Effects of Irrigation Regimes and Rice Varieties on Methane Emissions and Yield of Dry Season Rice in Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites and Weather Conditions
2.2. Experimental Design and Treatments
2.3. Crop Management
2.4. Gas Sampling and Analysis
2.5. Estimation of CH4 Emission Rates and Cumulative Emissions
2.6. Estimation of the EF of CH4, GWP, and GHGI
2.7. Statistical Analysis
3. Results
3.1. Effects of Rice Varieties and Irrigation Regimes on Yield and Yield-Contributing Characteristics
3.1.1. Number of Effective Tillers
3.1.2. Number of Filled Spikelets per Panicle
3.1.3. Number of Sterile Spikelets per Panicle
3.1.4. Spikelet Fertility
3.1.5. Spikelet Sterility
3.1.6. 1000-Grain Weight
3.1.7. Grain Yield
3.2. Correlations between Yield-Contributing Characteristics of Rice Varieties
3.3. Dynamics of CH4 Emissions
3.4. Cumulative CH4 Emissions, EFs, GWP of CH4, and GHGI
4. Discussion
4.1. Rice Yield
4.2. CH4 Emissions, EFs, GWP, and GHGI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, S.M.M.; Gaihre, Y.K.; Biswas, J.C.; Jahan, M.S.; Singh, U.; Adhikary, S.K.; Satter, M.A.; Saleque, M.A. Different nitrogen rates and methods of application for dry season rice cultivation with alternate wetting and drying irrigation: Fate of nitrogen and grain yield. Agric. Water Manag. 2018, 196, 144–153. [Google Scholar] [CrossRef]
- Islam, S.M.M.; Gaihre, Y.K.; Shah, A.L.; Singh, U.; Sarkar, M.I.U.; Satter, M.A.; Sanabria, J.; Biswas, J.C. Rice yields and nitrogen use efficiency with different fertilizers and water management under intensive lowland rice cropping systems in Bangladesh. Nutr. Cycl. Agroecosyst. 2016, 106, 143–156. [Google Scholar] [CrossRef]
- Bangladesh Bureau of Statistics (BBS). Year Book of Agricultural Statistics 2020, 32nd ed. Bangladesh Bureau of Statistics, Statistics and Informatics Division, Ministry of Planning, Gov. of the People’s Republic of Bangladesh. Available online: www.bbs.gov.bd (accessed on 17 August 2021).
- Arunrat, N.; Pumijumnong, N. Practices for reducing greenhouse gas emissions from rice production in Northeast Thailand. Agriculture 2017, 7, 4. [Google Scholar] [CrossRef]
- Zhang, L.; Song, C.; Zheng, X.; Wang, D.; Wang, Y. Effects of nitrogen on the ecosystem respiration, CH4 and N2O emissions to the atmosphere from the freshwater marshes in northeast China. Environ. Geol. 2007, 52, 529–539. [Google Scholar] [CrossRef]
- Jain, N.; Pathak, H.; Mitra, S.; Bhatia, A. Emission of methane from rice fields. A review. J. Sci. Ind. Res. 2004, 63, 101–115. [Google Scholar]
- Islam, S.M.; Gaihre, Y.K.; Islam, M.R.; Akter, M.; Al Mahmud, A.; Singh, U.; Sander, B.O. Effects of water management on greenhouse gas emissions from farmers’ rice fields in Bangladesh. Sci. Total Environ. 2020, 734, 139382. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zheng, X.; Zhou, Z.; Han, S.; Wang, Y.; Wang, K.; Liang, W.; Li, M.; Chen, D.; Yang, Z. Nitrous oxide and nitric oxide emissions from an irrigated cotton field in Northern China. Plant Soil 2010, 332, 123–134. [Google Scholar] [CrossRef]
- Gaihre, Y.K.; Singh, U.; Islam, S.M.M.; Huda, A.; Islam, M.R.; Biswas, J.C. Efficient fertilizer and water management in rice cultivation for food security and mitigating greenhouse gas emissions. In Proceedings of the Myanmar Soil Fertility and Fertilizer Management Conference, Yezin, Myanmar, 18–19 October 2017; Available online: https://ifdc.org/wp-content/uploads/2018/03/Conference-Proceedings-3-22-2018.pdf (accessed on 22 November 2022).
