Sensing and Delineating Mixed-VOC Composition in the Air Using a Single Metal Oxide Sensor
Abstract
1. Introduction
2. Experiments
3. Results and Discussion
3.1. Single Volatile Organic Compound
3.2. Double Volatile Organic Compounds
3.3. Correlation of Single and Double VOC Results
3.4. Predictive Mathematic Model: Development and Simulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Itoh, T.; Akamatsu, T.; Izu, N.; Shin, W.; Byun, H.-G. Monitoring of disease-related volatile organic compounds in simulated room air. IEEE Sens. Proc. 2014, 1427–1430. [Google Scholar] [CrossRef]
- Karuppuswami, S.; Wiwatcharagoses, N.; Kaur, A.; Chahal, P. Capillary Condensation Based Wireless Volatile Molecular Sensor. In Proceedings of the 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 30 May–2 June 2017; pp. 1455–1460. [Google Scholar]
- Fu, J.L.; Ayazi, F. High- Q AlN-on-Silicon Resonators with Annexed Platforms for Portable Integrated VOC Sensing. J. Microelectromech. Syst. 2015, 24, 503–509. [Google Scholar] [CrossRef]
- Collier-Oxandale, A.; Wong, N.; Navarro, S.; Johnston, J.; Hannigan, M. Using gas-phase air quality sensors to disentangle potential sources in a Los Angeles neighborhood. Atmos. Environ. 2020, 233, 117519. [Google Scholar] [CrossRef]
- Szczurek, A.; Maciejewska, M. Assessment of VOCs in air using sensor array under various exposure conditions. In Proceedings of the 2012 IEEE Sensors Applications Symposium Proceedings, Brescia, Italy, 7–9 February 2012; pp. 1–5. [Google Scholar]
- Nazemi, H.; Joseph, A.; Park, J.; Emadi, A. Advanced Micro- and Nano-Gas Sensor Technology: A Review. Sensors 2019, 19, 1285. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.; Gardner, J.W.; Guha, P.K. Air Pollution Monitoring Using Near Room Temperature Resistive Gas Sensors: A Review. IEEE Trans. Electron Devices 2019, 66, 3254–3264. [Google Scholar] [CrossRef]
- Gao, H.; Guo, J.; Li, Y.; Xie, C.; Li, X.; Liu, L.; Chen, Y.; Sun, P.; Liu, F.; Yan, X.; et al. Highly selective and sensitive xylene gas sensor fabricated from NiO/NiCr2O4 p-p nanoparticles. Sens. Actuators B Chem. 2019, 284, 305–315. [Google Scholar] [CrossRef]
- Collier-Oxandale, A.M.; Thorson, J.; Halliday, H.; Milford, J.; Hannigan, M. Understanding the ability of low-cost MOx sensors to quantify ambient VOCs. Atmos. Meas. Tech. 2019, 12, 1441–1460. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A. Detection of volatile organic compounds (VOCs) using SnO2 gas-sensor array and artificial neural network. Sens. Actuators B Chem. 2003, 96, 24–37. [Google Scholar] [CrossRef]
- Lee, D.; Tae, Y.; Huh, J.; Lee, D. Fabrication and characteristics of SnO2 gas sensor array for volatile organic compounds recognition. Thin Solid Films 2002, 416, 271–278. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A Survey on Gas Sensing Technology. Sensors 2012, 12, 9635–9665. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Majhi, S.M.; Zhang, X.; Swager, T.M.; Salama, K.N. Recent progress and perspectives of gas sensors based on vertically oriented ZnO nanomaterials. Adv. Colloid Interface Sci. 2019, 270, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Chavali, M.S.; Nikolova, M.P. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci. 2019, 1, 607. [Google Scholar] [CrossRef]
