Pulsar Wind Nebulae and Unidentified Galactic Very High Energy Sources
Abstract
:1. Introduction to the Standard Model of Cosmic Ray Origin: Successes, Limits, and Possible Solutions
- Inverse Compton scattering of relativistic electrons/positrons on background photons (CMB, infrared, X-rays, etc.) leads to leptonic models of acceleration;
- Neutral pion decay due to proton–proton inelastic interactions leads to hadronic models.
2. The Picture from Fermi-LAT
- Fermi-LAT observations of one of the most promising targets to confirm the standard model of CR origin seem to contradict the results described above. Before the launch of Fermi-LAT in 2008, results from IACTs [15] indicated that the shell SNR RX J1713.7-3946 was probably one of the most promising targets [32], and it is surely one of the best-described by theoretical models (e.g., [32]). However, Fermi-LAT observations showed that leptonic models fit the energy spectrum of RX J1713.7-3946 very well, while hadronic models are essentially disproved [26].
- While hadronic models are favoured for most of the LAT-detected SNRs (although for most of these leptonic models cannot be fully discarded either), in general these models do not seem efficient enough at accelerating CRs to reach the 10% predicted in the standard model, which is known as the “efficiency problem". In this regard, let us take Cassiopeia A (which, together with the Crab, is one of the two most powerful explosions our side of the Galaxy) as an example: even assuming that the whole GeV and TeV gamma ray spectrum originates in hadronic processes, the total energy of the CRs accelerated in Cas A would correspond to only ∼2% of the kinetic energy of the initial SN explosion (e.g., [25,33]).
3. Possible (Obvious) Solutions
3.1. Pulsar Wind Nebulae: A Natural Explanation
3.2. Unidentifed Gamma Ray Sources: The Dominant Population
- “Dark” sources, for which there are no known counterparts at lower energies (e.g., HESS J1427-608 and HESS J1708-410);
- Sources which show plausible lower-energy counterparts which are unidentified at these lower energies (e.g., HESS J1626-490);
- Gamma ray sources which show several possible lower-energy counterparts (e.g., HESS J1841-055 or HESS J1843-033); these sources are typically very extended in angular size. Deeper gamma ray observations have shown that several of these sources are in fact the convolution of several nearby sources, e.g., HESS J1745-303, which was previously considered a unique source and is now considered to consist of three distinct sources [58].
- Sources where the initial identification was disproven by deeper observation, typically multi-wavelength campaigns (e.g., HESS J1702-420, which was considered a clear example of a middle-age PWN powered by the high spin-down luminosity pulsar PSR J1702-4128, a scenario which was disproven by deeper X-ray campaigns);
- Unidentified sources which can be identified by means of deeper multi-wavelength campaigns (e.g., HESS J1731-347, the first SNR discovery triggered by TeV gamma ray observations).
