Using Date Palm Residues to Improve Soil Properties: The Case of Compost and Biochar
Abstract
:1. Introduction
1.1. State of the Art of Crop Residue Management
1.2. Challenges for Maintaining Sustainable Agriculture in Arid and Semi-Arid Areas
2. Context of Date Palm Cultivation and Residue Production
2.1. Geographic Distribution of the Cultivated Date Palm
2.2. Soil and Climatic Conditions
2.3. Date Palm Residues
3. Sustainable Utilization of Organic Amendments Based on Date Palm Biomass
3.1. Production, Use, and Effects of Date-Palm-Based Biochar on Soil
3.1.1. Principle of Biochar Production
3.1.2. Factors Influencing the Characteristics of Biochar
3.1.3. Effects of Biochar Application on Soil Properties
Effects on Water Retention and Soil Fertility
Effects on Soil pH
Effects on Carbon Sequestration
The Impacts on Contaminant Remediation
Effects on Soil Microbiology
Synthesis
3.2. Production, Use, and Effects of Date-Palm-Based Compost on Soil
3.2.1. Principle of Compost Production
3.2.2. Factors Influencing the Characteristics of Compost
3.2.3. Composting of Date Palm Residues—Added Value of Compost
3.2.4. Monitoring the Composting Process
3.2.5. Effects of Compost Application on Soil Properties
4. Concluding Remarks
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aliaño-González, M.J.; Gabaston, J.; Ortiz-Somovilla, V.; Cantos-Villar, E. Wood Waste from Fruit Trees: Biomolecules and Their Applications in Agri-Food Industry. Biomolecules 2022, 12, 238. [Google Scholar] [CrossRef] [PubMed]
- EUROPRUNING Project: Development and Implementation of a New, and Non-Existent, Logistics Chain for Biomass from Pruning. Available online: https://cordis.europa.eu/project/id/312078/reporting (accessed on 21 December 2023).
- Velázquez-Martí, B.; Fernández-González, E.; López-Cortés, I.; Salazar-Hernández, D.M. Quantification of the residual biomass obtained from pruning of trees in Mediterranean olive groves. Biomass Bioenergy 2011, 35, 3208–3217. [Google Scholar] [CrossRef]
- Velázquez-Martí, B.; Fernández-González, E.; López-Cortés, I.; Salazar-Hernández, D.M. Quantification of the residual biomass obtained from pruning of trees in Mediterranean almond groves. Renew. Energy 2011, 36, 621–626. [Google Scholar] [CrossRef]
- Magagnotti, N.; Pari, L.; Picchi, G.; Spinelli, R. Technology alternatives for tapping the pruning residue resource. Bioresour. Technol. 2013, 128, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-Martí, B.; Fernández-González, E.; López-Cortés, I.; Salazar-Hernández, D.M. Quantification of the residual biomass obtained from pruning of vineyards in Mediterranean area. Biomass Bioenergy 2011, 35, 3453–3464. [Google Scholar] [CrossRef]
- Dyjakon, A.; García-Galindo, D. Implementing Agricultural Pruning to Energy in Europe: Technical, Economic and Implementation Potentials. Energies 2019, 12, 1513. [Google Scholar] [CrossRef]
- Jacobs, K. Τhe potential of mulch to transmit three tree pathogens. J. Arboric. 2005, 31, 235–241. [Google Scholar] [CrossRef]
- Xiang, Y.; Chang, S.X.; Shen, Y.; Chen, G.; Liu, Y.; Yao, B.; Xue, J.; Li, Y. Grass cover increases soil microbial abundance and diversity and extracellular enzyme activities in orchards: A synthesis across China. Appl. Soil Ecol. 2023, 182, 104720. [Google Scholar] [CrossRef]
- Garcia-Franco, N.; Wiesmeier, M.; Colocho Hurtarte, L.C.; Fella, F.; Martínez-Mena, M.; Almagro, M.; García Martínez, E.; Kögel-Knabner, I. Pruning residues incorporation and reduced tillage improve soil organic matter stabilization and structure of salt-affected soils in Citrus tree orchard under semi-arid climate conditions. In Proceedings of the EGU General Assembly 2021, Online, 19–30 April 2021. EGU21-7839. [Google Scholar] [CrossRef]
- Alexander, S.; Johnson, I.; Dudley, N. Drylands. In Global Land Outlook, 1st ed.; United Nations Convention to Combat Desertification (UNCCD): Luxemburg, 2017; pp. 247–269. [Google Scholar]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; IPCC: Geneva, Switzerland, 2019.
- Yost, J.L.; Hartemink, A. Soil organic carbon in sandy soils: A review. Adv. Agron. 2019, 158, 217–310. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef]
- Akmal, M.; Maqbool, Z.; Khan, K.S.; Hussain, Q.; Ijaz, S.S.; Iqbal, M.; Aziz, I.; Hussain, A.; Abbas, M.S.; Rafa, H.U. Integrated use of biochar and compost to improve soil microbial activity, nutrient availability, and plant growth in arid soil. Arab. J. Geosci. 2019, 12, 232. [Google Scholar] [CrossRef]
- Irfan, M.; Hussain, Q.; Khan, K.S.; Akmal, M.; Ijaz, S.S.; Hayat, R.; Khalid, A.; Azeem, M.; Rashid, M. Response of soil microbial biomass and enzymatic activity to biochar amendment in the organic carbon deficient arid soil: A 2-year field study. Arab. J. Geosci. 2019, 12, 95. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef]
- Mantel, S.; Dondeyne, S.; Deckers, S. World reference base for soil resources [WRB]. In Encyclopedia of Soils in the Environment, 2nd ed.; Goss, M.J., Oliver, M., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 206–217. [Google Scholar] [CrossRef]
- Zdruli, P.; Kapur, S.; Çelik, I. Soils of the Mediterranean Region, Their Characteristics, Management and Sustainable Use. In Sustainable Land Management: Learning from the Past for the Future; Kapur, S., Eswaran, H., Blum, W.E.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 125–142. [Google Scholar] [CrossRef]
- Fatima, G.; Wiehle, M.; Khan, I.; Khan, A.; Buerkert, A. Effects of soil characteristics and date palm morphological diversity on nutritional composition of Pakistani dates. Exper. Agric. 2016, 53, 321–338. [Google Scholar] [CrossRef]
- El Janati, M.; Akkal-Corfini, N.; Bouaziz, A.; Oukarroum, A.; Robin, P.; Sabri, A.; Chikhaoui, M.; Thomas, Z. Benefits of circular agriculture for cropping systems and soil fertility in oases. Sustainability 2021, 13, 4713. [Google Scholar] [CrossRef]
- El Janati, M.; Robin, P.; Akkal-Corfini, N.; Bouaziz, A.; Sabri, A.; Chikhaoui, M.; Zahra, T.; Oukarroum, A. Composting date palm residues promotes circular agriculture in oases. Biomass Conv. Bioref. 2023, 13, 14859–14872. [Google Scholar] [CrossRef]
- Bouaziz, A.; Hammani, A.; Kuper, M. Les oasis en Afrique du Nord: Dynamiques territoriales et durabilité des systèmes de production agricole. Cah. Agric. 2018, 27, 14001. [Google Scholar] [CrossRef]
- Fargette, M.; Loireau, M. Diversification des Socio- et Agrosystèmes dans les Oasis du Maghreb: Place de l’Agriculture Familiale et du Palmier Dattier-Portail Agricultures Familiales. Agropolis International. 2014. Available online: https://www.academia.edu/27617017/Diversification_des_socio_et_agrosyst%C3%A8mes_dans_les_oasis_du_Maghreb_place_de_lagriculture_familiale_du_palmier_dattier (accessed on 11 November 2023).
- Hamada, N. Ministry of the Environment and Sustainable Development, Republic of Tunisia. In The Future of Drylands; Lee, C., Schaaf, T., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 3–5. [Google Scholar] [CrossRef]
- Abla, B.; Bouayad, A.; Diaou, M.; Kaassis, N.; Tidjani Maliki, M. Agrobiodiversité et Durabilité des Systèmes de Production Oasiens dans la Palmeraie d’Aoufouss Errachidia—Maroc; ICRA: Montepellier, France; INRA: Rabat, Morocco, 2004. [Google Scholar]
- Ait, A. Systemes de production et strategies des agriculteurs dans les oasis de la region dlErrachidia au Maroc. New Medit 2003, 2, 737–743. [Google Scholar]
- Hamidi, M.H. Dynamiques Agraires et Perspectives d’Actions de Développement Rural des Bassins Versants des Oasis de Tafilalet, Province d’Errachidia, Maroc—Sécheresse). Mémoire d’Ingénieur des Techniques Agricoles de Clermont Ferrand. 2005, p. 116. Available online: http://www.secheresse.info/spip.php?article28154 (accessed on 10 September 2023).
- Morvan, X.; Boumaraf, B.; Kavvadias, V.; Moussa, M.; Lamine, H.; Sbih, M.; Bendjeddou, F.; Zaakir, A.; Gommeaux, M.; Karbout, N.; et al. ISFERALDA project: Using organic amendments based on date palm residues to enhance soil fertility in oases agroecosystems. In Proceedings of the EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022. EGU22-9424. [Google Scholar] [CrossRef]
- Giagnoni, L.; Martellini, T.; Scodellini, R.; Cincinelli, A.; Renella, G. Co-composting: An Opportunity to Produce Compost with Designated Tailor-Made Properties. In Organic Waste Composting through Nexus Thinking; Hettiarachchi, H., Caucci, S., Schwärzel, K., Eds.; Springer: Cham, Switzerland, 2020; pp. 185–211. [Google Scholar] [CrossRef]
- AGRISED—Project LIFE17 ENV/IT/000269 “Use of Dredged Sediments for Creating Innovative Growing Media and Technosols for Plant Nursery and Soil Rehabilitation”. Overview of National and EU Legislation Action A.1. Available online: http://www.lifeagrised.com/wp-content/uploads/2019/03/AGRISED-Deliverable-Action-A.1-Overview-of-national-and-EU-legislation.pdf (accessed on 20 December 2023).