- Islam, S.M.M.; Gaihre, Y.K.; Islam, M.R.; Ahmed, M.N.; Akter, M.; Singh, U.; Sander, B.O. Mitigating greenhouse gas emissions from irrigated rice cultivation through improved fertilizer and water management. J. Environ. Manag. 2022, 307, 114520. [Google Scholar] [CrossRef]
- Islam, S.M.M.; Gaihre, Y.K.; Islam, M.R.; Khatun, A.; Islam, A. Integrated plant nutrient systems improve rice yields without affecting greenhouse gas emissions from lowland rice cultivation. Sustainability 2022, 14, 11338. [Google Scholar] [CrossRef]
- Gaihre, Y.K.; Singh, U.; Islam, S.M.M.; Huda, A.; Islam, M.R.; Satter, M.A.; Sanabria, J.; Islam, M.R.; Shah, A.L. Impacts of urea deep placement on nitrous oxide and nitric oxide emissions from rice fields in Bangladesh. Geoderma 2015, 259, 370–379. [Google Scholar] [CrossRef]
- Gaihre, Y.K.; Singh, U.; Islam, S.M.M.; Huda, A.; Islam, M.R.; Sanabria, J.; Satter, M.A.; Islam, M.R.; Biswas, J.C.; Jahiruddin, M.; et al. Nitrous oxide and nitric oxide emissions and nitrogen use efficiency as affected by nitrogen placement in lowland rice fields. Nutr. Cycl. Agroecosyst. 2018, 110, 277–291. [Google Scholar] [CrossRef]
- Wang, Z.P.; Delaune, R.D.; Patrick, W.H., Jr.; Masscheleyn, P.H. Soil redox and pH effects on methane production in a flooded rice soil. Soil Sci. Soc. Am. J. 1993, 57, 382–385. [Google Scholar] [CrossRef]
- Minamikawa, K.; Sakai, N.; Yagi, K. Methane emission from paddy fields and its mitigation options on a field scale. Microbes Environ. 2006, 21, 135–147. [Google Scholar] [CrossRef]
- Jia, Z.; Cai, Z.; Xu, H.; Li, X. Effect of rice plants on CH4 production, transport, oxidation and emission in rice paddy soil. Plant Soil 2001, 230, 211–221. [Google Scholar] [CrossRef]
- Lampayan, R.M.; Rejesus, R.M.; Singleton, G.R.; Bouman, B.A. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Res. 2015, 170, 95–108. [Google Scholar] [CrossRef]
- Hou, H.; Peng, S.; Xu, J.; Yang, S.; Mao, Z. Seasonal variations of CH4 and N2O emissions in response to water management of paddy fields located in Southeast China. Chemosphere 2012, 89, 884–892. [Google Scholar] [CrossRef]
- Ku, H.H.; Hayashi, K.; Agbisit, R.; Villegas-Pangga, G. Evaluation of fertilizer and water management effect on rice performance and greenhouse gas intensity in different seasonal weather of tropical climate. Sci. Total Environ. 2017, 601, 1254–1262. [Google Scholar] [CrossRef]
- Xu, Y.; Ge, J.; Tian, S.; Li, S.; Nguy-Robertson, A.L.; Zhan, M.; Cao, C. Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China. Sci. Total Environ. 2015, 505, 1043–1052. [Google Scholar] [CrossRef]
- Gaihre, Y.K.; Singh, U.; Huda, A.; Islam, S.M.M.; Islam, M.R.; Biswas, J.C.; DeWald, J. Nitrogen use efficiency, crop productivity and environmental impacts of urea deep placement in lowland rice fields. In Proceedings of the International Nitrogen Initiative Conference on Solutions to Improve Nitrogen Use Efficiency for the World, Melbourne, Australia, 4–8 December 2016; Available online: www.ini2016.com (accessed on 9 December 2022).