4. HESS J1616-508
5. HESS J1813-126
6. Corollaries
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CDM | Cold Dark Matter |
CMB | Cosmic Microwave Background |
CR | Cosmic Rays |
DM | Dark Matter |
GC | Galactic Center |
HAWC | High-Altitude Water Cherenkov Observatory |
H.E.S.S. | High-Energy Stereoscopic System |
IACT | Imaging Atmospheric Cherenkov Telescopes |
IC | Inverse Compton |
IR | Infrared |
LAT | Large Area Telescope |
LHAASO | Large High-Altitude Air Shower Observatory |
MAGIC | Major Atmospheric Gamma Imaging Cherenkov Telescope |
MC | Molecular Cloud |
PWN | Pulsar Wind Nebula |
SNR | Supernova Remnant |
VERITAS | Very Energetic Radiation Imaging Telescope Array System |
VHE | Very High Energy |
WIMP | Weakly Interacting Massive Particles |
References
- Osborne, J.L.; Wolfendale, A.W. Origin of Cosmic Rays. In Proceedings of the NATO Advanced Study Institute, Durham, UK, 26 August–6 September 1974; Springer: Dordrecht, The Netherlands; Boston, MA, USA, 1974. [Google Scholar]
- Ginzburg, V.L.; Syrovatskii, S.I. The Origin of Cosmic Rays; authorised English translation by Massey, H.S.H.; Pergamon Press: Oxford, UK, 1964. [Google Scholar]
- Tibolla, O.; Drury, L. Prolegomena to Cosmic Ray Origin Beyond the Standard Models. Nucl. Phys. B 2014, 256, 1. [Google Scholar] [CrossRef]
- Tibolla, O.; Blandford, R. Cosmic Ray Origin - Beyond the Standard Models. Nucl. Part. Phys. 2018, 297, 1. [Google Scholar] [CrossRef]
- Wilson, C.T.R. On the Leakage of Electricity through Dust-free Air. Proc. Camb. Soc. 1900, 11, 32. [Google Scholar]
- Pacini, D. La radiazione penetrante alla superficie es in seno alle acque. Nuovo C. 1912, 3, 93. [Google Scholar] [CrossRef]
- Wulf, T. Beobachtungen über die Strahlung hoher Durchdringungsfähigkeit auf dem Eiffelturm. Phys. Z. 1909, 10, 155. [Google Scholar]
- Hess, V.F. Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Phys. Z. 1912, 13, 1084. [Google Scholar]
- Kolhörster, W.H.G. Messungen der durchdringenden Strahlung im Freiballon in grösseren Höhen. Phys. Z. 1914, 16, 719. [Google Scholar]
- Baade, W.; Zwicky, F. Cosmic Rays from Supernovae. Proc. Natl. Acad. Sci. USA 1934, 20, 259. [Google Scholar] [CrossRef] [Green Version]
- Fermi, E. On the Origin of the Cosmic Radiation. Phys. Rev. 1949, 75, 1169. [Google Scholar] [CrossRef]
- Völk, H.J.; Biermann, P.L. Maximum Energy of Cosmic-Ray Particles Accelerated by Supernova Remnant Shocks in Stellar Wind Cavities. Astrophys. J. 1988, 333, L65. [Google Scholar] [CrossRef]
- Drury, L.C.; Markiewicz, W.; Völk, H.J. Simplified models for the evolution of supernova remnants including particle acceleration. Astron. Astrophys. 1989, 225, 179. [Google Scholar]
- Drury, L.C.; Aharonian, F.A.; Völk, H.J. The gamma-ray visibility of supernova remnants. A test of cosmic ray origin. Astron. Astrophys. 1994, 287, 959. [Google Scholar]
- Aharonian, F.; Akhperjanian, A.G.; Bazer-Bachi, A.R.; Beilicke, M.; Benbow, W.; Berge, D.; Bernlöhr, K.; Boisson, C.; Bolz, O.; Borrel, V.; et al. A detailed spectral and morphological study of the gamma-ray supernova remnant RX J1713.7-3946 with HESS. Astron. Astrophys. 2006, 449, 223. [Google Scholar] [CrossRef]
- Aharonian, F.; Akhperjanian, A.G.; Bazer-Bachi, A.R.; Beilicke, M.; Benbow, W.; Berge, D.; Bernlöhr, K.; Boisson, C.; Bolz, O.; Borrel, V.; et al. Detection of TeV gamma-ray emission from the shell-type supernova remnant RX J0852.0-4622 with HESS. Astron. Astrophys. 2005, 437, L7. [Google Scholar] [CrossRef] [Green Version]