- Tengberg, M. Beginnings and early history of date palm garden cultivation in the Middle East. J. Arid Environ. 2012, 86, 139–147. [Google Scholar] [CrossRef]
- Johnson, D.V. Enhancement of date palm as a source of multiple products: Examples from other industrialized palms. Emir. J. Food Agric. 2012, 24, 408–414. [Google Scholar]
- Mlih, R.; Bol, R.; Amelung, W.; Brahim, N. Soil organic matter amendments in date palm groves of the Middle Eastern and North African region: A mini-review. J. Arid Land. 2016, 8, 77–92. [Google Scholar] [CrossRef]
- Battesti, V.; Gros-Balthazard, M.; Ogéron, C.; Ivorra, S.; Terral, J.F.; Newton, C. Date Palm Agrobiodiversity [Phoenix dactylifera L.] in Siwa Oasis, Egypt: Combining Ethnography, Morphometry, and Genetics. Hum. Ecol. 2018, 46, 529–546. [Google Scholar] [CrossRef]
- Barreveld, W.H. Date Palm Products; FAO Agricultural Services Bulletin, No. 101; FAO: Rome, Italy, 1993; Available online: https://www.fao.org/docrep/t0681e/t0681e00.htm#con (accessed on 21 September 2023).
- El Bouhssini, M.; De Socorro, J.R.F. Date Palm Pests and Diseases: Integrated Management Guide; International Center for Agricultural Research in the Dry Areas [ICARDA]: Lebanon, Beirut, 2018; Available online: https://hdl.handle.net/20.500.11766/8914 (accessed on 18 October 2023).
- Shabani, F.; Kumar, L.; Taylor, S. Climate Change Impacts on the Future Distribution of Date Palms: A Modeling Exercise Using CLIMEX. PLoS ONE 2012, 7, e48021. [Google Scholar] [CrossRef]
- Shabani, F.; Kumar, L. Sensitivity analysis of CLIMEX parameters in modeling potential distribution of Phoenix dactylifera L. PLoS ONE 2014, 9, e94867. [Google Scholar] [CrossRef] [PubMed]
- Assirey, E.A.R. Nutritional composition of fruit of 10 date palm [Phoenix dactylifera L.] cultivars grown in Saudi Arabia. J. Taibah Univ. Sci. 2015, 9, 75–79. [Google Scholar] [CrossRef]
- Abid, W.; Ammar, E. Date Palm (Phoenix dactylifera L.) Wastes: Valorization: A Circular Economy Approach. In Mediterranean Fruits Bio-Wastes: Chemistry, Functionality and Technological Applications; Ramadan, M.F., Farag, M.A., Eds.; Springer: Cham, Switzerland, 2022; pp. 404–430. [Google Scholar]
- Nehdi, I.; Omri, S.; Khalil, M.I.; Al-Resayes, S.I. Characteristics and chemical composition of date palm [Phoenix canariensis] seeds and seed oil. Ind. Crops Prod. 2010, 32, 360–365. [Google Scholar] [CrossRef]
- Hasnaoui, A.; El Houmaizi, M.A.; Asehraou, A.; Sindic, M.; Deroanne, C.; Hakkou, A. Chemical composition and microbial quality of dates grown in Figuig Oasis of Morocco. Int. J. Agric. Biol. 2010, 12, 311–314. [Google Scholar]
- Alotaibi, K.D.; Alharbi, H.A.; Yaish, M.W.; Ahmed, I.; Alharbi, S.A.; Alotaibi, F.; Kuzyakov, Y. Date palm cultivation: A review of soil and environmental conditions and future challenges. Land Degrad. Dev. 2023, 34, 2429–2719. [Google Scholar] [CrossRef]
- Ali-Dinar, H.; Munir, M.; Mohammed, M. Drought-Tolerance Screening of Date Palm Cultivars under Water Stress Conditions in Arid Regions. Agronomy 2023, 13, 2811. [Google Scholar] [CrossRef]
- Hadjraoui, K.; Haida, W.; Kerboub, Y. Gen. Palm diseases and pests [case of bayoud disease:vascular fusarium] fusarium oxysporum f. sp. albedinis in the wilaya of Adrar. Biodv. J. Date 2017, 1, 83–88. [Google Scholar] [CrossRef]
- Chao, C.T.; Krueger, R.R. The date palm [Phoenix dactylifera L.]: Overview of biology, uses, and cultivation. HortScience 2007, 42, 1077–1082. [Google Scholar] [CrossRef]
- El-Juhany, L.I. Degradation of date palm trees and date production in Arab countries: Causes and potential rehabilitation. Aust. J. Basic Appl. Sci. 2010, 4, 3998–4010. [Google Scholar]
- Jonoobi, M.; Shafie, M.; Shirmohammadli, Y.; Ashori, A.; Zarea-Hosseinabadi, H.; Mekonnen, T. A review on date palm tree: Properties, characterization and its potential applications. J. Renew. Mater. 2019, 7, 1055–1075. [Google Scholar] [CrossRef]
- Sharif, A.O.; Sanduk, M.; Taleb, H.M. Τhe date palm and its role in reducing soil salinity and global warming. Acta Hortic. 2010, 882, 59–64. [Google Scholar] [CrossRef]
- Sharif, A. Climate Change and Global Warming—Scientific Basis with Proposed Solutions; Sustainable Development Report; Iraq Energy Institute: London, UK, 2008. [Google Scholar]
- Qureshi, R.H.; Barrett-Lennard, E.G. Saline Agriculture for Irrigated Lands in Pakistan: A Handbook; Monagraph No. 50; ACIAR [Australian Centre for International Agricultural Research]: Canberra, Australia, 1998; 142p.
- Mohamed, O.Z.; Yassine, B.; El Hassan, A.; Abdellatif, H.; Rachid, B. Evaluation of compost quality and bioprotection potential against Fusarium wilt of date palm. Waste Manag. 2020, 113, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Kroeger, J.E.; Pourhashem, G.; Medlock, K.B.; Masiello, C.A. Water cost savings from soil biochar amendment: A spatial analysis. GCB Bioenergy 2021, 13, 133–142. [Google Scholar] [CrossRef]
- Ou-Zine, M.; El Hilali, R.; Haggoud, A.; Achbani, E.H.; Bouamri, R. Effects and relationships of compost dose and organic additives on compost tea properties, efficacy against fusarium oxysporum and potential effect on endomycorrhization and growth of Zea mays L. Waste Biomass Valorization 2022, 13, 4431–4445. [Google Scholar] [CrossRef]
- Smith, P.; Ashmore, M.R.; Black, H.I.J.; Burgess, P.J.; Evans, C.D.; Quine, T.A.; Thomson, A.M.; Hicks, K.; Orr, H.G. REVIEW: The role of ecosystems and their management in regulating climate, and soil, water and air quality. J. Appl. Ecol. 2013, 50, 812–829. [Google Scholar] [CrossRef]
- Evans, J.; Condon, J.; Evans, J.; Condon, J. New fertilizer options for managing phosphorus for organic and low-input farming systems. Crop Pasture Sci. 2009, 60, 152–162. [Google Scholar] [CrossRef]
- El Mardi, M.O.; Al Julanda Al Said, F.; Bakheit Sakit, C.; Al Kharusi, L.M.; Al Rahbi, I.N.; Al Mahrazi, K. Effect of Pollination Method, Fertilizer and Mulch Treatments on the Physical and Chemical Characteristics of Date Palm [Phoenix dactylifera] Fruit I: Physical Characteristics. Acta Hortic. 2006, 736, 317–328. Available online: http://www.actahort.org/books/736/736_30.htm (accessed on 14 January 2024). [CrossRef]
- Zaid, A.; de Wet, P.F. Climatic requirements of date palm. In Date Palm Cultivation; Zaid, A., Ed.; Plant Production and Protection Paper No. 156; FAO: Rome, Italy, 2002; pp. 57–72. [Google Scholar]
- Zaid, A.; De Wet, P.F. Origin, geographical distribution and nutritional values of date palm. In Date Palm Cultivation; Zaid, A., Ed.; Plant Production and Protection Paper No. 156; FAO: Rome, Italy, 2002; pp. 29–44. [Google Scholar]
- Liebenberg, P.J.; Zaid, A. Date palm irrigation. In Date Palm Cultivation; Zaid, A., Ed.; Plant Production and Protection Paper No. 156; FAO: Rome, Italy, 2002. [Google Scholar]
- Dregne, H.E. Land degradation in the drylands. Arid Land Res. Manag. 2002, 16, 99–132. [Google Scholar] [CrossRef]
- Kösters, R.; Preger, A.C.; Du Preez, C.C.; Amelung, W. Re-aggregation dynamics of degraded cropland soils with prolonged secondary pasture management in the South African Highveld. Geoderma 2013, 192, 173–181. [Google Scholar] [CrossRef]
- Blanchart, E.; Albrecht, A.; Bernoux, M.; Βrauman, A.; Chotte, J.L.; Feller, C.; Ganry, F.; Hien, E.; Manlay, R.; Masse, D.; et al. Organic matter and biofunctioning in tropical sandy soils and implications for its management. In Proceedings of the First International Symposium on the Management of Tropical Sandy Soils for Sustainable Agriculture: A Holistic Approach for Sustainable Development of Problem Soils in the Tropics, Khon Kaen, Thailand, 28 November 2005. 33p. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Irrigation and Drainage Paper 29; FAO: Rome, Italy, 1985. [Google Scholar]
- Ramoliya, P.J.; Pandey, A.N. Soil salinity and water status affect growth of Phoenix dactylifera seedlings. N. Z. J. Crop Hortic. 2003, 31, 345–353. [Google Scholar] [CrossRef]
- Marcar, N.E.; Crawford, D.F.; Leppert, P.M.; Jovanovic, T.; Floyd, R.; Farrow, R. Trees for Saltland: A Guide to Selecting Native Species for Australia; CSIRO, Forestry and Forest Products: Canberra, Australia, 1995; 72p, Available online: http://hdl.handle.net/102.100.100/234346?index=1 (accessed on 14 January 2024).