- Islam, S.M.; Gaihre, Y.K.; Biswas, J.C.; Singh, U.; Ahmed, M.N.; Sanabria, J.; Saleque, M.A. Nitrous oxide and nitric oxide emissions from lowland rice cultivation with urea deep placement and alternate wetting and drying irrigation. Sci. Rep. 2018, 8, 17623. [Google Scholar] [CrossRef]
- Sander, B.O.; Samson, M.; Buresh, R.J. Methane and nitrous oxide emissions from flooded rice fields as affected by water and straw management between rice crops. Geoderma 2014, 235, 355–362. [Google Scholar] [CrossRef]
- Janz, B.; Weller, S.; Kraus, D.; Racela, H.S.; Wassmann, R.; Butterbach-Bahl, K.; Kiese, R. Greenhouse gas footprint of diversifying rice cropping systems: Impacts of water regime and organic amendments. Agric. Ecosyst. Environ. 2019, 270, 41–54. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, J.; Sun, Y.; Xu, H.; Yang, Z.; Liu, S.; Jia, X.; Zheng, H. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China. Field Crops Res. 2012, 127, 85–98. [Google Scholar] [CrossRef]
- Liu, L.; Chen, T.; Wang, Z.; Zhang, H.; Yang, J.; Zhang, J. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crops Res. 2013, 154, 226–235. [Google Scholar] [CrossRef]
- Setyanto, P.; Makarim, A.K.; Fagi, A.M.; Wassmann, R.; Burendia, L.V. Crop management affecting methane emissions from irrigated and rainfed rice in Central Java (Indonesia). Nutr. Cycl. Agroecosyst. 2000, 58, 85–93. [Google Scholar] [CrossRef]
- Malayan, S.K.; Bhatia, A.; Kumar, A.; Gupta, D.K.; Singh, R.; Kumar, S.S.; Tomer, R.; Kumar, O.; Jain, N. Methane production, oxidation and mitigation: A mechanistic understanding and comprehensive evaluation of influencing factors. Sci. Total Environ. 2016, 572, 874–896. [Google Scholar] [CrossRef]
- Shalini, S.; Kumar, S.; Jain, M.C. Methane emission from two Indian soils planted with different rice cultivars. Biol. Fertil. Soils 1997, 25, 285–289. [Google Scholar]
- Butterbach-Bahl, K.; Papen, H.; Rennenberg, H. Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell. Environ. 1997, 20, 1170–1183. [Google Scholar] [CrossRef]
- Faostat; F.A.O. Food and Agriculture Organization of the United Nations-Statistic Division. 2019. Available online: https://www.fao.org/faostat/en/#data (accessed on 15 December 2022).
- Ali, M.A.; Hoque, M.A.; Kim, P.J. Mitigating global warming potentials of methane and nitrous oxide gases from rice paddies under different irrigation regimes. Ambio 2013, 42, 357–368. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Private Limited: New Delhi, India, 1973; p. 498. [Google Scholar]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Agronomy Series 9 ASA, SSSA. Methods of Soil Analysis, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1982; Part 2; pp. 403–427. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; United State Department of Agriculture: Washington, DC, USA, 1954; Volume 19, p. 939. [Google Scholar]
- Fox, R.L.; Olsen, R.A.; Rhoades, H.F. Evaluating the sulphur status of soil by plant and soil test. Soil Sci. Soc. Am. Proc. 1964, 28, 243–246. [Google Scholar] [CrossRef]