- Aharonian, F.A.; Atoyan, A.M. On the origin of TeV radiation of SN 1006. Astron. Astrophys. 1999, 351, 330. [Google Scholar]
- Koyama, K.; Petre, R.; Gotthelf, E.V.; Hwang, U.; Matsuura, M.; Ozaki, M.; Holt, S.S. Evidence for shock acceleration of high-energy electrons in the supernova remnant SN1006. Nature 1995, 378, 255. [Google Scholar] [CrossRef]
- Tibolla, O. The Glast Mission and Observability of Supernovae Remnants. Mod. Phys. Lett. A 2007, 22, 1611. [Google Scholar]
- Katagiri, H.; Tibaldo, L.; Ballet, J.; Giordano, F.; Grenier, I.A.; Porter, T.A.; Roth, M.; Tibolla, O.; Uchiyama, Y.; Yamazaki, R. Fermi Large Area Telescope Observations of the Cygnus Loop Supernova Remnant. Astrophys. J. 2011, 741, 44. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Allafort, A.; Ballet, J.; Funk, S.; Giordano, F.; Hewitt, J.; Lemoine-Goumard, M.; Tajima, H.; Tibolla, O.; Uchiyama, Y. Gamma-Ray Observations of the Supernova Remnant RX J0852.0-4622 with the Fermi Large Area Telescope. Astrophys. J. 2011, 740, L51. [Google Scholar] [CrossRef] [Green Version]
- Giordano, F.; Naumann-Godo, M.; Ballet, J.; Bechtol, K.; Funk, S.; Lande, J.; Mazziotta, M.N.; Rainò, S.; Tanaka, T.; Tibolla, O.; et al. Fermi Large Area Telescope Detection of the Young Supernova Remnant Tycho. Astrophys. J. 2012, 744, L2. [Google Scholar] [CrossRef] [Green Version]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; et al. Fermi LAT Discovery of Extended Gamma-Ray Emission in the Direction of Supernova Remnant W51C. Astrophys. J. 2009, 706, L1. [Google Scholar] [CrossRef] [Green Version]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; et al. Gamma-Ray Emission from the Shell of Supernova Remnant W44 Revealed by the Fermi LAT. Science 2010, 327, 1103. [Google Scholar] [CrossRef] [PubMed]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; Baughman, B.M.; et al. Fermi-Lat Discovery of GeV Gamma-Ray Emission from the Young Supernova Remnant Cassiopeia A. Astrophys. J. 2010, 710, L92. [Google Scholar] [CrossRef] [Green Version]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; Bellazzini, R.; et al. Observations of the Young Supernova Remnant RX J1713.7-3946 with the Fermi Large Area Telescope. Astrophys. J. 2011, 734, 28. [Google Scholar] [CrossRef] [Green Version]
- Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D. Fermi Large Area Telescope Observations of the Supernova Remnant G8.7-0.1. Astrophys. J. 2012, 744. [Google Scholar] [CrossRef] [Green Version]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; et al. Fermi Large Area Telescope Observations of the Supernova Remnant W28 (G6.4-0.1). Astrophys. J. 2010, 718, 348. [Google Scholar] [CrossRef] [Green Version]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bloom, E. et al. Fermi-LAT Study of Gamma-ray Emission in the Direction of Supernova Remnant W49B. Astrophys. J. 2010, 722, 1303. [Google Scholar] [CrossRef] [Green Version]
- Slane, P.; Lee, S.H.; Ellison, D.C.; Patnaude, D.J.; Hughes, J.P.; Eriksen, K.A.; Castro, D.; Nagataki, S. A CR-hydro-NEI Model of the Structure and Broadband Emission from Tycho’s Supernova Remnant. Astrophys. J. 2014, 783, 33. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; et al. Detection of the Characteristic Pion-Decay Signature in Supernova Remnants. Science 2013, 339, 807. [Google Scholar] [CrossRef] [Green Version]
- Berezhko, E.G.; Völk, H.J. Theory of cosmic ray production in the supernova remnant RX J1713.7-3946. Astron. Astrophys. 2006, 451, 981. [Google Scholar] [CrossRef]