- Lin, T.; Lv, X.; Hu, Z.; Xu, A.; Feng, C. Semiconductor Metal Oxides as Chemoresistive Sensors for Detecting Volatile Organic Compounds. Sensors 2019, 19, 233. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Sasidharan, M.; Jin, W. Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Prog. Mater. Sci. 2019, 106, 100574. [Google Scholar] [CrossRef]
- Mirzaei, A.; Lee, J.-H.; Majhi, S.M.; Weber, M.; Bechelany, M.; Kim, H.W.; Kim, S.S. Resistive gas sensors based on metal-oxide nanowires. J. Appl. Phys. 2019, 126, 241102. [Google Scholar] [CrossRef]
- Di Lecce, V.; Calabrese, M.; Dario, R. Computational-based volatile organic compounds discrimination: An experimental low-cost setup. In Proceedings of the 2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, Taranto, Italy, 6–8 September 2010; pp. 54–59. [Google Scholar]
- Alinoori, A.H.; Masoum, S. Multicapillary Gas Chromatography—Temperature Modulated Metal Oxide Semiconductor Sensors Array Detector for Monitoring of Volatile Organic Compounds in Closed Atmosphere Using Gaussian Apodization Factor Analysis. Anal. Chem. 2018, 90, 6635–6642. [Google Scholar] [CrossRef]
- Choi, Y.M.; Cho, S.; Jang, D.; Koh, H.-J.; Choi, J.; Kim, C.-H.; Jung, H.-T. Ultrasensitive Detection of VOCs Using a High-Resolution CuO/Cu2O/Ag Nanopattern Sensor. Adv. Funct. Mater. 2019, 29, 1808319. [Google Scholar] [CrossRef]
- Leidinger, M.; Sauerwald, T.; Conrad, T.; Reimringer, W.; Ventura, G.; Schütze, A. Selective Detection of Hazardous Indoor VOCs Using Metal Oxide Gas Sensors. Procedia Eng. 2014, 87, 1449–1452. [Google Scholar] [CrossRef]
- Lee, D.D.; Lee, D.S. Environmental gas sensors. IEEE Sens. J. 2002, 1, 214–224. [Google Scholar]
- Masson, N.; Piedrahita, R.; Hannigan, M. Approach for quantification of metal oxide type semiconductor gas sensors used for ambient air quality monitoring. Sens. Actuators B Chem. 2015, 208, 339–345. [Google Scholar] [CrossRef]
- Yurko, G.; Roostaei, J.; Dittrich, T.; Xu, L.; Ewing, M.; Zhang, Y.; Shreve, G. Real-Time Sensor Response Characteristics of 3 Commercial Metal Oxide Sensors for Detection of BTEX and Chlorinated Aliphatic Hydrocarbon Organic Vapors. Chemosensors 2019, 7, 40. [Google Scholar] [CrossRef]
- Air-Quality Gas Sensor. Available online: https://www.winsen-sensor.com/d/files/MP503.pdf (accessed on 24 February 2021).
- uRADMonitor A3. Available online: https://www.uradmonitor.com/wordpress/wp-content/uploads/2020/01/a3_datasheet_v108_en.pdf (accessed on 24 February 2021).
- Air Quality Sensor Test Results with Raspberry Pi. Available online: https://www.switchdoc.com/2016/06/air-quality-sensor-tested-raspberry-pi/ (accessed on 26 March 2021).
- Motisan, R.; Santos, R.M. Mobility and Measurement Tackle Ongoing Challenge of Air Pollution. Canadian Chemical News 2018, March. Available online: https://www.cheminst.ca/magazine/article/mobility-and-measurement-tackle-ongoing-challenge-of-air-pollution/ (accessed on 24 February 2021).
