Unveiling the Impacts of Glyphosate, Deltamethrin, Propamocarb and Tebuconazole on Gut Health
Abstract
1. Introduction
2. Pesticide Use in Agriculture and Their Modes of Action
3. Transformation and Degradation of Pesticides
4. Human Exposure to Pesticides
5. The Effect of Pesticides on Gut Health
5.1. Gut Microbiota
Pesticide/Formulation | Animal Model | Dose | Length of Exposure | Changes in Gut Microbiota | Ref. |
---|---|---|---|---|---|
Glyphosate | Sprague Dawley (F1 pups) | 1.75 mg/kg b.w./day | In utero, lactation and weaning up to postnatal day (PND) 31 | ↑ Prevotella (Bacteroides) ↑ Mucispirillum ↑ Blautia (Firmicutes) ↓ Lactobacillus (Firmicutes) ↓ Aggregatibacter (Pseudomonadota) ↓ Streptococcus (Firmicutes) ↓ Rothia (Actinomycetota) | [68] |
Roundup | ↑ Prevotella (Bacteroides) ↑ Mucispirillum (Deferribacterota) ↑ Blautia (Firmicutes) ↑ Parabacterioides (Bacteroides) ↑ Veillonella (Firmicutes) ↑ Rothia (Actinomycetota) ↑ Bifidobacterium (Actinomycetota) | [76] | |||
Glyphosate & Roundup | Sprague Dawley male F1 pups | In utero, lactation and in water for 90 days | ↓ Prevotella (Bacteroides) | [76] | |
Glyphosate | Zebrafish | 0.3 μg/L | 2 weeks | ↑ Cetobacterium (Fusobacteriota) ↓ Aeromonas (Pseudomonadota) ↓ Undibacterium (Pseudomonadota) | [77] |
Human twin pairs | N.A. (presence of glyphosate in urine) | N.A. | No changes in overall microbiota composition | [70] | |
Male Sprague Dawley rats | 500 mg/kg b.w./day | 35 days | ↓ Lactobacillus (Firmicutes) ↑ Prevotella (Bacteroides) ↑ Ruminococcaea (Firmicutes) ↑ Prevotella (Bacteroides) | [78] | |
C57BL/6J mice | 1, 10 and 100 μg/mL | 90 days | ↑ Bacteroides acidifaciens (Bacteroides) ↓ Clostridia (Firmicutes) (10 μg/mL) ↓ Lachnospiraceae (Firmicutes) (10 μg/mL) ↓ Lactobacillus (100 μg/mL) ↓ Bifidobacterium pseudolongum (Actinomycetota) (10 μg/mL) ↓ Enterorhabdus mucosicola (Actinomycetota) | [69] | |
Glyphosate & Roundup | Female Sprague Dawley rats | 0.5–175 mg/kg b.w./day | 90 days | ↑ Eggerthelia (Actinomycetota) ↑ Acinetobacter johnsonii (Pseudomonadota) ↑ Akkermansia muciniphila (Verrucomicrobiota) ↑ Shinella (Pseudomonadota) (Roundup only) | [70] |
Roundup | 0.1–ppb–5000 ppm | 2 years | ↑ Bacteriodetes family S24-7 ↓ Lactobacillaceae (Firmicutes) | [79] | |
Female Balb/c mice pups | 8.75 mg | 1 week before mating of parents till weaning of pups | ↑ Blautia (Firmicutes) ↑ Alistipes (Bacteroides) ↓ Akkermansia (Verrucomicrobiota) | [80] | |
Deltamethrin | Female Balb/c mice | 0.2 mg/kg b.w./day | 8 weeks | ↑ Bacteroides ↓ Lactobacillus (Firmicutes) | [72] |
Male C57BL/6 | 6–12 mg/kg b.w./day | 4 weeks | ↑ Firmicutes ↑/↓ Prevotella (Bacteroides) (6 and 12 mg/kg b.w./day, respectively) ↓/↑ Lachnospiraceae (Firmicutes) (6 and 12 mg/kg b.w./day, respectively) ↑ Ruminococcaceae (Firmicutes) (12 mg/kg b.w./day) ↓ Erysipecotricaaceae (Firmicutes) (12 mg/kg b.w./day) | [73] | |
Human twin pairs | N.A. | N.A. | ↑ Bacteroides ↑ Clostridium symbiosum (Firmicutes) | [70] | |
Tebuconazole | Male C57BL/6 mice | 0.02–0.06 g/kg b.w. | 4 weeks | ↓ Prevotella (Bacteroides) ↑ Firmicutes ↑ Cyanobacteria ↑ Helicobacter | [75] |