- Tibolla, O.; Mannheim, K.; Summa, A.; Paravac, A.; Greiner, J.; Kanbach, G. Nuclear lines revealing the injection of cosmic rays in supernova remnants. In Proceedings of the 25 th Texas Symposium on Relativistic Astrophysics (TEXAS 2010) Heidelberg, Germany, 6–10 December 2010. [Google Scholar]
- Vink, J. Supernova Remnants as the Sources of Galactic Cosmic Rays. In Proceedings of the Meeting “370 years of astronomy in Utrecht”, Noordwijkerhout, The Netherlands, 2–5 April 2012. [Google Scholar]
- Drury, L.O.C.; Strong, A.W. Power requirements for cosmic ray propagation models involving diffusive reacceleration; estimated and implications fot the damping of interstellar turbulence. Astron. Astrophys. 2017, 597, 117. [Google Scholar] [CrossRef] [Green Version]
- Bednarek, W.; Pabich, J.; Sobczak, T. Gamma-rays, neutrinos and cosmic rays from dense regions in open clusters. Nucl. Phys. B 2014, 256, 107. [Google Scholar] [CrossRef]
- Araudo, A.T.; del Valle, M.V. Non-thermal processes in non-standard accelerators: Protostellar jets and runaway stars. Nucl. Phys. B 2014, 256, 117. [Google Scholar] [CrossRef]
- Bednarek, W.; Śmiałkowski, A. High-energy neutrinos from fast winds in novae. Mon. Not. R. Astron. Soc. 2022, 511, 3339. [Google Scholar] [CrossRef]
- Meszaros, P. Ultra-high Energy Cosmic Rays and Neutrinos from Gamma-Ray Bursts, Hypernovae and Galactic Shocks. Nucl. Phys. B 2014, 256, 241. [Google Scholar] [CrossRef] [Green Version]
- Mannheim, K. Neutrino signatures of the origins of cosmic rays. Nucl. Phys. B 2014, 256, 264. [Google Scholar] [CrossRef]
- Thoudam, S. A possible origin of gamma rays from the Fermi Bubbles. Nucl. Phys. B 2014, 256, 125. [Google Scholar] [CrossRef] [Green Version]
- H.E.S.S. Collaboration. Acceleration of petaelectronvolt protons in the Galactic Centre. Nature 2016, 531, 476. [Google Scholar] [CrossRef] [Green Version]
- Kotera, K. Pulsars: A promising source for high and ultrahigh energy cosmic rays. Nucl. Phys. B 2014, 256, 131. [Google Scholar] [CrossRef]
- Weinstein, A. Pulsar Wind Nebulae and Cosmic Rays: A Bedtime Story. Nucl. Phys. B 2014, 256, 136. [Google Scholar] [CrossRef] [Green Version]
- Rees, M.J.; Gunn, J.E. The origin of the magnetic field and relativistic particles in the Crab Nebula. Mon. Not. R. Astron. Soc. 1974, 167, 1. [Google Scholar] [CrossRef]
- Kennel, C.F.; Coroniti, C.F. Magnetohydrodynamic model of the Crab Nebula. Astrophys. J. 1984, 283, 710. [Google Scholar] [CrossRef]
- Porth, O.; Komissarov, S.S.; Keppens, R. Solution to the sigma problem of pulsar wind nebulae. Mon. Not. R. Astron. Soc. 2013, 431, L48. [Google Scholar] [CrossRef] [Green Version]
- Olmi, B.; Del Zanna, L.; Amato, E.; Bandiera, R.; Bucciantini, N. On the magnetohydrodynamic modelling of the Crab nebula radio emission. Mon. Not. R. Astron. Soc. 2014, 438, 1518. [Google Scholar] [CrossRef] [Green Version]
- Ostriker, J.P.; Gunn, J.E. On the nature of Pulsars. I. Theory. Astrophys. J. 1969, 157, 1395. [Google Scholar] [CrossRef]
- Komissarov, S.S.; Lyubarsky, Y.E. Synchrotron nebulae created by anisotropic magnetized pulsar winds. Mon. Not. R. Astron. Soc. 2004, 349, 779. [Google Scholar] [CrossRef] [Green Version]
- Bednarek, W.; Protheroe, R.J. Gamma Rays and Neutrinos from the Crab Nebula Produced by Pulsar Accelerated Nuclei. Phys. Rev. Lett. 1997, 79, 2616. [Google Scholar] [CrossRef] [Green Version]