- Annanouch, F.-E.; Bouchet, G.; Perrier, P.; Morati, N.; Reynard-Carette, C.; Aguir, K.; Bendahan, M. How the Chamber Design Can Affect Gas Sensor Responses. Proceedings 2018, 2, 820. [Google Scholar] [CrossRef]
- Chen, Y.; Qin, H.; Cao, Y.; Zhang, H.; Hu, J. Acetone Sensing Properties and Mechanism of SnO2 Thick-Films. Sensors 2018, 18, 3425. [Google Scholar] [CrossRef] [PubMed]
- Thakor, G.S. Testing and Validation of Mobile Air Quality Monitor for Sensing and Delineating VOC Emissions. Master’s Thesis, University of Guelph, Guelph, ON, Canada, 2020. Available online: http://hdl.handle.net/10214/17941 (accessed on 26 February 2021).
- Astiaso, D.; Cumo, F.; Gugliermetti, F. Air Quality in Portal Areas: An Index for VOCs Pollution Assessment. In Air Quality–New Perspective; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef][Green Version]
Exp. | A 1 Vol (µL) | A 1 Conc (ppmv) | E 1 Vol (µL) | E 1 Conc (ppmv) | Total Vol (µL) | Total Conc (ppmv) | Resistance (kΩ) |
---|---|---|---|---|---|---|---|
1 | 3 | 52.50 | 3 | 66.99 | 6 | 119.49 | 13.59 |
2 | 6 | 104.99 | 6 | 133.98 | 12 | 238.97 | 10.81 |
3 | 9 | 157.49 | 9 | 200.97 | 18 | 358.46 | 9.38 |
Single | Acetone | Ethanol | n-Hexane | |||
---|---|---|---|---|---|---|
Double | Ace+Eth | Ace+Hex | Eth+Ace | Eth+Hex | Hex+Ace | Hex+Eth |
Slope coefficient | 0.878 | 1.009 | 0.538 | 0.939 | 0.168 | 0.254 |
Con (ppm) | Log(Con) | Log(ResMax) | Log(ResMin) | ResMax (kΩ) | ResMin (kΩ) |
---|---|---|---|---|---|
200 | 2.30 | 1.56 | 1.00 | 36.32 | 10.06 |
50 | 1.70 | 1.88 | 1.22 | 76.45 | 16.60 |
Data Set | D/O ResRatio | Log(Con) = D·Log(Res)+E | ||
---|---|---|---|---|
Slope D | Intercept E | |||
1 | Maximum | 2.105 | −1.863 | 5.208 |
2 | Minimum | 1.650 | −2.768 | 5.077 |
3 | Hypothetical (20 kΩ/10 kΩ) | 2.000 | −2.071 1 | 5.178 1 |
Measured D/O ResRatio | Acetone Concentration | n-Hexane Concentration | Ethanol Concentration |
---|---|---|---|
<1.75 | Highest | Lowest | Acetone > Ethanol > Hexane |
>2.15 | Lowest | Highest | Acetone < Hexane < Ethanol |
1.75–2.15 | Acetone < Hexane | Hexane < Ethanol | Highest |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thakor, G.S.; Zhang, N.; Santos, R.M. Sensing and Delineating Mixed-VOC Composition in the Air Using a Single Metal Oxide Sensor. Clean Technol. 2021, 3, 519-533. https://doi.org/10.3390/cleantechnol3030031
Thakor GS, Zhang N, Santos RM. Sensing and Delineating Mixed-VOC Composition in the Air Using a Single Metal Oxide Sensor. Clean Technologies. 2021; 3(3):519-533. https://doi.org/10.3390/cleantechnol3030031
Chicago/Turabian StyleThakor, Govind S., Ning Zhang, and Rafael M. Santos. 2021. "Sensing and Delineating Mixed-VOC Composition in the Air Using a Single Metal Oxide Sensor" Clean Technologies 3, no. 3: 519-533. https://doi.org/10.3390/cleantechnol3030031
APA StyleThakor, G. S., Zhang, N., & Santos, R. M. (2021). Sensing and Delineating Mixed-VOC Composition in the Air Using a Single Metal Oxide Sensor. Clean Technologies, 3(3), 519-533. https://doi.org/10.3390/cleantechnol3030031