- Christian, G.D.; Feldman, F.J. Methods of Sample Preparation. Atomic Absorption Spectroscopy. In Applications in Agriculture, Biology, and Medicine; Wiley-Interscience: New York, NY, USA, 1970; pp. 187–214. [Google Scholar]
- Ali, M.A.; Inubushi, K.; Kim, P.J.; Amin, S. Management of paddy soil towards low greenhouse gas emissions and sustainable rice production in the changing climatic conditions. In Soil Contamination and Alternatives for Sustainable Development; Intechopen: London, UK, 2019; pp. 89–106. [Google Scholar]
- Bouman, B.A.; Tuong, T.P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manag. 2000, 1615, 20. [Google Scholar] [CrossRef]
- Chowdhury, M.J.U.; Sarker, A.U.; Sarker, M.A.R.; Kashem, M.A. Effect of variety and number of seedlings hill-1 on the yield and its components on late transplanted aman rice. Bangladesh J. Agric. Sci. 1993, 201, 311–316. [Google Scholar]
- Thomas, N.; Lal, G.M.L. Genetic divergence in rice genotypes under irrigated conditions. Ann. Plant Soil Res. 2012, 14, 109–112. [Google Scholar]
- Yoshida, S. Fundamentals of Rice Crop Science; International Rice Research Institute: Los Baños, Philippines, 1981. [Google Scholar]
- Fageria, N.K. Yield physiology of rice. J. Plant Nutr. 2007, 30, 843–879. [Google Scholar] [CrossRef]
- Conrad, R. Microbial Ecology of Methanogens and Methanotrophs. Adv. Agron. 2007, 96, 1–63. [Google Scholar] [CrossRef]
- Kimura, M.; Murase, J.; Lu, Y.H. Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biol. Biochem. 2004, 36, 1399–1416. [Google Scholar] [CrossRef]
- Tokida, T.; Fumoto, T.; Cheng, W.; Matsunami, T.; Adachi, M.; Katayanagi, N.; Mastsushima, M.; Okawara, Y.; Nakamura, H.; Okada, M.; et al. Effects of free air CO2 enrichment (FACE) and soil warming on CH4 emission from a rice paddy field: Impact assessment and stoichiometric evaluation. Biogeosciences 2010, 7, 2639–2653. [Google Scholar] [CrossRef]
- Gaihre, Y.K.; Wassmann, R.; Tirol-Padre, A.; Villegas-Pangga, G.; Aquino, E.; Kimball, B.A. Seasonal assessment of greenhouse gas emissions from irrigated lowland rice fields under infrared warming. Agric. Ecosyst. Envoron. 2014, 184, 88–100. [Google Scholar] [CrossRef]
- Singh, J.S.; Pandey, V.C.; Singh, D.P.; Singh, R.P. Influences of pyrite and farmyard manure on population dynamics of soil methanotroph and rice yield in saline rainfed field. Agric. Ecosyst. Environ. 2010, 139, 74–79. [Google Scholar] [CrossRef]
- Ding, H.; Hu, Q.; Cai, M.; Cao, C.; Jiang, Y. Effect of dissolved organic matter (DOM) on greenhouse gas emissions in rice varieties. Agric. Ecosyst. Environ. 2022, 330, 107870. [Google Scholar] [CrossRef]
- Win, E.P.; Win, K.K.; Bellingrath-Kimura, S.D.; Oo, A.Z. Influence of rice varieties, organic manure and water management on greenhouse gas emissions from paddy rice soils. PLoS ONE 2021, 16, e0253755. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Chapter 5 Cropland. In Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; AFOLU; IPCC: Geneva, Switzerland, 2019; Volume 4. [Google Scholar]