- Maas, E.V.; Poss, J.A. Salt sensitivity of wheat at various growth stages. Irrig. Sci. 1989, 10, 29–40. [Google Scholar] [CrossRef]
- Al Kharusi, L.; Assaha, D.V.; Al-Yahyai, R.; Yaish, M.W. Screening of date palm [Phoenix dactylifera L.] cultivars for salinity tolerance. Forests 2017, 8, 136. [Google Scholar] [CrossRef]
- Al-Muaini, A.; Green, S.; Dakheel, A.; Abdullah, A.H.; Abou Dahr, W.A.; Dixon, S.; Kemp, P.; Clothier, B. Irrigation management with saline groundwater of a date palm cultivar in the hyper-arid United Arab Emirates. Agric. Water Manag. 2019, 211, 123–131. [Google Scholar] [CrossRef]
- Alkoaik, F.N.; Khalil, A.I.; Alqumajan, T. Performance evaluation of a static composting system using date palm residues. Middle East J. Sci. Res. 2011, 7, 972–983. [Google Scholar]
- Mallaki, M.; Fatehi, R. Design of a biomass power plant for burning date palm waste to cogenerate electricity and distilled water. Renew. Energy 2014, 63, 286–291. [Google Scholar] [CrossRef]
- Chehma, A.; Longo, H.F. Valorisation des Sous-Produits du Palmier Dattier en vue de Leur Utilisation en Alimentation du Betail. Rev. Energ. Ren. Prod. Valoris.-Biomasse 2001, 59–64. Available online: https://www.doc-developpement-durable.org/file/Culture/Arbres-Fruitiers/FICHES_ARBRES/Palmier-dattier/UtilisationEnAlimentationBetailDesSous-ProduitsPalmierDattier.pdf (accessed on 26 January 2024).
- Tahir, A.H.F.; Al-Obaidy, A.H.M.J.; Mohammed, F.H. Biochar from date palm waste, production, characteristics and use in the treatment of pollutants: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 737, 012171. [Google Scholar] [CrossRef]
- Aydeniz-Güneşer, B. Valorization of Date Palm (Phoenix dactylifera) Wastes and By-Products. In Mediterranean Fruits Bio-Wastes, Chemistry, Functionality and Technological Applications; Ramadan, M.F., Farag, M.A., Eds.; Springer: Cham, Switzerland, 2022; pp. 391–403. [Google Scholar] [CrossRef]
- Besbes, S.; Blecker, C.; Deroanne, C.; Drira, N.E.; Attia, H. Date seeds: Chemical composition and characteristic profiles of the lipid fraction. Food Chem. 2004, 84, 577–584. [Google Scholar] [CrossRef]
- Al-Shankiti, A.; Gill, S. Biochar from date palm and Conocarpus waste for improvement of soil quality and biomass production. Biosalinity News 2014, 15, 8–9. [Google Scholar]
- Aydi, S.; Sassi Aydi, S.; Rahmani, R.; Bouaziz, F.; Souchard, J.P.; Merah, O.; Abdelly, C. Date-Palm Compost as Soilless Substrate Improves Plant Growth, Photosynthesis, Yield and Phytochemical Quality of Greenhouse Melon [Cucumis melo L.]. Agronomy 2023, 13, 212. [Google Scholar] [CrossRef]
- Usman, A.R.A.; Abduljabbar, A.; Vithanage, M.; Ok, Y.S.; Ahmad, M.; Ahmad, M.; Elfaki, J.; Abdulazeem, S.S.; Sani, M.I. Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. J. Anal. Appl. Pyrolysis 2015, 115, 392–400. [Google Scholar] [CrossRef]
- Habchi, A.; Kalloum, S.; Bradai, L. Follow the degradation of organic matter during composting of date palm [phoenix dactylifera L] waste by physicochemical properties, UV-visible and FT-IR analysis. Int. J. Environ. Anal. 2020, 102, 2895–2912. [Google Scholar] [CrossRef]
- Chandrasekaran, M.; Ali, H. Bahkali. Valorization of date palm [Phoenix dactylifera] fruit processing by-products and wastes using bioprocess technology—Review. Saudi J. Biol. Sci. 2013, 20, 105–120. [Google Scholar] [CrossRef]
- Bashah, M. Date Variety in the Kingdom of Saudi Arabia; King Abdulaziz University Guidance Booklet Palms and Dates, King Abdulaziz University Press: Riyadh, Saudi Arabia, 1996; pp. 1225–1319. [Google Scholar]
- Torigoe, K.; Hasegawa, S.; Numata, O.; Yazaki, S.; Matsunaga, M.; Boku, N.; Hiura, M.; Ino, H. Influence of emission from rice straw burning on bronchial asthma in children. Pediatr. Int. 2000, 42, 143–150. [Google Scholar] [CrossRef]
- Burezq, H.; Davidson, M.K. Biochar from date palm [Phoenix dactylifera L.] residues—A critical review. Arab. J. Geosci. 2023, 16, 101. [Google Scholar] [CrossRef]
- El-Shafie, H.A.F.; Abdel-Banat, B.M.A.; Al-Hajhoj, M.R. Arthropod pests of date palm and their management. CAB Rev. 2017, 12, 049. [Google Scholar] [CrossRef]
- Dhehibi, B.; Nejatian, A.; El Dine Hilali, M.; Belgacem, A.O.; Niane, A.A.; Ibrahim, A.O. Developing Sustainable Production Systems for Date Palm in the Gulf Cooperation Council Countries; Feasibility and Technical Study for Establishing Recycling Date Palm by Product Unit [Date Palm Waste] to Produce Organic Fertilizers [Compost] in the GCC Countries; ICARDA: Beirut, Lebanon, 2020; 11p. [Google Scholar]
- Bharath, G.; Hai, A.; Rambabu, K.; Banat, F.; Jayaraman, R.; Taher, H.; Bastidas-Oyanedel, J.R.; Ashraf, M.T.; Schmidt, J.E. Systematic production and characterization of pyrolysis-oil from date tree wastes for bio-fuel applications. Biomass Bioenergy 2020, 135, 105523. [Google Scholar] [CrossRef]
- Tsai, W.T.; Lee, M.K.; Chang, Y.M. Fast pyrolysis of rice husk: Product yields and compositions. Bioresour. Technol. 2007, 98, 22–28. [Google Scholar] [CrossRef]
- EL-Mously, H.; Midani, M.; Atef, E. Date Palm Byproducts for Green Fuels and Bioenergy Production. In Date Palm Byproducts: A Springboard for Circular Bio Economy; Springer Nature: Singapore, 2023; pp. 271–343. [Google Scholar] [CrossRef]
- Oliveira, F.R.; Patel, A.K.; Jaisi, D.P.; Adhikari, S.; Lu, H.; Khanal, S.K. Environmental application of biochar: Current status and perspectives. Bioresour. Technol. 2017, 246, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Simitzis, J.; Ioannou, Z. Activated carbonaceous materials based on thermosetting binder precursors. In Activated Carbon: Classifications, Properties and Applications; Kwiatkowski, J.F., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2011. [Google Scholar]
- Hossain, M.K.; Strezov, V.; Yin Chan, K.; Nelson, P.F. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato [Lycopersicon esculentum]. Chemosphere 2010, 78, 1167–1171. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P.F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Lee, X.J.; Lee, L.Y.; Gan, S.; Thangalazhy-Gopakumar, S.; Ng, H.K. Biochar potential evaluation of palm oil wastes through slow pyrolysis: Thermochemical characterization and pyrolytic kinetic studies. Bioresour. Technol. 2017, 236, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A.; Caglar, A.; Akdeniz, F.; Gullu, D. Conversion of Olive Husk to Liquid Fuel by Pyrolysis and Catalytic Liquefaction. Energy Sources 2000, 22, 631–639. [Google Scholar] [CrossRef]
- Ding, W.; Dong, X.; Ime, I.M.; Gao, B.; Ma, L.Q. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere 2014, 105, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas-Aguiar, E.; Gascó, G.; Paz-Ferreiro, J.; Méndez, A. The effect of biochar and compost from urban organic waste on plant biomass and properties of an artificially copper polluted soil. Int. Biodeterior. Biodegrad. 2017, 124, 223–232. [Google Scholar] [CrossRef]
- Bridgwater, A. Biofuels 2015: Upgrading liquids from fast pyrolysis of biomass. Arch. Chem. Res. 2020, 4, 1–2. [Google Scholar]
- Mondal, S.; Mondal, A.K.; Chintala, V.; Tauseef, S.M.; Kumar, S.; Pandey, J.K. Thermochemical pyrolysis of biomass using solar energy for efficient biofuel production: A review. Biofuels 2021, 12, 125–134. [Google Scholar] [CrossRef]
- Ndukwu, M.C.; Horsfall, I.T.; Ubouh, E.A.; Orji, F.N.; Ekop, I.E.; Ezejiofor, N.R. Review of solar- biomass pyrolysis systems: Focus on the configuration of Thermal-solar systems and reactor orientation. J. King Saud Univ. Eng. Sci. 2020, 33, 413–423. [Google Scholar] [CrossRef]
- Islam, M.D.; Kubo, I.; Ohadi, M.; Alili, A.A. Measurement of solar energy radiation in Abu Dhabi, UAE. Appl. Energy 2009, 86, 511–515. [Google Scholar] [CrossRef]
- Daugaard, D.E.; Brown, R.C. Enthalpy for pyrolysis for several types of biomass. Energy Fuel 2003, 17, 934–939. [Google Scholar] [CrossRef]
- Giwa, A.; Yusuf, A.; Ajumobi, O.; Dzidzienyo, P. Pyrolysis of date palm waste to biochar using concentrated solar thermal energy: Economic and sustainability implications. Waste Manag. 2019, 93, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Caputo, C.; Mašek, O. SPEAR [Solar Pyrolysis Energy Access Reactor]: Theoretical Design and Evaluation of a Small-Scale Low-Cost Pyrolysis Unit for Implementation in Rural Communities. Energies 2021, 14, 2189. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef]
- Singh Jatav, H.; Kumar Singh, S.; Singh Jatav, S.; Rajput, V.D.; Parihar, M.; Kumar Mahawer, S.; Kumar Singhal, R. Importance of Biochar in Agriculture and Its Consequence. In Applications of Biochar for Environmental Safety; Abdelhafez, A.A., Abbas, M.H.H., Eds.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Hina, K.; Bishop, P.; Arbestain, M.C.; Calvelo-Pereira, R.; MacIá-Agulló, J.A.; Hindmarsh, J.; Hanly, J.A.; Hedley, M.J. Producing biochars with enhanced surface activity through alkaline pretreatment of feedstocks. Aust. J. Soil Res. 2010, 48, 606–617. [Google Scholar] [CrossRef]
- Pan, G.-X.; Zhang, A.-F.; Zou, J.-W.; Li, L.-Q.; Zhang, X.-H.; Zheng, J.-W. Biochar from agro-byproducts used as amendment to croplands: An option for low carbon agriculture. J. Ecol. Rural Environ. 2010, 26, 394–400. [Google Scholar] [CrossRef]
- Wahi, R.; Zuhaidi, N.F.Q.; Yusof, Y.; Jamel, J.; Kanakaraju, D.; Ngaini, Z. Chemically treated microwave-derived biochar: An overview. Biomass Bioenergy 2017, 107, 411–421. [Google Scholar] [CrossRef]
- Kambo, H.S.; Dutta, A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. 2015, 45, 359–378. [Google Scholar] [CrossRef]
- Igalavithana, A.D.; Mandal, S.; Niazi, N.K.; Vithanage, M.; Parikh, S.J.; Fungai, N.D.M.; Rizwan, M.; Oleszczuk, P.; Al-Wabel, M.; Bolan, N.; et al. Advances and future directions of biochar characterization methods and applications. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2275–2330. [Google Scholar] [CrossRef]
- EUROCHAR-Biochar for Carbon Sequestration and Large-Scale Removal of Greenhouse Gases [GHG] from the Atmosphere: FP7-ENVIRONMENT—Specific Programme “Cooperation”: Environment [including Climate Change], ENV.2010.3.1.8-1—Development of Technologies for Long-Term Carbon Sequestration. Available online: https://cordis.europa.eu/project/id/265179/reporting (accessed on 10 September 2023).