- Atoyan, A.M.; Aharonian, F.A. On the mechanisms of gamma radiation in the Crab Nebula. Mon. Not. R. Astron. Soc. 1996, 278, 525. [Google Scholar] [CrossRef] [Green Version]
- Cheng, K.S.; Cheung, T.; Lau, M.M.; Yu, K.N.; Kwok, P.W. Could very high energy gamma rays from the Crab Nebula result from p-p collision? J. Phys. G Nucl. Part. Phys. 1990, 16, 1115. [Google Scholar] [CrossRef]
- Bednarek, W.; Bartosik, M. Gamma-rays from the pulsar wind nebulae. Astron. Astrophys. 2003, 405, 689. [Google Scholar] [CrossRef] [Green Version]
- Aharonian, F.; Akhperjanian, A.G.; Bazer-Bachi, A.R.; Beilicke, M.; Benbow, W.; Berge, D.; Bernlöhr, K.; Boisson, C.; Bolz, O.; Borrel, V. The H.E.S.S. Survey of the Inner Galaxy in Very High Energy Gamma Rays. Astrophys. J. 2006, 636, 777. [Google Scholar] [CrossRef] [Green Version]
- Hartman, R.C.; Bertsch, D.L.; Bloom, S.D.; Chen, A.W.; Deines-Jones, P.; Esposito, J.A.; Fichtel, C.E.; Friedlander, D.P.; Hunter, S.D.; McDonald, L.M.; et al. The Third EGRET Catalog of High-Energy Gamma-Ray Sources. Astrophys. J. Suppl. Ser. 1999, 123, 79. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Berenji, B.; et al. A Statistical Approach to Recognizing Source Classes for Unassociated Sources in the First Fermi-LAT Catalog. Astrophys. J. 2012, 753, 83. [Google Scholar] [CrossRef] [Green Version]
- Aharonian, F.; Akhperjanian, A.G.; Barres de Almeida, U.B.; Bazer-Bachi, A.R.; Behera, B.; Beilicke, M.; Benbow, W.; Bernlöhr, K.; Boisson, C.; Bolz, O.; et al. Exploring a SNR/molecular cloud association within HESS J1745-303. Astron. Astrophys. 2008, 483, 509. [Google Scholar] [CrossRef]
- Renaud, M.; Goret, P.; Chaves, R.C.G. On the nature of HESS J1503-582 revealed by the H.E.S.S. experiment: Coincidence with a FVW? In Proceedings of the 4th International Meeting on High Energy Gamma-Ray Astronomy, Heidelberg, Germany, 7–11 July 2008. AIP Conf. Proc. 2008, 1085, 281. [Google Scholar]
- H.E.S.S. Collaboration. Discovery and follow-up studies of the extended, off-plane, VHE gamma-ray source HESS J1507-622. Astron. Astrophys. 2011, 525, A45. [Google Scholar] [CrossRef]
- Tibolla, O.; Kaufmann, S.; Kosack, K. XMM-Newton and Chandra X-ray follow-up observations of the VHE gamma-ray source HESS J1507-622. Astron. Astrophys. 2014, 567, id.A74. [Google Scholar] [CrossRef] [Green Version]
- Tibolla, O.; Mannheim, K.; Kaufmann, S.; Elsässer, D. New developments in the ancient PulsarWind Nebulae scenario. In Proceedings of the 32nd ICRC, Beijing, China, 11–18 August 2011. [Google Scholar]
- Tibolla, O.; Vorster, M.; de Jager, O.; Ferreira, S.E.S.; Kaufmann, S.; Venter, C.; Mannheim, K.; Giordano, F. Unidentified Galactic High-Energy Sources as Ancient Pulsar Wind Nebulae in the light of new high energy observations and the new code. In Proceedings of the 5th International Meeting on High Energy Gamma-Ray Astronomy, Heidelberg, Germany, 9–13 July 2011. [Google Scholar]
- Vorster, M.J.; Tibolla, O.; Ferreira, S.E.S.; Kaufmann, S. Time-dependent Modeling of Pulsar Wind Nebulae. Astrophys. J. 2013, 773, 139. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, S.; Tibolla, O. Ancient Pulsar Wind Nebulae as a natural explanation for unidentified gamma-ray sources. Nucl. Part. Phys. 2018, 297, 91. [Google Scholar] [CrossRef]
- Tibolla, O.; Vorster, M.; Kaufmann, S.; Ferreira, S.; Mannheim, K. Are most of the VHE gamma-ray unidentified sources relic PWNe? In Proceedings of the 33rd ICRC, Rio de Janeiro, Brazil, 2–9 July 2013.