- Li, J.; Li, Y.; Wan, Y.; Wang, B.; Waqas, M.A.; Cai, W.; Guo, C.; Zhou, S.; Su, R.; Qin, X.; et al. Combination of modified nitrogen fertilizers and water saving irrigation can reduce greenhouse gas emissions and increase rice yield. Geoderma 2018, 315, 1–10. [Google Scholar] [CrossRef]
Parameter | Value | Methods | Reference |
---|---|---|---|
pH (soil:water = 1:2.5) | 6.94 | Glass electrode pH meter method | [33] |
Organic carbon (%) | 0.645 | Wet oxidation method | [34] |
Total nitrogen (%) | 0.058 | Micro-Kjeldahl method | [33] |
Available phosphorus (mg kg−1) | 5.56 | Olsen method | [35] |
Available sulfur (mg kg−1) | 8.42 | Turbidimetric method | [36] |
Exchangeable potassium cmol(+) kg−1 | 0.119 | NH4OAC extraction method | [37] |
Zinc (mg kg−1) | 0.36 | DTPA extraction method | [37] |
Code | Rice Variety | Variety Description |
---|---|---|
V1 | BRRI dhan69 | Parentage: WuShan YouZhan/P1312777, Grain type: Medium bold, Potential yield: 7.3 t ha−1, Requires 20% less inputs, GSR variety, Duration: 153 days |
V2 | BRRI dhan47 | Parentage: IR515111-B-B-34-B/TCCP266-2-49-B-B-3, Grain type: Medium bold, Potential yield: 6 t ha−1, Duration: 152 days |
V3 | BRRI dhan29 | Parentage: BG90-2/BR 46-51-5, Grain type: Medium slender, Potential yield: 7.5 t ha−1, Duration 160 days |
V4 | Binadhan-8 | Pedigree: IR66946-3R-1-1, Grain type: Medium bold, Potential yield: 5–7 t ha−1, Duration: 130–135 days |
V5 | Binadhan-17 | Pedigree: (SAGC-7 (GSR)), Grain type: Medium bold, Potential yield: 7.5 t ha−1, Requires less inputs, Saves 30% water, GSR variety, Duration: 118 days |
V6 | Binadhan-10 | Pedigree: IR64197-3B-14-2, Grain type: Medium slender, Potential yield: 5.5–6.0 t ha−1, Duration 125–130 days |
Varieties | Water Management | Number of Effective Tiller per m2 | Number of Filled Spikelets per Panicle | Number of Sterile Spikelets per Panicle | |
---|---|---|---|---|---|
Mean of 2 Water Regimes | Mean of 2 Water Regimes | AWD | CF | ||
BRRI dhan69 | Mean | 171.55 a | 173.70 a | 38.73 bc | 23.53 b |
BRRI dhan47 | 157.75 a | 116.70 c | 51.93 b | 20.27 b | |
BRRI dhan29 | 174.10 a | 152.60 ab | 28.47 cd | 25.13 b | |
Binadhan-8 | 173.24 a | 121.27 c | 31.80 c | 22.60 b | |
Binadhan-17 | 165.04 a | 147.90 b | 76.47 a | 51.53 a | |
Binadhan-10 | 165.59 a | 122.60 c | 14.27 d | 14.07 b | |
Mean | AWD | 184.41 a | 138.90 a | 40.27 a | |
CF | 151.35 b | 139.36 a | 26.18 b | ||
ANOVA (p value) | |||||
Varieties (V) | ns | * | * | ||
Irrigation (I) | * | ns | * | ||
V × I | ns | ns | * |
Variety | Water Management | Spikelet Fertility (%) | Spikelet Sterility (%) | 1000-Grain Weight (g) | Grain Yield (t ha−1) | |||
---|---|---|---|---|---|---|---|---|
AWD | CF | AWD | CF | AWD | CF | Mean of 2 Irrigation | ||
BRRI dhan69 | Mean | 79.80 b | 88.87 a | 20.20 b | 11.13 b | 23.81 a | 24.80 b | 5.79 a |
BRRI dhan47 | 70.07 cd | 84.80 a | 30.60 a | 15.20 b | 23.63 a | 26.37 a | 5.36 b | |
BRRI dhan29 | 84.27 ab | 85.80 a | 15.73 bc | 14.20 b | 20.91 b | 20.41 c | 5.22 b | |
Binadhan-8 | 78.67 bc | 85.93 a | 21.33 b | 14.07 b | 25.16 a | 26.79 a | 5.17 b | |