- Schimmelpfennig, S.; Müller, C.; Grünhage, L.; Koch, C.; Kammann, C. Biochar, hydrochar and uncarbonized feedstock application to permanent grassland—Effects on greenhouse gas emissions and plant growth. Agric. Ecosyst. Environ. 2014, 191, 39–52. [Google Scholar] [CrossRef]
- Rack, M.; Woods, J. Life Cycle Assessment of Biochar—EuroChar Project. In Proceedings of the EGU General Assembly, Vienna, Austria, 22–27 April 2012. 547, Geophysical Research Abstracts Volume 14, EGU2012-547-1. [Google Scholar]
- Berge, N.D.; Kammann, C.; Ro, K.; Libra, J. Environmental applications of hydrothermal carbonization technology: Biochar production, carbon sequestration, and waste conversion. In Sustainable Carbon Materials from Hydrothermal Processes; Titirici, M.-M., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 295–340. [Google Scholar]
- Naisse, C.; Girardin, C.; Lefevre, R.; Pozzi, A.; Maas, R.; Stark, A.; Rumpel, C. Effect of physical weathering on the carbon sequestration potential of biochars and hydrochars in soil. GCB Bioenergy 2015, 7, 488–496. [Google Scholar] [CrossRef]
- Kammann, C.; Ratering, S.; Eckhard, C.; Müller, C. Biochar and hydrochar effects on greenhouse gas [carbon dioxide, nitrous oxide, and methane] fluxes from soils. J. Environ. Qual. 2012, 41, 1052–1066. [Google Scholar] [CrossRef] [PubMed]
- Malghani, S.; Gleixner, G.; Trumbore, S.E. Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biol. Biochem. 2013, 62, 137–146. [Google Scholar] [CrossRef]
- Islam, M.A.; Limon, M.S.H.; Romić, M.; Islam, M.A. Hydrochar-based soil amendments for agriculture: A review of recent progress. Arab. J. Geosci. 2021, 14, 102. [Google Scholar] [CrossRef]
- Pariyar, P.; Kumari, K.; Jain, M.K.; Jadhao, P.S. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Sci. Total Environ. 2020, 713, 136433. [Google Scholar] [CrossRef]
- Sun, J.K.; Lian, F.; Liu, Z.Q.; Zhu, L.Y.; Song, Z.G. Biochars derived from various crop straws: Characterization and Cd [II] removal potential. Ecotoxicol. Environ. Saf. 2014, 10, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Brewer, C.E.; Chuang, V.J.; Masiello, C.A.; Gonnermann, H.; Gao, X.; Dugan, B.; Driver, L.E.; Panzacchi, P.; Zygourakis, K.; Davies, C.A. New approaches to measuring biochar density and porosity. Biomass Bioenergy 2014, 66, 176–185. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota: A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: Abingdon, UK, 2015; 976p. [Google Scholar]
- Chen, T.; Zhang, Y.X.; Wang, H.T.; Lu, W.J.; Zhou, Z.Y.; Zhang, Y.C.; Ren, L. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour. Technol. 2014, 164, 47–54. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmad, M.; Usman, A.R.A.; Al-Faraj, A.S.; Abduljabbar, A.; Sik Ok, Y.; Al-Wabel, M.I. Date palm waste-derived biochar composites with silica and zeolite: Synthesis, characterization and implication for carbon stability and recalcitrant potential. Environ. Geochem. Health. 2019, 41, 1687–1704. [Google Scholar] [CrossRef]
- Sizirici, B.; Fseha, Y.H.; Yildiz, I.; Delclos, T.; Khaleel, A. The effect of pyrolysis temperature and feedstock on date palm waste derived biochar to remove single and multi-metals in aqueous solutions. Sustain. Environ. Res. 2021, 31, 9. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Usman, A.R.A.; Al-Farraj, A.S.; Ok, Y.S.; Abduljabbar, A.; Al-Faraj, A.I.; Sallam, A.S. Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil. Environ. Geochem. Health 2019, 41, 1705–1722. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhong, H.; Liu, G.; Dai, Z.; Brookes, P.; Xu, J. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environ. Pollut. 2019, 252, 846–855. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Hu, H.; Fu, Q.; Li, Z.; Xing, Z.; Ali, U.; Zhu, J.; Liu, Y. Remediation of Pb, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: Speciation transformation, risk evaluation and mechanism inquiry. Sci. Total Environ. 2020, 730, 139119. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shen, R.; Ji, S.; Xie, L.; Zhang, H. Effects of biochar derived from sewage sludge and sewage sludge/cotton stalks on the immobilization and phytoavailability of Pb, Cu, and Zn in sandy loam soil. J. Hazard. Mater. 2021, 419, 126468. [Google Scholar] [CrossRef]
- Badawi, M.A. Production of Biochar from Date Palm Fronds and its Effects on Soil Properties. Mater. Res. Proc. 2019, 11, 159–168. [Google Scholar] [CrossRef]
- Alothman, O.Y.; Kian, L.K.; Saba, N.; Jawaid, M.; Khiari, R. Cellulose nanocrystal extracted from date palm fibre: Morphological, structural and thermal properties. Ind. Crops Prod. 2021, 159, 113075. [Google Scholar] [CrossRef]
- Mahdi, Z.; Yu, Q.J.; El Hanandeh, A. Removal of lead[II] from aqueous solution using date seed-derived biochar: Batch and column studies. Appl. Water Sci. 2018, 8, 181. [Google Scholar] [CrossRef]
- Demirbas, A. Utilization of date biomass waste and date seed as bio-fuels source. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 754–760. [Google Scholar] [CrossRef]
- Bensidhom, G.; Ben Hassen-Trabelsi, A.; Alper, K.; Sghairoun, M.; Zaafouri, K.; Trabelsi, I. Pyrolysis of Date palm waste in a fixed-bed reactor: Characterization of pyrolytic products. Bioresour. Technol 2018, 247, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Maraseni, T.; Chen, G.; Guangren, Q. Towards a faster and broader application of biochar: Appropriate marketing mechanisms. Int. J. Environ. Stud. 2010, 67, 851–860. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Tang, J.; Zhu, W.; Kookana, R.; Katayama, A. Characteristics of biochar and its application in remediation of contaminated soil. J. Biosci. Bioeng. 2013, 116, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Lone, A.H.; Najar, G.R.; Ganie, M.A.; Sofi, J.A.; Ali, T. Biochar for sustainable soil health: A review of prospects and concerns. Pedosphere 2015, 25, 639–653. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Le Guyader, E.; Morvan, X.; Miconnet, V.; Marin, B.; Moussa, M.; Intrigliolo, D.S.; Delgado-Iniesta, M.J.; Girods, P.; Fontana, S.; Sbih, M.; et al. Influence of Date Palm-Based Biochar and Compost on Water Retention Properties of Soils with Different Sand Contents. Forests 2024, 15, 304. [Google Scholar] [CrossRef]
- Alotaibi, K.D.; Jeff, J. Addition of biochar to a sandy desert soil: Effect on crop growth, water retention and selected properties. Agronomy 2019, 9, 327. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessoolek, G. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 2013, 202, 183–191. [Google Scholar] [CrossRef]
- Ulyett, J.; Sakrabani, R.; Kibbilewhite, M.; Hann, M. Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from sandy loam soils. Eur. J. Soil Sci. 2014, 65, 96–104. [Google Scholar] [CrossRef]
- Gła, T.; Palmowska, J.; Zaleski, T.; Gondek, K. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 2016, 281, 165. [Google Scholar] [CrossRef]
- Baiamonte, G.; Crescimanno, G.; Parrino, F.; De Pasquale, C. Effect of biochar on the physical and structural properties of a desert sandy soil. Catena 2019, 175, 294–303. [Google Scholar] [CrossRef]
- Verheijen, F.G.A.; Zhuravel, A.; Silva, F.C.; Amaro, A.; Ben-Hur, M.; Keizer, J.J. The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma 2019, 347, 194–202. [Google Scholar] [CrossRef]
- Burrell, L.D.; Zehetner, F.; Rampazzo, N.; Wimmer, B.; Soja, G. Long-term effects of biochar on soil physical properties. Geoderma 2016, 282, 96–102. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Watts, D.W.; Amonette, J.E.; Ippolito, J.A.; Lima, I.M.; Gaskin, J.; Das, K.C.; Steiner, C.; Ahmedna, M.; et al. Biochars Impact on Soil-Moisture Storage in an Ultisol and Two Aridisols. Soil Sci. 2012, 177, 310–320. [Google Scholar] [CrossRef]
