, J.T.; Maguire, R.O.; Leytem, A.B.; Gartley, K.L.; Pautler, M.C. Evaluation of Mehlich 3 as an Agri-Environmental Soil Phosphorus Test for the Mid-Atlantic United States of America. Soil Sci. Soc. Am. J. 2002, 66, 2016–2032. [Google Scholar] [CrossRef]
- Groffman, P.M.; Altabet, M.A.; Böhlke, H.; Butterbach-Bahl, K.; David, M.B.; Firestone, M.K.; Giblin, A.E.; Kana, T.M.; Nielsen, L.P.; Voytek, M.A. Voytek Methods for Measuring Denitrification: Diverse Approaches to a Difficult Problem. Ecol. Appl. 2006, 16, 2091–2122. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Cardoso, E.J.B.N.; Vasconcellos, R.L.F.; Bini, D.; Miyauchi, M.Y.H.; Santos, C.A.; Alves, P.R.L. Soil health: Looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci. Agric. 2013, 70, 274–289. [Google Scholar] [CrossRef] [Green Version]
- Frostegård, Å.; Tunlid, A.; Bååth, E. Use and misuse of PLFA measurements in soils. Soil Biol. Biochem. 2011, 43, 1621–1625. [Google Scholar] [CrossRef]
- Ramsey, P.W.; Rillig, M.C.; Feris, K.P.; Holben, W.E.; Gannon, J.E. Choice of methods for soil microbial community analysis: PLFA maximizes power compared to CLPP and PCR-based approaches. Pedobiologia 2006, 50, 275–280. [Google Scholar] [CrossRef]
- Ruess, L.; Chamberlain, P.M. The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biol. Biochem. 2010, 42, 1898–1910. [Google Scholar] [CrossRef]
- Erwin, K.L.; Ronnie Best, G. Marsh community development in a central Florida phosphate surface-mined reclaimed wetland. Wetlands 1985, 5, 155–166. [Google Scholar] [CrossRef]
- Aveni, M. Aerating Your Lawn; Publication# 430-002; Virginia Cooperative Extension Publication: Leesburg, VA, USA, 2013. [Google Scholar]
- Lance, A.C.; Burke, D.J.; Hausman, C.E.; Burns, J.H. High-throughput sequencing provides insight into manipulated soil fungal community structure and diversity during temperate forest restoration. Restor. Ecol. 2020, 28, S365–S372. [Google Scholar] [CrossRef] [Green Version]
- Mills, J.G.; Weinstein, P.; Gellie, N.J.C.; Weyrich, L.S.; Lowe, A.J.; Breed, M.F. Urban habitat restoration provides a human health benefit through microbiome rewilding: The Microbiome Rewilding Hypothesis. Restor. Ecol. 2017, 25, 866–872. [Google Scholar] [CrossRef] [Green Version]
- Mills, J.G.; Bissett, A.; Gellie, N.J.C.; Lowe, A.J.; Selway, C.A.; Thomas, T.; Weinstein, P.; Weyrich, L.S.; Breed, M.F. Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design. Restor. Ecol. 2020, 28, S322–S334. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
Soil Metric | Motivation/Used For | Method/Citation |
---|---|---|
Physical soil properties | ||
Bulk density | Compaction | [81] |
Penetration test | Compaction | Using a penetrometer; [82] |
Porosity | Compaction, water retention, nutrient conditions, microbial habitat | Derived from bulk density measurements; [83] |
Texture | Basic soil metric used for numerous other soil properties | [84] |
Aggregate stability | Potential for erosion resistance | [85] |
In situ infiltration rate | Water retention; potential for surface runoff and erosion | [86] |
Chemical soil properties | ||
pH and organic matter | Basic chemical condition | [87]; loss on ignition |
Electric conductivity | Presence of ions and metals, salinization | Hand-held electric conductivity sensor—e.g., Hanna Soil Test meter. |
Total C and N | C and N sequestration | [88] |
Nitrate-N and ammonium-N by KCl extraction | Inorganic N removal and retention in soils | [89] |
* Mehlich-3 extraction for select cations and metals | Phosphorus and metal content and removal | [90] |
Biological soil properties | ||
Phospholipid fatty acids (PLFAs) | Broader test for active microbial biomass; fungi to bacteria ratio | [91] |
* Genomics—16S rRNA | More specific microbial composition | [92] |
Fine root biomass | Potential for plant growth and recovery | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inamdar, S.P.; Kaushal, S.S.; Tetrick, R.B.; Trout, L.; Rowland, R.; Genito, D.; Bais, H. More Than Dirt: Soil Health Needs to Be Emphasized in Stream and Floodplain Restorations. Soil Syst. 2023, 7, 36. https://doi.org/10.3390/soilsystems7020036
Inamdar SP, Kaushal SS, Tetrick RB, Trout L, Rowland R, Genito D, Bais H. More Than Dirt: Soil Health Needs to Be Emphasized in Stream and Floodplain Restorations. Soil Systems. 2023; 7(2):36. https://doi.org/10.3390/soilsystems7020036
Chicago/Turabian StyleInamdar, Shreeram P., Sujay S. Kaushal, Robert Brian Tetrick, Larry Trout, Richard Rowland, Dennis Genito, and Harsh Bais. 2023. "More Than Dirt: Soil Health Needs to Be Emphasized in Stream and Floodplain Restorations" Soil Systems 7, no. 2: 36. https://doi.org/10.3390/soilsystems7020036