Male ICR mice | 3 mg/L | 12 weeks | ↑ S24-7 (Bacteroidetes) ↑ Coprococcus (Firmicutes) ↑ Aukkermansia (Verrucomicrobiota) ↓ Clostridiales (Firmicutes) ↓ Rominococcus (Firmicutes) ↓ Oscillospira (Firmicutes) ↓ Mucispirillum (Deferribacterota) ↓ Rikenellaceae (Bacteroides) ↓ Dehalobacterium (Firmicutes) | [81] | |
Tebuconazole | Male Kunming mice | 1.35 mg/kg b.w. | 12 weeks | ↑ Lactobacillus (Firmicutes) ↑ Klebsiella (Pseudomonadota) ↑ Streptococcus (Firmicutes) ↑ Romboutsia (Firmicutes) ↑ Mitsuokella (Firmicutes) ↑ Enterococcus (Firmicutes) ↑ Sphingomonas (Pseudomonadata) ↓ Bacteroides | [82] |
Propamocarb | Male zebrafish | 1000 μg/mL | 7 days | ↓ Cetobacterium (Fusobacteriota) ↓ Shewanella (Pseudomonadota) ↑ Deefgea (Pseudomonadota) ↑ Flavobacterium (Bacteroides) ↑ Acinetobacter (Pseudomonadota) ↑ Megamonas (Firmicutes) ↑ Sediminibacterium (Bacteroides) ↑ Cupriavidus (Pseudomonadota) | [83] |
Male C57BL/6J mice | 20 mg/L | 24 weeks | ↑ Paeniclostridium (Firmicutes) ↑ Allobaculum (Firmicutes) ↑ Clostridioides (Firmicutes) ↓ Butyricicoccus (Firmicutes) ↓ Lachrospiraceae (Firmicutes) ↓ Roseburia (Firmicutes) | [74] | |
Male ICR mice | 50 mg/kg b.w./day | 4 weeks | ↓ Oscillospira (Firmicutes) ↓ Parabacteroides (Bacteroides) ↓ Desulfovibrio (Thermodesulfobacteriota) ↓ Ruminococcus (Firmicutes) ↑ Bacteroides ↑ Dehalobacterium ↑ Butyricimonas | [84] |
5.2. Inflammation
5.3. Metabolic Disorders
5.4. Cancer
5.5. The Gut–Brain Axis
6. Limitations and Considerations
7. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3-PBA | 3-phenoxybenzoic acid |
ADI | Acceptable daily intake |
ALL | acute lymphoblastic leukaemia |
ALP | Alkaline phosphatase |
AML | acute myeloid leukaemia |
AMPA | aminomethylphosphonic acid |
ApoE | Apolipoprotein E |
ASD | Autism spectrum disorders |
b.w. | Body weight |
BDNF | brain-derived neurotrophic factor |
CD | Crohn’s disease |
CD | Cluster of differentiation |
CFU | Colony forming unit |
Cis-DBCA | cis-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid |
DCCAA | 2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid |
Dgat | diacylglycerol acyltransferase |
DNMT1 | DNA methyltransferase 1 |
DNMT3a | DNA methyltransferase 3a |
EFSA | European Food Safety Authority |
EHMT1 | Euchromatic histone-lysine N-methyltransferase 1 |
EHMT2 | Euchromatic histone-lysine N-methyltransferase 2 |
EPSPS | 5-enol-pyruvyl-shikimate-3-phosphate synthase |
ER | Oestrogen receptor |
ERK | Extracellular signal-regulated kinase |
EU | European Union |
Fas | Fatty acid synthase |
Fatp2 | fatty acid transport protein 2 |
FMT | Faecal microbiota transplantation |
G.I. | Gastrointestinal |
HDL | High density lipoprotein |
HMPA | hexamethylphosphoramide |
IARC | International Agency for Research on Cancer |
IBD | Inflammatory bowel disease |
ICAM-1 | Intercellular adhesion molecule 1 |
IFN-γ | Interferon gamma |
IL | Interleukin |
LDL | Low density lipoprotein |
LPS | lipopolysaccharide |
MEK | Mitogen-activated protein kinase kinase |
MIC | Minimum inhibitory concentration |
MRL | Maximum residue level |
NAFLD | non-alcoholic fatty liver disease |
NOAEL | No Observed Adverse Effect Level |
PBMC | peripheral blood mononuclear cells |
Ppar | Peroxisome proliferator-activated receptor |
PPP | Plant protection products |
PRDX1 | Peroxiredoxin 1 |