- Zornoza, R.; Moreno-Barriga, F.; Acosta, J.A.; Muñoz, M.A.; Faz, A. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere 2016, 144, 122–130. [Google Scholar] [CrossRef]
- Campos, P.; Miller, A.Z.; Knicker, H.; Costa-Pereira, M.F.; Merino, A.; De la Rosa, J.M. Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment. Waste Manag. 2020, 105, 256–267. [Google Scholar] [CrossRef]
- Khalifa, N.; Yousef, L.F. A short report on changes of quality indicators for a sandy textured soil after treatment with biochar produced from fronds of date palm. Energy Procedia 2015, 74, 960–965. [Google Scholar] [CrossRef]
- Karbout, N.; Bol, R.; Brahim, N.; Moussa, M.; Bousnina, H. Applying biochar from date palm waste residues to improve the organic matter, nutrient status and water retention in sandy oasis soils. J. Res. Environ. Earth Sci. 2019, 07, 203–209. [Google Scholar]
- Wang, J.; Odinga, E.S.; Zhang, W.; Zhou, X.; Yang, B.; Waigi, M.G.; Gao, Y. Polyaromatic hydrocarbons in biochars and human health risks of food crops grown in biochar-amended soils: A synthesis study. Environ. Int. 2019, 130, 104899. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, H.A.; Alotaibi, K.D.; El-Saeid, M.H.; Giesy, J.P. Polycyclic Aromatic Hydrocarbons [PAHs] and Metals in Diverse Biochar Products: Effect of Feedstock Type and Pyrolysis Temperature. Toxics 2023, 11, 96. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Guo, X.; Zhu, Y.; Han, Z.; He, Q.; Zhang, F. Effect of biochar on the presence of nutrients and ryegrass growth in the soil from an abandoned indigenous coking site: The potential role of biochar in the revegetation of contaminated site. Sci. Total Environ. 2017, 601–602, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Mihoub, A.; Amin, A.E.E.A.Z.; Motaghian, H.R.; Saeed, M.F.; Naeem, A. Citric Acid [CA]–Modified Biochar Improved Available Phosphorus Concentration and Its Half-Life in a P-Fertilized Calcareous Sandy. Soil. J. Soil Sci. Plant Nutr. 2022, 22, 465–474. [Google Scholar] [CrossRef]
- Glaser, B.; Lehr, V.I. Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Sci. Rep. 2019, 9, 9338. [Google Scholar] [CrossRef] [PubMed]
- Steiner, C.; Das, K.C.; Melear, N.; Lakly, D. Reducing nitrogen loss during poultry litter composting using biochar. J. Environ. Qual 2010, 39, 1236–1242. [Google Scholar] [CrossRef]
- Rondon, M.A.; Lehmann, J.; Ramírez, J.; Hurtado, M. Biological nitrogen fixation by common beans [Phaseolus vulgaris L.] increases with bio-char additions. Biol. Fertil. Soils 2007, 43, 699–708. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Novak, J.M.; Busscher, W.J.; Ahmedna, M.; Rehrah, D.; Watts, D.W. Switchgrass biochar affects two Aridisols. J. Environ. Qual 2012, 41, 1123–1130. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Hailegnaw, N.S.; Mercl, F.; Pračke, K.; Száková, J.; Tlustoš, P. High temperature-produced biochar can be efficient in nitrate loss prevention and carbon sequestration. Geoderma 2019, 338, 48–55. [Google Scholar] [CrossRef]
- DeLuca, T.H.; MacKenzie, M.D.; Gundale, M.J.; Holben, W.E. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci. Soc. Am. J. 2006, 70, 448–453. [Google Scholar] [CrossRef]
- Castaldi, S.; Riondino, M.; Baronti, S.; Esposito, F.R.; Marzaioli, R.; Rutigliano, F.A. Impact of biochar application to a mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere 2011, 85, 1464–1471. [Google Scholar] [CrossRef]
- Cheng, Y.; Cai, Z.C.; Chang, S.X.; Wang, J.; Zhang, J.B. Wheat straw and its biochar have contrasting effects on inorganic N retention and N2O production in a cultivated black chernozem. Biol. Fertil. Soils 2012, 48, 941–946. [Google Scholar] [CrossRef]
- Clough, T.J.; Condron, L.M.; Kammann, C.; Müller, C. A Review of Biochar and Soil Nitrogen Dynamics. Agronomy 2013, 3, 275–293. [Google Scholar] [CrossRef]
- Basalirwa, D.; Sudo, S.; Wacal, C.; Zaw Oo, A.; Sasagawa, D.; Yamamoto, S.; Masunaga, T.; Nishihara, E. Impact of fresh and aged palm shell biochar on N2O emissions, soil properties, nutrient content and yield of Komatsuna [Brassica rapa var. perviridis] under sandy soil conditions. Soil Sci. Plant Nutr. 2020, 66, 328–343. [Google Scholar] [CrossRef]
- Kammann, C.; Ippolito, J.; Hagemann, N.; Borchard, N.; Luz Cayuela, M.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Jeffery, S.; Kern, J.; Novak, J.; et al. Biochar as a tool to reduce the agricultural greenhouse-gas burden—Knowns, unknowns and future research needs. J. Environ. Eng. Landsc. Manag. 2017, 25, 114–139. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Zhang, D.; Wu, M.; Pan, B. Limited role of biochars in nitrogen fixation through nitrate adsorption. Sci. Total Environ. 2017, 592, 758–765. [Google Scholar] [CrossRef]
- Weldon, S.; van der Veen, B.; Farkas, E.; Kocatürk-Schumacher, N.P.; Dieguez-Alonso, A.; Budai, A.; Rasse, D. A re-analysis of NH4+ sorption on biochar: Have expectations been too high? Chemosphere 2022, 301, 134662. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A.R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Camps-Arbestain, M.; Shen, Q.; Lehmann, J.; Singh, B.; Sabir, M. Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls. Soil Use Manag. 2020, 36, 2–18. [Google Scholar] [CrossRef]
- Liao, J.; Liu, X.; Hu, A.; Song, H.; Chen, X.; Zhang, Z. Effects of biochar-based controlled release nitrogen fertilizer on nitrogen-use efficiency of oilseed rape [Brassica napus L.]. Sci. Rep. 2020, 10, 11063. [Google Scholar] [CrossRef] [PubMed]
- Ndoung, O.C.N.; Figueiredo, C.C.de; Ramos, M.L.G. A scoping review on biochar-based fertilizers: Enrichment techniques and agro-environmental application. Heliyon 2021, 7, e08473. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.-P.; Pandit, B.H.; Cornelissen, G.; Kammann, C.I. Biochar-Based Fertilization with Liquid Nutrient Enrichment: 21 Field Trials Covering 13 Crop Species in Nepal. Land Degrad. Dev. 2017, 28, 2324–2342. [Google Scholar] [CrossRef]
- Gustavo Adolfo, G.-F.; Wolf-Anno, B.; Martin, R.; Christina, S. Co-composting of biochar and nitrogen-poor organic residues: Nitrogen losses and fate of polycyclic aromatic hydrocarbons. Waste Manag. 2022, 143, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Prost, K.; Borchard, N.; Siemens, J.; Kautz, T.; Séquaris, J.-M.; Möller, A.; Amelung, W. Biochar Affected by Composting with Farmyard Manure. J. Environ. Qual. 2013, 42, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Mulcahy, D.N.; Mulcahy, D.L.; Dietz, D. Biochar soil amendment increases tomato seedling resistance to drought in sandy soils. J. Arid Environ. 2013, 88, 222–225. [Google Scholar] [CrossRef]
- Ouyang, L.; Yu, L.; Zhang, R. Effects of amendment of different biochars on soil carbon mineralization and sequestration. Soil Res. 2014, 52, 46–54. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, X.; Tang, C.; Muhammad, N.; Wu, J.; Brookes, P.C.; Xu, J. Potential role of biochars in decreasing soil acidification- A critical review. Sci. Total Environ. 2017, 581–582, 601–611. [Google Scholar] [CrossRef]
- Qian, L.; Chen, B. Dual role of biochars as adsorbents for aluminum: The effects of oxygen-containing organic components and the scattering of silicate particles. Environ. Sci. Technol. 2013, 47, 8759–8768. [Google Scholar] [CrossRef]
- Sani, M.N.H.; Hasan, M.; Uddain, J.; Subramaniam, S. Impact of application of Trichoderma and biochar on growth, productivity and nutritional quality of tomato under reduced N-P-K fertilization. Ann. Agric. Sci. 2020, 65, 107–115. [Google Scholar] [CrossRef]