Binadhan-17 | 67.93 d | 72.73 b | 32.07 a | 27.27 a | 20.49 b | 20.84 c | 5.05 b | |
Binadhan-10 | 89.40 a | 89.13 a | 10.60 c | 10.87 b | 25.63 a | 26.97 a | 5.04 b | |
Mean | AWD | 78.35 b | 21.75 a | 23.26 b | 5.38 a | |||
CF | 84.54 a | 15.45 b | 24.36 a | 5.16 a | ||||
ANOVA (p value) | ||||||||
Varieties (V) | * | * | * | * | ||||
Irrigation (I) | * | * | * | * | ||||
V × I | * | * | * | ns |
Dependent Variable | Independent Variable | Coefficient of Correlation (r) |
---|---|---|
Yield (t ha−1) | Number of effective tillers per m2 | 0.257 |
Number of filled spikelets per panicle | 0.437 ** | |
Number of sterile spikelets per panicle | 0.013 | |
Spikelet fertility (%) | 0.030 | |
Spikelet sterility (%) | −0.024 | |
1000-grain weight (g) | −0.017 |
Varieties | Water Management | Total CH4 (kg ha−1 season−1) | EF of CH4 (kg ha−1 day−1) | GWP (kg CO2 Equivalent ha−1) of CH4 | GHGI (kg CO2 Equivalent kg−1 Grain Yield) | ||||
---|---|---|---|---|---|---|---|---|---|
AWD | CF | AWD | CF | AWD | CF | AWD | CF | ||
BRRI dhan69 | 108.31 b | 168.21 ab | 0.71 ab | 1.10 a | 3032.80 b | 4710.00 ab | 0.52 b | 0.82 b | |
BRRI dhan47 | 106.25 b | 167.38 b | 0.70 b | 1.10 a | 2974.90 b | 4686.70 b | 0.53 b | 0.92 ab | |
BRRI dhan29 | 112.67 a | 176.13 a | 0.70 ab | 1.10 a | 3154.70 a | 4931.70 a | 0.59 a | 0.97 a | |
Binadhan-8 | 94.30 c | 147.65 c | 0.71 ab | 1.11 a | 2640.30 c | 4134.10 c | 0.51 b | 0.81 b | |
Binadhan-17 | 81.37 d | 115.59 d | 0.71 ab | 1.01 b | 2278.40 d | 3236.60 d | 0.44 c | 0.67 c | |
Binadhan-10 | 94.22 c | 142.36 c | 0.73 a | 1.10 a | 2638.30 c | 3986.20 c | 0.52 b | 0.81 b | |
Mean | AWD | 99.52 b | 0.71 b | 2786.60 b | 0.52 b | ||||
CF | 152.89 a | 1.09 a | 4280.90 a | 0.83 a | |||||
ANOVA (p value) | |||||||||
Varieties (V) | * | * | * | * | |||||
Irrigation (I) | * | * | * | * | |||||
V × I | * | * | * | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habib, M.A.; Islam, S.M.M.; Haque, M.A.; Hassan, L.; Ali, M.Z.; Nayak, S.; Dar, M.H.; Gaihre, Y.K. Effects of Irrigation Regimes and Rice Varieties on Methane Emissions and Yield of Dry Season Rice in Bangladesh. Soil Syst. 2023, 7, 41. https://doi.org/10.3390/soilsystems7020041
Habib MA, Islam SMM, Haque MA, Hassan L, Ali MZ, Nayak S, Dar MH, Gaihre YK. Effects of Irrigation Regimes and Rice Varieties on Methane Emissions and Yield of Dry Season Rice in Bangladesh. Soil Systems. 2023; 7(2):41. https://doi.org/10.3390/soilsystems7020041
Chicago/Turabian StyleHabib, Muhammad Ashraful, S. M. Mofijul Islam, Md. Ashraful Haque, Lutful Hassan, Md. Zulfiker Ali, Swati Nayak, Manzoor Hussain Dar, and Yam Kanta Gaihre. 2023. "Effects of Irrigation Regimes and Rice Varieties on Methane Emissions and Yield of Dry Season Rice in Bangladesh" Soil Systems 7, no. 2: 41. https://doi.org/10.3390/soilsystems7020041
APA StyleHabib, M. A., Islam, S. M. M., Haque, M. A., Hassan, L., Ali, M. Z., Nayak, S., Dar, M. H., & Gaihre, Y. K. (2023). Effects of Irrigation Regimes and Rice Varieties on Methane Emissions and Yield of Dry Season Rice in Bangladesh. Soil Systems, 7(2), 41. https://doi.org/10.3390/soilsystems7020041