PSD-95 | postsynaptic density protein 95 |
RNS | Reactive nitrogen species |
ROS | Reactive oxygen species |
SCFA | short-chain fatty acids |
Srebp1c | Sterol regulatory element-binding protein 1c |
SYP | synaptophysin |
T2D | Type 2 diabetes |
TCA | Tricarboxylic acid |
TDM | triazole derivative metabolite |
TET3 | Ten-Eleven Translocation Methylcytosine Dioxygenase 3 |
TNF-α | Tumour necrosis factor alpha |
UC | Ulcerative colitis |
VCAM-1 | vascular cell adhesion molecule 1 |
VEGFR2 | Vascular endothelial growth factor receptor 2 |
References
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current Status of Pesticide Effects on Environment, Human Health and It’s Eco-Friendly Management as Bioremediation: A Comprehensive Review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef]
- Culliney, T.W. Crop Losses to Arthropods. In Integrated Pest Management; Springer: Dordrecht, The Netherlands, 2014; pp. 201–225. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kabir, E.; Jahan, S.A. Exposure to Pesticides and the Associated Human Health Effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Sharma, A.; Shukla, A.; Attri, K.; Kumar, M.; Kumar, P.; Suttee, A.; Singh, G.; Barnwal, R.P.; Singla, N. Global Trends in Pesticides: A Looming Threat and Viable Alternatives. Ecotoxicol. Environ. Saf. 2020, 201, 110812. [Google Scholar] [CrossRef]
- Hassaan, M.A.; Nemr, A.E. Pesticides Pollution: Classifications, Human Health Impact, Extraction and Treatment Techniques. Egypt. J. Aquat. Res. 2020, 46, 207–220. [Google Scholar] [CrossRef]
- Lizeth, P.-A.; Berenice, G.-G.R.; Carlos, C.-Z.; Elda, M.M.M.; Eduardo, S.-H.J.; Muhammed, B.; Hafiz, M.N.I. Highly Hazardous Pesticides and Related Pollutants: Toxicological, Regulatory, and Analytical Aspects. Sci. Total Environ. 2022, 807, 151879. [Google Scholar] [CrossRef]
- Dar, M.A.; Kaushik, G. Classification of Pesticides and Loss of Crops Due to Creepy Crawlers. In Pesticides in the Natural Environment; Chapter 1; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–21. [Google Scholar] [CrossRef]
- Matin, M.M.; Matin, P.; Rahman, M.R.; Hadda, T.B.; Almalki, F.A.; Mahmud, S.; Ghoneim, M.M.; Alruwaily, M.; Alshehri, S. Triazoles and Their Derivatives: Chemistry, Synthesis, and Therapeutic Applications. Front. Mol. Biosci. 2022, 9, 864286. [Google Scholar] [CrossRef]
- Epstein, L. Fifty Years since Silent Spring. Annu. Rev. Phytopathol. 2014, 52, 377–402. [Google Scholar] [CrossRef]
- Taiwo, A.M. A Review of Environmental and Health Effects of Organochlorine Pesticide Residues in Africa. Chemosphere 2019, 220, 1126–1140. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, F.; Arena, M.; Auteri, D.; Binaglia, M.; Castoldi, A.F.; Chiusolo, A.; Crivellente, F.; Egsmose, M.; Fait, G.; Ferilli, F.; et al. Peer Review of the Pesticide Risk Assessment of the Active Substance Glyphosate. EFSA J. 2023, 21, 08164. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Pesticides. 2024. Available online: https://www.efsa.europa.eu/en/topics/topic/pesticides (accessed on 10 September 2025).
- European Commission. EU Pesticides Database. 2022. Available online: https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en (accessed on 10 September 2025).