- Geng, N.; Kang, X.; Yan, X.; Yin, N.; Wang, H.; Pan, H.; Yang, Q.; Lou, Y.; Zhuge, Y. Biochar mitigation of soil acidification and carbon sequestration is influenced by materials and temperature. Ecotoxicol. Environ. Saf. 2022, 232, 113241. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.H.; Zhang, X.C. Effect of Biochar on pH of Alkaline Soils in the Loess Plateau: Results from Incubation Experiments. Int. J. Agric. Biol. 2012, 14, 745–750. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef]
- Hussain, M.; Farooq, M.; Nawaz, A.; Al-Sadi, A.M.; Solaiman, Z.M.; Alghamdi, S.S.; Ammara, U.; Ok, Y.S.; Siddique, K.H.M. Biochar for crop production: Potential benefits and risks. J. Soils Sediments 2016, 17, 685–716. [Google Scholar] [CrossRef]
- Yang, F.; LEE, X.; Wang, B. Characterization of biochars produced from seven biomasses grown in three different climate zones. Chin. J. Geochem. 2015, 34, 592–600. [Google Scholar] [CrossRef]
- Lee, X.; Yang, F.; Xing, Y.; Huang, Y.; Xu, L.; Liu, Z.; Holtzman, R.; Kan, I.; Li, Y.; Zhang, L.; et al. Use of biochar to manage soil salts and water: Effects and mechanisms. Catena 2022, 211, 106018. [Google Scholar] [CrossRef]
- Nartey, O.D.; Zhao, B. Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: An overview. Adv. Mater. Sci. Eng. 2014, 2014, 715398. [Google Scholar] [CrossRef]
- Lal, R. Soils and sustainable agriculture. A review. Agron. Sustain. Dev. 2008, 28, 57–64. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscans: Oxford, UK, 2009; pp. 1–12. [Google Scholar]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar] [CrossRef]
- Vaccari, F.P.; Baronti, S.; Lugato, E.; Genesio, L.; Castaldi, S.; Fornasier, F.; Miglietta, F. Biochar as a strategy to sequester carbon and increase yield in durum wheat. Eur. J. Agron. 2011, 34, 231–238. [Google Scholar] [CrossRef]
- El-Mahrouky, M.; EL-Naggar, A.H.; Usman, A.R.A.; Al-Wabel, M.I. Dynamics of CO2 emission and biochemical properties of a sandy calcareous soil amended with Conocarpus waste and biochar. Pedosphere 2015, 25, 46–56. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Usman, A.R.A.; El-Naggar, A.H.; Aly, A.; Ibrahim, H.M.; Elmaghraby, S.; Al-Omran, A. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi J. Biol. Sci. 2015, 22, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Ali, S.; Qayyum, M.F.; Ibrahim, M.; Zia-ur-Rehman, M.; Abbas, T.; Ok, Y.S. Mechanisms of biochar mediated alleviation of toxicity of trace elements in plants: A critical review. Environ. Sci. Pollut. Res. 2016, 23, 2230–2248. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Liu, X.; Bian, R.; Cheng, K.; Zhang, X.; Zheng, J.; Joseph, S.; Crowley, D.; Pan, G.; Li, L. Effects of biochar on availability and plant uptake of heavy metals—A meta-analysis. J. Environ. Manag. 2018, 222, 76–85. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, J.; Yang, X.; Fu, Q.; Hu, H.; Huang, Q. Biochar produced from the straw of common crops simultaneously stabilizes soil organic matter and heavy metals. Sci. Total Environ. 2022, 828, 154494. [Google Scholar] [CrossRef] [PubMed]
- Al-Wabel, M.I.; Hussain, Q.; Usman, A.R.A.; Ahmad, M.; Abduljabbar, A.; Sallam, A.S.; Ok, Y.S. Impact of biochar properties on soil conditions and agricultural sustainability: A review. Land Degrad. Dev. 2018, 29, 2124–2161. [Google Scholar] [CrossRef]
- Mahdi, Z.; El Hanandeh, A.; Yu, Q. Competitive adsorption of heavy metal ions [Pb2+, Cu2+, and Ni2+] onto date seed biochar: Batch and fixed bed experiments. Sep. Sci. Technol. 2018, 54, 888–901. [Google Scholar] [CrossRef]
- Mahdi, Z.; El Hanandeh, A.; Qimimg, J.Y. Date Palm (Phoenix dactylifera L.) Seed characterization for biochar preparation. In Proceedings of the 6th International Conference on Engineering, Project, and Production Management, Gold Coast, Australia, 2–4 September 2015. [Google Scholar] [CrossRef]
- Mahdi, Z.; Yu, Q.J.; El Hanandeh, A. Investigation of the kinetics and mechanisms of nickel and copper ions adsorption from aqueous solutions by date seed derived biochar. J. Environ. Chem. Eng. 2018, 6, 1171–1181. [Google Scholar] [CrossRef]
- Girgis, B.S.; El–Hendawy, A.A. Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid. Micropor. Mesopor. Mater. 2002, 52, 105–117. [Google Scholar] [CrossRef]
- Nogués, I.; Mazzurco Miritana, V.; Passatore, L.; Zacchini, M.; Peruzzi, E.; Carloni, S.; Pietrini, F.; Marabottini, R.; Chiti, T.; Massaccesi, L.; et al. Biochar soil amendment as carbon farming practice in a Mediterranean environment. Geoderma Reg. 2023, 33, e00634. [Google Scholar] [CrossRef]
- Rutigliano, F.A.; Romano, M.; Marzaioli, R.; Baglivo, I.; Baronti, S.; Miglietta, F.; Castaldi, S. Effect of biochar addition on soil microbial community in a wheat crop. Eur. J. Soil Biol. 2014, 60, 9–15. [Google Scholar] [CrossRef]
- Ameloot, N.; Sleutel, S.; Case, S.D.C.; Alberti, G.; McNamara, N.P.; Zavalloni, C.; Vervisch, B.; delle Vedove, G.; De Neve, S. C mineralization and microbial activity in four biochar field experiments several years after incorporation. Soil Biol. Biochem. 2014, 78, 195–203. [Google Scholar] [CrossRef]
- Andrés, P.; Rosell-Melé, A.; Colomer-Ventura, F.; Denef, K.; Cotrufo, M.F.; Riba, M.; Alcañiz, J.M. Belowground biota responses to maize biochar addition to the soil of a Mediterranean vineyard. Sci. Total Environ. 2019, 660, 1522–1532. [Google Scholar] [CrossRef]
- Baronti, S.; Vaccari, F.P.; Miglietta, F.; Calzolari, C.; Lugato, E.; Orlandini, S.; Pini, R.; Zulian, C.; Genesio, L. Impact of biochar application on plant water relations in Vitis vinifera [L.]. Eur. J. Agron. 2014, 53, 38–44. [Google Scholar] [CrossRef]
- Jenkins, J.R.; Viger, M.; Arnold, E.C.; Harris, Z.M.; Ventura, M.; Miglietta, F.; Girardin, C.; Edwards, R.J.; Rumpel, C.; Fornasier, F.; et al. Biochar alters the soil microbiome and soil function: Results of next-generation amplicon sequencing across Europe. Glob. Chang. Biol. Bioenergy 2017, 9, 591–612. [Google Scholar] [CrossRef]
- Marks, E.A.N.; Mattana, S.; Alcañiz, J.M.; Pérez-Herrero, E.; Domene, X. Gasifier biochar effects on nutrient availability, organic matter mineralization, and soil fauna activity in a multi-year Mediterranean trial. Agric. Ecosyst. Environ. 2016, 215, 30–39. [Google Scholar] [CrossRef]
- Olmo, M.; Alburquerque, J.A.; Barrón, V.; del Campillo, M.C.; Gallardo, A.; Fuentes, M.; Villar, R. Wheat growth and yield responses to biochar addition under Mediterranean climate conditions. Biol. Fertil. Soils 2014, 50, 1177–1187. [Google Scholar] [CrossRef]
- Zhu, L.X.; Xiao, Q.; Cheng, H.Y.; Shi, B.J.; Shen, Y.-F.; Li, S.Q. Seasonal dynamics of soil microbial activity after biochar addition in a dryland maize field in North-Western China. Ecol. Eng. 2017, 104, 141–149. [Google Scholar] [CrossRef]
- Liao, N.; Li, Q.; Zhang, W.; Zhou, G.; Ma, L.; Min, W.; Ye, J.; Hou, Z. Effects of biochar on soil microbial community composition and activity in drip-irrigated desert soil. Eur. J. Soil Biol. 2016, 72, 27–34. [Google Scholar] [CrossRef]
- Li, M.; Liu, M.; Li, Z.; Jiang, C.; Wu, M. Soil N transformation and microbial community structure as affected by adding biochar to a paddy soil of subtropical China. J. Integr. Agric. 2016, 15, 209–219. [Google Scholar] [CrossRef]
- Khadem, A.; Raiesi, F. Influence of biochar on potential enzyme activities in two calcareous soils of contrasting texture. Geoderma 2017, 308, 149–158. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Xie, T.; Sadasivam, B.Y.; Reddy, K.R.; Wang, C.; Spokas, K. Review of the effects of biochar amendment on soil properties and carbon sequestration. J. Hazard. Toxic Radioact. Waste 2015, 20, 04015013. [Google Scholar] [CrossRef]