- Aharonian, F.; Akhperjanian, A.G.; Aye, K.M.; Bazer-Bachi, A.R.; Beilicke, M.; Benbow, W.; Berge, D.; Berghaus, P.; Bernlöhr, K.; Boisson, C.; et al. A New Population of Very High Energy Gamma-Ray Sources in the Milky Way. Science 2005, 307, 1938. [Google Scholar] [CrossRef] [Green Version]
- Manchester, R.N.; Hobbs, G.B.; Teoh, A.; Hobbs, M. The Australia Telescope National Facility Pulsar Catalogue. Astron. J. 2005, 129, 1993. [Google Scholar] [CrossRef]
- Matsumoto, H.; Ueno, M.; Bamba, A.; Hyodo, Y.; Mori, H.; Uchiyama, H.; Tsuru, T.G.; Koyama, K.; Kataoka, J.; Katagiri, H.; et al. Suzaku Observations of HESS J1616-508: Evidence for a Dark Particle Accelerator. PASJ 2007, 59, S199. [Google Scholar] [CrossRef] [Green Version]
- Kargaltsev, O.; Pavlov, G.G.; Wong, J.A. Young Energetic PSR J1617-5055, Its Nebula, and TeV Source HESS J1616-508. Astrophys. J. 2009, 690, 891. [Google Scholar] [CrossRef] [Green Version]
- Hare, J.; Kargaltsev, O.; Pavlov, G.G.; Rangelov, B.; Volkov, I. Chandra Observations of the Field Containing HESS J1616-508. Astrophys. J. 2017, 841, 81. [Google Scholar] [CrossRef]
- Acero, F.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; et al. Constraints on the Galactic Population of TeV Pulsar Wind Nebulae Using Fermi Large Area Telescope Observations. Astrophys. J. 2013, 773, 77A. [Google Scholar] [CrossRef] [Green Version]
- Acero, F.; Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; et al. Fermi Large Area Telescope Third Source Catalog. Astrophys. J.S 2015, 218, 23A. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; et al. 2FHL: The Second Catalog of Hard Fermi-LAT Sources. Astrophys. J.S 2016, 222, 5. [Google Scholar] [CrossRef] [Green Version]
- Lau, J.C.; Rowell, G.; Voisin, F.; Braiding, C.; Burton, M.; Fukui, Y.; Pointon, S.; Ashley, M.; Jordan, C.; Walsh, A. A Study of the Interstellar Medium Towards the Unidentified Dark TeV gamma-Ray Sources HESS J1614-518 and HESS J1616-508. Publ. Astron. Soc. Aust. 2017, 34, e06423. [Google Scholar] [CrossRef] [Green Version]
- H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Angüner, E.O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; et al. The H.E.S.S. Galactic plane survey. Astron. Astrophys. 2018, 612, A1. [Google Scholar]
- Mauch, T.; Murphy, T.; Buttery, H.J.; Curran, J.; Hunstead, R.W.; Piestrzynski, B.; Robertson, J.G.; Sadler, E.M. SUMSS: A wide-field radio imaging survey of the southern sky - II. The source catalogue. Mon. Not. R. Astron. Soc. 2003, 342, 1117. [Google Scholar] [CrossRef]
- Bhattacharya, D.; van den Heuvel, E.P.J. Formation and evolution of binary and millisecond radio pulsars. Phys. Rep. 1991, 203, 1. [Google Scholar] [CrossRef]
- Deil, C.; Brun, F.; Carrigan, S.; Chaves, R.; Donath, A.; Gast, H.; Marandon, V.; Terrier, R. The H. In E.S.S. Galactic plane survey. In Proceedings of the 35th ICRC, The Hague, The Netherlands, 30 July–6 August 2015. [Google Scholar]