- EFSA. Conclusion on the Peer Review of the Pesticide Risk Assessment of the Active Substance Tebuconazole. EFSA J. 2014, 12, 3485. [Google Scholar] [CrossRef]
- EFSA. Review of the Existing Maximum Residue Levels for Deltamethrin According to Article 12 of Regulation (EC) No 396/2005. EFSA J. 2015, 13, 4309. [Google Scholar] [CrossRef]
- Kanissery, R.; Gairhe, B.; Kadyampakeni, D.; Batuman, O.; Alferez, F. Glyphosate: Its Environmental Persistence and Impact on Crop Health and Nutrition. Plants 2019, 8, 499. [Google Scholar] [CrossRef]
- EFSA. Conclusion Regarding the Peer Review of the Pesticide Risk Assessment of the Active Substance Propamocarb. EFSA J. 2006, 4, 78. [Google Scholar] [CrossRef]
- López-Ruiz, R.; Romero-González, R.; Frenich, A.G. Dissipation Kinetics of Fenamidone, Propamocarb and Their Metabolites in Ambient Soil and Water Samples and Unknown Screening of Metabolites. J. Environ. Manag. 2020, 254, 109818. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Hong, C.; Stromberg, E.L.; Moorman, G.W. Effects of Propamocarb Hydrochloride on Mycelial Growth, Sporulation, and Infection by Phytophthora Nicotianae Isolates from Virginia Nurseries. Plant Dis. 2007, 91, 414–420. [Google Scholar] [CrossRef]
- Muñoz-Leoz, B.; Ruiz-Romera, E.; Antigüedad, I.; Garbisu, C. Tebuconazole Application Decreases Soil Microbial Biomass and Activity. Soil Biol. Biochem. 2011, 43, 2176–2183. [Google Scholar] [CrossRef]
- Lamb, D.C.; Michel, C.; Andrew, G.S.W.; Soren, B.; Rachel, A.K.; Nigel, J.M.; Diane, E.K.; Steven, L.K. Plant Sterol 14a-Demethylase Affinity for Azole Fungicides. Biochem. Biophys. Res. Commun. 2001, 284, 845–849. [Google Scholar] [CrossRef] [PubMed]
- Dong, B. A Comprehensive Review on Toxicological Mechanisms and Transformation Products of Tebuconazole: Insights on Pesticide Management. Sci. Total Environ. 2024, 908, 168264. [Google Scholar] [CrossRef]
- Lu, Q.; Sun, Y.; Ares, I.; Anadón, A.; Martínez, M.; Martínez-Larrañaga, M.-R.; Yuan, Z.; Wang, X.; Martínez, M.-A. Deltamethrin Toxicity: A Review of Oxidative Stress and Metabolism. Environ. Res. 2019, 170, 260–281. [Google Scholar] [CrossRef] [PubMed]
- Aiello, F.; Simons, M.G.; van Velde, J.W.; Dani, P. New Insights into the Degradation Path of Deltamethrin. Molecules 2021, 26, 3811. [Google Scholar] [CrossRef]
- Zhu, Q.; Yang, Y.; Zhong, Y.; Lao, Z.; O’Neill, P.; Hong, D.; Zhang, K.; Zhao, S. Synthesis, Insecticidal Activity, Resistance, Photodegradation and Toxicity of Pyrethroids (A Review). Chemosphere 2020, 254, 126779. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, D.; Burgess, M. Small Amounts of Pesticides Reaching Target Insects. Environ. Dev. Sustain. 2012, 14, 1–2. [Google Scholar] [CrossRef]
- Gimsing, A.L.; Borggaard, O.K.; Jacobsen, O.S.; Aamand, J.; Sørensen, J. Chemical and Microbiological Soil Characteristics Controlling Glyphosate Mineralisation in Danish Surface Soils. Appl. Soil Ecol. Sect. Agric. Ecosyst. Environ. 2004, 27, 233–242. [Google Scholar] [CrossRef]
- Martins-Gomes, C.; Silva, T.L.; Andreani, T.; Silva, A.M. Glyphosate vs. Glyphosate-Based Herbicides Exposure: A Review on Their Toxicity. J. Xenobiotics 2022, 12, 21–40. [Google Scholar] [CrossRef]
- Gomes, M.P.; Le Manac’h, S.G.; Maccario, S.; Labrecque, M.; Lucotte, M.; Juneau, P. Differential Effects of Glyphosate and Aminomethylphosphonic Acid (AMPA) on Photosynthesis and Chlorophyll Metabolism in Willow Plants. Pestic. Biochem. Physiol. 2016, 130, 65–70. [Google Scholar] [CrossRef]
- Gomes, M.P.; Freitas, P.L.; Kitamura, R.S.A.; Pereira, E.G.; Juneau, P. How Aminomethylphosphonic Acid (AMPA), the Main Glyphosate Metabolite, Interferes with Chlorophyll Biosynthesis? Environ. Exp. Bot. 2022, 203, 105039. [Google Scholar] [CrossRef]
- Bellisai, G.; Bernasconi, G.; Cabrera, L.C.; Castellan, I.; Aguila, M.D.; Ferreira, L.; Santonja, G.G.; Greco, L.; Jarrah, S.; Leuschner, R.; et al. Modification of the Existing Maximum Residue Level for Propamocarb in Honey. EFSA J. 2023, 21, 08422. [Google Scholar] [CrossRef] [PubMed]
- WHO. Propamocarb—JMPR Evaluation and Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006.