- Bruun, S.; Jensen, E.S.; Jensen, L.S. Microbial mineralization and assimilation of black carbon: Dependency on degree of thermal alteration. Org. Geochem. 2008, 39, 839–845. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Subbotina, I.; Chen, H.; Bogomolova, I.; Xu, X. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14 C labeling. Soil Biol. Biochem. 2009, 41, 210–219. [Google Scholar] [CrossRef]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; Luis, J.; Macêdo, V.D.; Blum, W.E.H.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.M.; Dallmeyer, I.; Garcia-Pérez, M. The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Sci. Total Environ. 2017, 574, 139–147. [Google Scholar] [CrossRef]
- Diatta, A.; Fike, J.; Battaglia, M.; Galbraith, J.; Baig, M. Effects of biochar on soil fertility and crop productivity in arid regions: A review. Arab. J. Geosci. 2020, 13, 595. [Google Scholar] [CrossRef]
- Zhang, D.; Pan, G.; Wu, G.; Kibue, G.W.; Li, L.; Zhang, X.; Zheng, J.; Zheng, J.; Cheng, K.; Joseph, S. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol. Chemosphere 2016, 142, 106–113. [Google Scholar] [CrossRef]
- Arfaoui, A.; Ibrahimi, K.; Trabelsi, F. Biochar application to soil under arid conditions: A bibliometric study of research status and trends. Arab. J. Geosci. 2019, 12, 45. [Google Scholar] [CrossRef]
- Arif, M.; Ali, S.; Ilyas, M.; Riaz, M.; Akhtar, K.; Ali, K.; Adnan, M.; Fahad, S.; Khan, I.; Shah, S. Enhancing phosphorus availability, soil organic carbon, maize productivity and farm profitability through biochar and organic–inorganic fertilizers in an irrigated maize agroecosystem under semi-arid climate. Soil Use Manag. 2021, 37, 104–119. [Google Scholar] [CrossRef]
- Ravi, S.; Li, J.; Meng, Z.; Zhang, J.; Mohanty, S. Generation, Resuspension, and Transport of Particulate Matter From Biochar-Amended Soils: A Potential Health Risk. GeoHealth 2020, 4, e2020GH000311. [Google Scholar] [CrossRef]
- Rumpel, C.; Chaplot, V.; Planchon, O.; Bernadou, J.; Valentin, C.; Mariotti, A. Preferential erosion of black carbon on steep slopes with slash and burn agriculture. Catena 2006, 65, 30–40. [Google Scholar] [CrossRef]
- Libutti, A.; Cammerino, A.R.B.; Monteleone, M. Management of Residues from Fruit Tree Pruning: A Trade-Off between Soil Quality and Energy Use. Agronomy 2021, 11, 236. [Google Scholar] [CrossRef]
- Haug, R.T. The Practical Handbook of Compost Engineering; CRC Press, Lewis Publishers: Boca Raton, FL, USA, 1993; 752p. [Google Scholar]
- Zhang, L.; Sun, X. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Manag. 2015, 48, 115–126. [Google Scholar] [CrossRef]
- Doña-Grimaldi, V.M.; Palma, A.; Ruiz-Montoya, M.; Morales, E.; Díaz, M.J. Energetic valorization of MSW compost valorization by selecting the maturity conditions. J. Environ. Manag. 2019, 238, 153–158. [Google Scholar] [CrossRef]
- Hachicha, S.; Cegarra, J.; Sellami, F.; Hachicha, R.; Drira, N.; Medhioub, K.; Ammar, E. Elimination of polyphenols toxicity from olive mill wastewater sludge by its co-composting with sesame bark. J. Hazard Mater. 2009, 161, 1131–1139. [Google Scholar] [CrossRef]
- Nikaeen, M.; Nafez, A.H.; Bina, B.; Nabavi, B.F.; Hassanzadeh, A. Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting. Waste Manag. 2015, 39, 104–111. [Google Scholar] [CrossRef]
- Cesaro, A.; Conte, A.; Belgiorno, V.; Siciliano, A.; Guida, M. The evolution of compost stability and maturity during the full-scale treatment of the organic fraction of municipal solid waste. J. Environ. Manag. 2019, 232, 264–270. [Google Scholar] [CrossRef]
- Abid, W.; Mahmoud, I.B.; Masmoudi, S.; Triki, M.A.; Mounier, S.; Ammar, E. Physico-chemical and spectroscopic quality assessment of compost from date palm [Phoenix dactylifera L.] waste valorization. J. Environ. Manag. 2020, 264, 110492. [Google Scholar] [CrossRef]
- Masmoudi, S.; JarbouiJarboui, R.; El Feki, H.; Gea, T.; Medhioub, K.; Ammar, E. Characterization of olive mill wastes composts and their humic acids: Stability assessment within different particle size fractions. Environ. Technol. 2013, 34, 787–797. [Google Scholar] [CrossRef]
- Cesaro, A.; Belgiorno, V.; Guida, M. Compost from organic solid waste: Quality assessment and European regulations for its sustainable use. Resour. Conserv. Recycl. 2015, 94, 72–79. [Google Scholar] [CrossRef]
- Song, C.; Li, M.; Xi, B.; Wei, Z.; Zhao, Y.; Jia, X.; Qi, H.; Zhu, C. Characterisation of dissolved organic matter extracted from the bio-oxidative phase of co-composting of biogas residues and livestock manure using spectroscopic techniques. Int. Biodeterior. Biodegrad. 2015, 10, 38–50. [Google Scholar] [CrossRef]
- Harindintwali, J.D.; Zhou, J.; Yu, X. Lignocellulosic crop residue composting by cellulolytic nitrogen-fixing bacteria: A novel tool for environmental sustainability. Sci. Total Environ. 2020, 715, 136912. [Google Scholar] [CrossRef]
- Michel, F.C.; Forney, L.J.; Huang, A.J.; Drew, S.; Czuprenski, M.; Lindeberg, J.D.; Reddy, C.A. Effects of Turning Frequency, Leaves to Grass Mix Ratio and Windrow vs. Pile Configuration on the Composting of Yard Trimmings. Compost. Sci. Util. 1996, 4, 26–43. [Google Scholar] [CrossRef]
- Aitkenhead, J.A.; McDowell, W.H. Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Glob. Biogeochem. Cycles 2000, 14, 127–138. [Google Scholar] [CrossRef]
- Fong, M.; Wong, J.W.C.; Wong, M.H. Review on evaluation of compost maturity and stability of solid waste. Shanghai Environ. Sci. 1999, 18, 91–93. [Google Scholar]
- Misra, R.V.; Roy, R.N.; Hiraoka, H. On Farm Composting Methods; Land and Water Discussion Paper 2; FAO: Rome, Italy, 2003; 37p. [Google Scholar]
- Safwat, M.S. A Organic Farming of Date Palm and Recycling of Their Wastes. Afr. Crop Sci. Conf. Proc. 2007, 8, 2109–2111. [Google Scholar]
- Hao, X.; Chang, C.; Larney, F.J. Carbon, nitrogen balances and greenhouse gas emission during cattle feedlot manure composting. J. Environ. Qual. 2004, 33, 37–44. [Google Scholar] [CrossRef]
- Linères, M.; Djakovitch, J.L. Caractérisation de la stabilité biologique des apports organiques par l’analyse biochimique. In Matières Organiques et Agricultures; Decroux, J., Ignazi, J.C., Eds.; GEMAS-COMIFER: Paris, France, 1993; pp. 159–168. [Google Scholar]
- Mary, B.; Fresneau, C.; Morel, J.L.; Mariotti, A. C and N cycling during decomposition of root mucilage, roots and glucose in soil. Soil Biol. Biochem. 1993, 25, 1005–1014. [Google Scholar] [CrossRef]
- Ganry, F.; Thuriès, L. Intérêt des fumiers pour restaurer la fertilité des sols en zone semi-aride d’Afrique. In Restauration de la Productivité des sols Tropicaux et Mediterraneens: Contribution à L’agroécologie; Roose, E., Ed.; IRD: Marseille, France, 2017; pp. 179–195. [Google Scholar]
- Gondek, M.; Weindorf, D.C.; Thiel, C.; Kleinheinz, G. Soluble Salts in Compost and Their Effects on Soil and Plants: A Review. Compos. Sci. Util. 2020, 28, 59–75. [Google Scholar] [CrossRef]
- Reddy, N.; Crohn, D.M. Compost induced soil salinity: A new prediction method and its effect on plant growth. Compos. Sci. Util. 2012, 20, 133–140. [Google Scholar] [CrossRef]
- Mahmoodabadi, M.; Yazdanpanah, N.; Sinobas, L.R.; Pazira, E.; Neshat, A. Reclamation of calcareous saline sodic soil with different amendments [I]: Redistribution of soluble cations within the soil profile. Agric. Water Manag. 2013, 120, 30–38. [Google Scholar] [CrossRef]
- United States Composting Council [USCC]. Field Guide to Compost Use. 2001. 94p. Available online: https://www.mncompostingcouncil.org/uploads/1/5/6/0/15602762/fgcu.pdf (accessed on 10 October 2023).