- Albert, A.; Alfaro, R.; Alvarez, C.; Angeles Camacho, J.R.; Arteaga-Velázquez, J.C.; Arunbabu, K.P.; Avila Rojas, D.A.; Ayala Solares, H.A.; Baghmanyan, V.; Belmont-Moreno, E.; et al. 3HWC: The Third HAWC Catalog of Very-high-energy Gamma-Ray Sources. Astrophys. J. 2020, 905, 76. [Google Scholar] [CrossRef]
- Marelli, M.; Harding, A.; Pizzocaro, D.; De Luca, A.; Wood, K.S.; Caraveo, P.; Salvetti, D.; Saz Parkinson, P.M.; Acero, F. On the Puzzling High-Energy Pulsations of the Energetic Radio-Quiet gamma-Ray Pulsar J1813-1246. Astrophys. J. 2014, 795, 168. [Google Scholar] [CrossRef] [Green Version]
- Eger, P.; Domainko, W.F.; Hahn, J. Exploring the potential X-ray counterpart of the puzzling TeV gamma-ray source HESS J1507-622 with new Suzaku observations. Mon. Not. R. Astron. Soc. 2015, 447, 3564. [Google Scholar] [CrossRef] [Green Version]
- Domainko, W.F. Is there a population of unidentified gamma-ray sources distributed along the super-galactic plane? arXiv 2014, arXiv:1412.1930. [Google Scholar]
- Acero, F.; Aharonian, F.; Akhperjanian, A.G.; Anton, G.; Barres de Almeida, U.; Bazer-Bachi, A.R.; Becherini, Y.; Behera, B.; Bernlöhr, K.; Bochow, A.; et al. Detection of Gamma Rays from a Starburst Galaxy. Science 2009, 326, 1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acciari, V.A.; Aliu, E.; Arlen, T.; Aune, T.; Bautista, M.; Beilicke, M.; Benbow, W.; Boltuch, D.; Bradbury, S.M.; Buckley, J.H. A connection between star formation activity and cosmic rays in the starburst galaxy M82. Nature 2009, 462, 770. [Google Scholar]
- Mannheim, K.; Elsässer, D.; Tibolla, O. Gamma-ray from pulsar wind nebulae in starburst galaxies. Astropart. Phys. 2012, 35, 797. [Google Scholar] [CrossRef] [Green Version]
- Goodenough, L.; Hooper, D. Possible Evidence For Dark Matter Annihilation In The Inner Milky Way From The Fermi Gamma Ray Space Telescope. arXiv 2009, arXiv:0910.2998. [Google Scholar]
- Daylan, T.; Finkbeiner, D.P.; Hooper, D.; Linden, T.; Portillo, S.K.N.; Rodd, N.L.; Slatyer, T.R. The characterization of the gamma-ray signal from the central Milky Way: A case for annihilating dark matter. Phys. Dark Universe 2016, 12, 1. [Google Scholar] [CrossRef] [Green Version]
- Calore, F.; Cholis, I.; Weniger, C. Background Model Systematics for the Fermi GeV Excess. JCAP 2015, 03, 038. [Google Scholar] [CrossRef]
- Lee, S.K.; Lisanti, M.; Safdi, B.R.; Slatyer, T.R.; Xue, W. Evidence for Unresolved gamma-Ray Point Sources in the Inner Galaxy. Phys. Rev. Lett. 2016, 116, 051103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartels, R.; Krishnamurthy, S.; Weniger, C. Strong support for the millisecond pulsar origin of the Galactic Center GeV excess. Phys. Rev. Lett. 2016, 116, 051102. [Google Scholar] [CrossRef] [PubMed]
- Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; Bonechi, L.; Bongi, M.; Bonvicini, V.; Bottai, S.; et al. An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV. Nature 2009, 458, 607–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar, M.; Alberti, G.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Anderhub, H.; Arruda, L.; Azzarello, P.; Bachlechner, A.; et al. First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–350 GeV. Phys. Rev. Lett. 2013, 110, 141102. [Google Scholar] [CrossRef]
- Accardo, L.; Aguilar, M.; Aisa, D.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; et al. High Statistics Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–500 GeV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2014, 113, 121101. [Google Scholar] [CrossRef] [Green Version]
- Arkani-Hamed, N.; Finkbeiner, D.P.; Slatyer, T.R.; Weiner, N. A Theory of Dark Matter. Phys. Rev. D 2009, 79, 015014. [Google Scholar] [CrossRef]
- Bell, N.F.; Cai, Y.; Leane, R.K.; Medina, A.D. Leptophilic dark matter with Z0 interactions. Phys. Rev. D 2014, 90, 035027. [Google Scholar] [CrossRef] [Green Version]
- D’Eramo, F.; Kavanagh, B.J.; Panci, P. Probing Leptophilic Dark Sectors with Hadronic Processes. Phys. Lett. B 2017, 771, 339. [Google Scholar] [CrossRef]
- Hooper, D.; Blasi, P.; Serpico, P.D. Pulsars as the Sources of High Energy Cosmic Ray Positrons. J. Cosmol. Astropart. Phys. 2009, 01, 025. [Google Scholar] [CrossRef]
- Abeysekara, A.U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Avila Rojas, D.; Ayala Solares, H.A.; Barber, A.S.; et al. Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth. Science 2017, 358, 911–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooper, D.; Linden, T. Measuring the Local Diffusion Coefficient with H.E.S.S. Observations of Very High-Energy Electrons. Phys. Rev. D 2018, 98, 083009. [Google Scholar] [CrossRef] [Green Version]
- Profumo, S.; Reynoso-Cordova, J.; Kaaz, N.; Silverman, M. Lessons from HAWC pulsar wind nebulae observations: The diffusion constant is not a constant; pulsars remain the likeliest sources of the anomalous positron fraction; cosmic rays are trapped for long periods of time in pockets of inefficient diffusion. Phys. Rev. D 2018, 97, 123008. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tibolla, O.; Kaufmann, S.; Chadwick, P. Pulsar Wind Nebulae and Unidentified Galactic Very High Energy Sources. J 2022, 5, 318-333. https://doi.org/10.3390/j5030022
Tibolla O, Kaufmann S, Chadwick P. Pulsar Wind Nebulae and Unidentified Galactic Very High Energy Sources. J. 2022; 5(3):318-333. https://doi.org/10.3390/j5030022
Chicago/Turabian StyleTibolla, Omar, Sarah Kaufmann, and Paula Chadwick. 2022. "Pulsar Wind Nebulae and Unidentified Galactic Very High Energy Sources" J 5, no. 3: 318-333. https://doi.org/10.3390/j5030022
APA StyleTibolla, O., Kaufmann, S., & Chadwick, P. (2022). Pulsar Wind Nebulae and Unidentified Galactic Very High Energy Sources. J, 5(3), 318-333. https://doi.org/10.3390/j5030022