- López-Ruiz, R.; Romero-González, R.; Serra, B.; Frenich, A.G. Dissipation Kinetic Studies of Fenamidone and Propamocarb in Vegetables under Greenhouse Conditions Using Liquid and Gas Chromatography Coupled to High-Resolution Mass Spectrometry. Chemosphere 2019, 226, 36–46. [Google Scholar] [CrossRef]
- Myresiotis, C.K.; Vryzas, Z.; Papadopoulou-Mourkidou, E. Biodegradation of Soil-Applied Pesticides by Selected Strains of Plant Growth-Promoting Rhizobacteria (PGPR) and Their Effects on Bacterial Growth. Biodegrad. Dordr. 2012, 23, 297–310. [Google Scholar] [CrossRef]
- Brancato, A.; Brocca, D.; Lentdecker, C.D.; Ferreira, L.; Greco, L.; Jarrah, S.; Kardassi, D.; Leuschner, R.; Lythgo, C.; Medina, P.; et al. Modification of the Existing Maximum Residue Levels for Tebuconazole in Olives, Rice, Herbs and Herbal Infusions (Dried). EFSA J. 2018, 16, 5257. [Google Scholar] [CrossRef]
- Singh, S.; Mukherjee, A.; Jaiswal, D.K.; Pereira, A.P.d.A.; Prasad, R.; Sharma, M.; Kuhad, R.C.; Shukla, A.C.; Verma, J.P. Advances and Future Prospects of Pyrethroids: Toxicity and Microbial Degradation. Sci. Total Environ. 2022, 829, 154561. [Google Scholar] [CrossRef]
- Bragança, I.; Lemos, P.C.; Delerue-Matos, C.; Domingues, V.F. Pyrethroid Pesticide Metabolite, 3-PBA, in Soils: Method Development and Application to Real Agricultural Soils. Environ. Sci. Pollut. Res. Int. 2019, 26, 2987–2997. [Google Scholar] [CrossRef] [PubMed]
- Cycon, M.; Piotrowska-Seget, Z. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review. Front. Microbiol. 2016, 7, 1463. [Google Scholar] [CrossRef] [PubMed]
- Barr, D.B.; Olsson, A.O.; Wong, L.-Y.; Udunka, S.; Baker, S.E.; Whitehead, R.D.; Magsumbol, M.S.; Williams, B.L.; Needham, L.L. Urinary Concentrations of Metabolites of Pyrethroid Insecticides in the General U.S. Population: National Health and Nutrition Examination Survey 1999–2002. Environ. Health Perspect. 2010, 118, 742–748. [Google Scholar] [CrossRef]
- Muñoz, J.P.; Silva-Pavez, E.; Carrillo-Beltrán, D.; Calaf, G.M. Occurrence and Exposure Assessment of Glyphosate in the Environment and Its Impact on Human Beings. Environ. Res. 2023, 231 Pt 3, 116201. [Google Scholar] [CrossRef]
- Nijssen, R.; Lommen, A.; van den Top, H.; Dam, R.v.; Meuleman-Bot, C.; Tienstra, M.; Zomer, P.; Sunarto, S.; Tricht, F.v.; Blokland, M.; et al. Assessment of Exposure to Pesticides: Residues in 24 h Duplicate Diets versus Their Metabolites in 24 h Urine Using Suspect Screening and Target Analysis. Anal. Bioanal. Chem. 2024, 416, 635–650. [Google Scholar] [CrossRef]
- Nougadère, A.; Sirot, V.; Cravedi, J.-P.; Vasseur, P.; Feidt, C.; Fussell, R.J.; Hu, R.; Leblanc, J.-C.; Jean, J.; Rivière, G.; et al. Dietary Exposure to Pesticide Residues and Associated Health Risks in Infants and Young Children—Results of the French Infant Total Diet Study. Environ. Int. 2020, 137, 105529. [Google Scholar] [CrossRef] [PubMed]
- Solomon, K.R. Glyphosate in the General Population and in Applicators: A Critical Review of Studies on Exposures. Crit. Rev. Toxicol. 2016, 46 (Suppl. S1), 21–27. [Google Scholar] [CrossRef] [PubMed]