- Soudejani, H.T.; Kazemian, H.; Inglezakis, V.J.; Zorpas, A.A. Application of zeolites in organic waste composting: A review. Biocatal. Agric. Biotechnol. 2019, 22, 101396. [Google Scholar] [CrossRef]
- Turan, N.G. The effects of natural zeolite on salinity level of poultry litter compost. Bioresour. Technol. 2008, 99, 2097–2101. [Google Scholar] [CrossRef]
- Chan, M.T.; Selvam, A.; Wong, J.W. Reducing nitrogen loss and salinity during ‘struvite’ food waste composting by zeolite amendment. Bioresour. Technol. 2016, 200, 838–844. [Google Scholar] [CrossRef]
- Ramesh, K.; Reddy, D.D. Zeolites and their potential uses in agriculture. Adv. Agron. 2011, 113, 219–241. [Google Scholar] [CrossRef]
- Ksheem, A.M.; Bennett, J.M.; Antille, D.L.; Raine, S.R. Towards a method for optimized extraction of soluble nutrients from fresh and composted chicken manures. Waste Manag. 2015, 45, 76–90. [Google Scholar] [CrossRef] [PubMed]
- Qadir, M.; Oster, J.D. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci. Total Environ. 2004, 323, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Peng, X.; Zhao, Y.; Ding, W.; Cai, H.; Liu, G.; Wu, Z. Microbial inoculum with leachate recirculated cultivation for the enhancement of OFMSW composting. J. Hazard. Mater. 2008, 153, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J.; Svehla, J.; Kropfelova, L.; Chrastny, V. Trace metals in Phragmites australis and Phalaris arundinacea growing in constructed and natural wetlands. Sci. Total Environ. 2007, 380, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Bakhshoodeh, R.; Alavi, N.; Majlesi, M.; Paydary, P. Compost leachate treatment by a pilot-scale subsurface horizontal flow constructed wetland. Ecol. Eng. 2017, 105, 7–14. [Google Scholar] [CrossRef]
- Roy, D.; Azaïs, A.; Benkaraache, S.; Drogui, P.; Tyagi, R.D. Composting leachate: Characterization, treatment and future perspectives. Rev. Environ. Sci. Biotechnol. 2018, 17, 323–349. [Google Scholar] [CrossRef]
- Benabderrahim, M.A.; Elfalleh, W.; Belayadi, H.; Haddad, M. Effect of date palm waste compost on forage alfalfa growth, yield, seed yield and minerals uptake. Int. J. Recycl. Org. Waste Agric. 2018, 7, 1–9. [Google Scholar] [CrossRef]
- Vico, A.; Pérez-Murcia, M.D.; Bustamante, M.A.; Agulló, E.; Marhuenda-Egea, F.C.; Sáez, J.A.; Paredes, C.; Pérez-Espinosa, A.; Moral, R. Valorization of date palm [Phoenix dactylifera L.] pruning biomass by cocomposting with urban and agri-food sludge. J. Environ. Manag. 2018, 226, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Giagnoni, L.; Maienza, A.; Baronti, S.; Primo, F.; Genesio, L.; Taiti, C.; Martellini, T.; Scodellini, R.; Cincinelli, A.; Costa, C.; et al. Long-term soil biological fertility, volatile organic compounds and chemical properties in a vineyard soil after biochar amendment. Geoderma 2019, 344, 127–136. [Google Scholar] [CrossRef]
- Barthod, J.; Rumpel, C.; Dignac, M.F. Composting with additives to improve organic amendments. A review. Agron. Sustain. Dev. 2018, 38, 17. [Google Scholar] [CrossRef]
- Badawi, M.A. Co-Composting Date Palm Tree Wastes and Its Effects on Soil Fertility. Key Eng. Mater. 2022, 925, 73–83. [Google Scholar] [CrossRef]
- Raja, A.M.; Khalaf, N.H.; Alkubaisy, S.A. Utilization of Date Palm Waste Compost as Substitute for Peat Moss. IOP Conf. Ser. Earth Environ. Sci. 2021, 904, 012041. [Google Scholar] [CrossRef]
- Hoitink, H.A.J.; Fahy, P.C. Basis for the control of soilborne plant pathogens with composts. Annu. Rev. Phytopathol. 1986, 24, 93–114. [Google Scholar] [CrossRef]
- Manios, T. The composting potential of different organic solid wastes: Experience from the island of Crete. Environ. Int. 2004, 29, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Zorpas, A. Compost Evaluation and Utilization. In Composting: Processing, Materials and Approaches; Pereira, J.C., Bolin, L.J., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2009; pp. 31–68. [Google Scholar]
- Montanaro, G.; Celano, G.; Dichio, B.; Xiloyannis, C. Effects of soil-protecting agricultural practices on soil organic carbon and productivity in fruit tree orchards. Land Degrad. Dev. 2010, 21, 132–138. [Google Scholar] [CrossRef]
- Montanaro, G.; Dichio, B.; Briccoli Bati, C.; Xiloyannis, C. Soil management affects carbon dynamics and yield in a Mediterranean peach orchard. Agric. Ecosyst. Environ. 2012, 161, 46–54. [Google Scholar] [CrossRef]
- Koubouris, G.; Kourgialas, N.N.; Kavvadias, V.; Digalaki, N.; Psarras, G. Sustainable agricultural practices for improving soil carbon and nitrogen content in relation to water availability—An adapted approach to Mediterranean olive groves. Commun. Soil Sci. Plant Anal. 2017, 48, 2687–2700. [Google Scholar] [CrossRef]
- Michalopoulos, G.; Kasapi, K.A.; Koubouris, G.; Psarras, G.; Arampatzis, G.; Hatzigiannakis, E.; Kavvadias, V.; Xiloyannis, C.; Montanaro, G.; Malliaraki, S.; et al. Adaptation of Mediterranean Olive Groves to Climate Change through Sustainable Cultivation Practices. Climate 2020, 8, 54. [Google Scholar] [CrossRef]
- Smith, T.E.; Grattan, S.R.; Grieve, C.M.; Poss, J.A.; Läuchli, A.E.; Suarez, D.L. pH dependent salinity-boron interactions impact yield, biomass, evapotranspiration and boron uptake in broccoli [Brassica oleracea L.]. Plant Soil 2013, 370, 541–554. [Google Scholar] [CrossRef]
- Celano, G.; Dumontet, S.; Xiloyannis, C.; Nuzzo, V.; Dichio, B.; Arcieri, M. Green manure plant biomass evaluation and total mineral nitrogen in the soil of a peach orchard system. Acta Hortic. 1998, 465, 579–586. [Google Scholar] [CrossRef]
- Kavvadias, V.; Papadopoulou, M.; Vavoulidou, E.; Theocharopoulos, S.; Repas, S.; Koubouris, G.; Psarras, G.; Kokkinos, G. Effect of addition of organic materials and irrigation practices on soil quality in olive groves. J. Water Clim. Chang. 2018, 9, 775–785. [Google Scholar] [CrossRef]
- Ferrara, G.; Mazzeo, A.; Matarrese, A.M.S.; Pacifico, A.; Fracchiolla, I.M.; Al Chamill, Z.; Lasorella, I.C.; Montemurro, P.; Mondelli, D. Soil management systems: Effects on soil properties and weed flora. S. Afr. J. Enol. Vitic. 2015, 36, 11–20. [Google Scholar] [CrossRef]
- Jokela, W.E.; Grabber, J.H.; Karlen, D.L.; Balser, T.C.; Palmquist, D.E. Cover crop and liquid manure effects on soil quality indicators in a corn silage system. Agron. J. 2009, 101, 727–737. [Google Scholar] [CrossRef]
- Mustin, M. Le Compost: Gestion de la Matiere Organique; Dubusc, F., Ed.; Editions François Dubusc: Paris, France, 1987; 954p. [Google Scholar]
- Parnaudeau, V.; Nicolardot, B.; Pagès, J. Relevance of Organic Matter Fractions as Predictors of Wastewater Sludge Mineralization in Soil. J. Environ. Qual. 2004, 33, 1885–1894. [Google Scholar] [CrossRef] [PubMed]
- CATCH-C Project, Compatibility of Agricultural Management Practices and Types of Farming in the EU to Enhance Climate Change Mitigation and Soil Health. 7th Framework Programme for Research, Technological Development and Demonstration. Available online: https://www.catch-c.eu/ (accessed on 12 September 2023).
- Wander, M.M.; Traina, S.J.; Stinner, B.R.; Peters, S.E. Organic and conventional management effects on biologically active soil organic matter pools. Soil Sci. Soc. Am. J. 1994, 58, 1130–1139. [Google Scholar] [CrossRef]
- Gunapala, N.; Scow, K.M. Dynamics of soil microbial biomass and activity in conventional and organic farming systems. Soil Biol. Biochem. 1998, 30, 805–816. [Google Scholar] [CrossRef]
- Ghouili, E.; Hidri, Y.; Cheikh M’Hamed, H.; Somenahally, A.; Xue, Q.; El Akram Znaïdi, I.; Jebara, M.; Nefissi Ouertani, R.; Muhovski, Y.; Riahi, J.; et al. Date palm waste compost promotes plant growth and nutrient transporter genes expression in barley [Hordeum vulgare L.]. S. Afr. J. Bot. 2022, 149, 247–257. [Google Scholar] [CrossRef]
- Brahim, N.; Ibrahim, H.; Mlih, R.; Bouajila, A.; Karbout, N.; Bol, R. Soil OC and N stocks in the saline soil of Tunisian gataaya oasis eight years after application of manure and compost. Land 2022, 11, 442. [Google Scholar] [CrossRef]
- El-Shakweer, M.H.; El-Sayad, A.E.A.; Ejes, M.S.A. Soil and plant analysis as a guide for interpretation of the improvement efficiency of organic conditioners added to different soils in Egypt. Commun. Soil Sci. Plant Anal. 1998, 29, 2067–2088. [Google Scholar] [CrossRef]
- Ghouili, E.; Abid, G.; Hogue, R.; Jeanne, T.; D’Astous-Pagé, J.; Sassi, K.; Hidri, Y.; M’Hamed, H.C.; Somenahally, A.; Xue, Q.; et al. Date Palm Waste Compost Application Increases Soil Microbial Community Diversity in a Cropping Barley [Hordeum vulgare L.] Field. Biology 2023, 12, 546. [Google Scholar] [CrossRef]
Parameter | Palm Compost (6 Months) | Cow Manure |
---|---|---|
pH (H2O) | 7.6 ± 0.3 a | 7.8 ± 0.6 a |
EC (dS/m) | 3.2 ± 0.4 a | 4.1 ± 0.5 b |
N (g kg−1) | 12 ± 2 a | 21 ± 3 b |
C(g kg−1) | 320.5 ± 32 a | 350.6 ± 24 a |
C/N | 27.08 | 16.1 |
P (%) | 0.37 ± 0.01 a | 0.41 ± 0.02 b |
K (%) | 0.42 ± 0.03 a | 0.57 ± 0.01 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavvadias, V.; Le Guyader, E.; El Mazlouzi, M.; Gommeaux, M.; Boumaraf, B.; Moussa, M.; Lamine, H.; Sbih, M.; Zoghlami, I.R.; Guimeur, K.; et al. Using Date Palm Residues to Improve Soil Properties: The Case of Compost and Biochar. Soil Syst. 2024, 8, 69. https://doi.org/10.3390/soilsystems8030069
Kavvadias V, Le Guyader E, El Mazlouzi M, Gommeaux M, Boumaraf B, Moussa M, Lamine H, Sbih M, Zoghlami IR, Guimeur K, et al. Using Date Palm Residues to Improve Soil Properties: The Case of Compost and Biochar. Soil Systems. 2024; 8(3):69. https://doi.org/10.3390/soilsystems8030069
Chicago/Turabian StyleKavvadias, Victor, Elie Le Guyader, Mohamed El Mazlouzi, Maxime Gommeaux, Belkacem Boumaraf, Mohamed Moussa, Hafouda Lamine, Mahtali Sbih, Ines Rahma Zoghlami, Kamel Guimeur, and et al. 2024. "Using Date Palm Residues to Improve Soil Properties: The Case of Compost and Biochar" Soil Systems 8, no. 3: 69. https://doi.org/10.3390/soilsystems8030069
APA StyleKavvadias, V., Le Guyader, E., El Mazlouzi, M., Gommeaux, M., Boumaraf, B., Moussa, M., Lamine, H., Sbih, M., Zoghlami, I. R., Guimeur, K., Tirichine, A., Adelfettah, A., Marin, B., & Morvan, X. (2024). Using Date Palm Residues to Improve Soil Properties: The Case of Compost and Biochar. Soil Systems, 8(3), 69. https://doi.org/10.3390/soilsystems8030069