- Connolly, A.; Coggins, M.A.; Koch, H.M. Human Biomonitoring of Glyphosate Exposures: State-of-the-Art and Future Research Challenges. Toxics 2020, 8, 60. [Google Scholar] [CrossRef]
- Ottenbros, I.; Lebret, E.; Huber, C.; Lommen, A.; Antignac, J.-P.; Čupr, P.; Šulc, L.; Mikeš, O.; Szigeti, T.; Középesy, S.; et al. Assessment of Exposure to Pesticide Mixtures in Five European Countries by a Harmonized Urinary Suspect Screening Approach. Int. J. Hyg. Environ. Health 2023, 248, 114105. [Google Scholar] [CrossRef] [PubMed]
- Ottenbros, I.B.; Ammann, P.; Imboden, M.; Fuhrimann, S.; Zock, J.-P.; Lebret, E.; Vermeulen, R.C.H.; Nijssen, R.; Lommen, A.; Mol, H.; et al. Urinary Pesticide Mixture Patterns and Exposure Determinants in the Adult Population from The Netherlands and Switzerland: Application of a Suspect Screening Approach. Environ. Res. 2023, 239, 117216. [Google Scholar] [CrossRef]
- Andersen, H.R.; Rambaud, L.; Riou, M.; Buekers, J.; Remy, S.; Berman, T.; Govarts, E. Exposure Levels of Pyrethroids, Chlorpyrifos and Glyphosate in EU—An Overview of Human Biomonitoring Studies Published since 2000. Toxics 2022, 10, 789. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.; Duarte, S.C.; Costa, E.; Pereira, A.M.P.T.; Silva, L.J.G.; Almeida, A.; Lino, C.; Pena, A. Urine Biomonitoring of Glyphosate in Children: Exposure and Risk Assessment. Environ. Res. 2021, 198, 111294. [Google Scholar] [CrossRef]
- Hyland, C.; Spivak, M.; Sheppard, L.; Lanphear, B.P.; Antoniou, M.; Ospina, M.; Calafat, A.M.; Curl, C.L. Urinary Glyphosate Concentrations among Pregnant Participants in a Randomized, Crossover Trial of Organic and Conventional Diets. Environ. Health Perspect. 2023, 131, 77005. [Google Scholar] [CrossRef]
- Grau, D.; Grau, N.; Gascuel, Q.; Paroissin, C.; Stratonovitch, C.; Lairon, D.; Devault, D.A.; Cristofaro, J.D. Quantifiable Urine Glyphosate Levels Detected in 99% of the French Population, with Higher Values in Men, in Younger People, and in Farmers. Environ. Sci. Pollut. Res. 2022, 29, 32882–32893. [Google Scholar] [CrossRef]
- Corcellas, C.; Feo, M.L.; Torres, J.P.; Malm, O.; Ocampo-Duque, W.; Eljarrat, E.; Barceló, D. Pyrethroids in Human Breast Milk: Occurrence and Nursing Daily Intake Estimation. Environ. Int. 2012, 47, 17–22. [Google Scholar] [CrossRef]
- Klimowska, A.; Amenda, K.; Rodzaj, W.; Wileńska, M.; Jurewicz, J.; Wielgomas, B. Evaluation of 1-Year Urinary Excretion of Eight Metabolites of Synthetic Pyrethroids, Chlorpyrifos, and Neonicotinoids. Environ. Int. 2020, 145, 106119. [Google Scholar] [CrossRef] [PubMed]
- Bellisai, G.; Bernasconi, G.; Brancato, A.; Cabrera, L.C.; Castellan, I.; Ferreira, L.; Giner, G.; Greco, L.; Jarrah, S.; Leuschner, R.; et al. Modification of the Existing Maximum Residue Level for Deltamethrin in Maize/Corn. EFSA J. 2022, 20, 07446. [Google Scholar] [CrossRef]
- Oerlemans, A.; van Dael, M.F.P.; Vermeulen, R.C.H.; Russel, F.G.M.; Scheepers, P.T.J. Urine Collection Methods for Non-Toilet-Trained Children in Biological Monitoring Studies: Validation of a Disposable Diaper for Characterization of Tebuconazole Exposure. Toxicol. Lett. 2018, 298, 201–206. [Google Scholar] [CrossRef]
- EFSA. Potential Developmental Neurotoxicity of Deltamethrin—Scientific Opinion of the Panel on Plant Protection Products and Their Residues (PPR). EFSA J. 2009, 7, 921. [Google Scholar] [CrossRef]
- Bischoff, S.C. “Gut Health”: A New Objective in Medicine? BMC Med. 2011, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Assimakopoulos, S.F.; Triantos, C.; Maroulis, I.; Gogos, C. The Role of the Gut Barrier Function in Health and Disease. Gastroenterol. Res. 2018, 11, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Duffy, A. Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. J. Nutr. 2017, 147, 1468S–1475S. [Google Scholar] [CrossRef]
- Das, B.; Nair, G.B. Homeostasis and Dysbiosis of the Gut Microbiome in Health and Disease. J. Biosci. 2019, 44, 117. [Google Scholar] [CrossRef]
- D’Argenio, V.; Salvatore, F. The Role of the Gut Microbiome in the Healthy Adult Status. Clin. Chim. Acta 2015, 451, 97–102. [Google Scholar] [CrossRef]
- Shen, Z.-H.; Zhu, C.-X.; Quan, Y.-S.; Yang, Z.-Y.; Wu, S.; Luo, W.-W.; Tan, B.; Wang, X.-Y. Relationship between Intestinal Microbiota and Ulcerative Colitis: Mechanisms and Clinical Application of Probiotics and Fecal Microbiota Transplantation. World J. Gastroenterol. 2018, 24, 5–14. [Google Scholar] [CrossRef]
- Elson, C.O.; Cong, Y. Host-Microbiota Interactions in Inflammatory Bowel Disease. Gut Microbes 2012, 3, 332–344. [Google Scholar] [CrossRef]
- Fu, X.; Liu, Z.; Zhu, C.; Mou, H.; Kong, Q. Nondigestible Carbohydrates, Butyrate, and Butyrate-Producing Bacteria. Crit. Rev. Food Sci. Nutr. 2019, 59 (Suppl. S1), S130–S152. [Google Scholar] [CrossRef]
- Li, C.; Peng, K.; Xiao, S.; Long, Y.; Yu, Q. The Role of Lactobacillus in Inflammatory Bowel Disease: From Actualities to Prospects. Cell Death Discov. 2023, 9, 361. [Google Scholar] [CrossRef]
- Zafar, H.; Saier, M.H. Gut Bacteroides Species in Health and Disease. Gut Microbes 2021, 13, 1848158. [Google Scholar] [CrossRef]
- Puigbò, P.; Leino, L.I.; Rainio, M.J.; Saikkonen, K.; Saloniemi, I.; Helander, M. Does Glyphosate Affect the Human Microbiota? Life 2022, 12, 707. [Google Scholar] [CrossRef]
- Mao, Q.; Manservisi, F.; Panzacchi, S.; Mandrioli, D.; Menghetti, I.; Vornoli, A.; Bua, L.; Falcioni, L.; Lesseur, C.; Chen, J.; et al. The Ramazzini Institute 13-Week Pilot Study on Glyphosate and Roundup Administered at Human-Equivalent Dose to Sprague Dawley Rats: Effects on the Microbiome. Environ. Health 2018, 17, 50. [Google Scholar] [CrossRef]
- Lehman, P.C.; Cady, N.; Ghimire, S.; Shahi, S.K.; Shrode, R.L.; Lehmler, H.-J.; Mangalam, A.K. Low-Dose Glyphosate Exposure Alters Gut Microbiota Composition and Modulates Gut Homeostasis. Environ. Toxicol. Pharmacol. 2023, 100, 104149. [Google Scholar] [CrossRef]
- Mesnage, R.; Bowyer, R.C.E.; Balkhi, S.E.; Saint-Marcoux, F.; Gardere, A.; Ducarmon, Q.R.; Geelen, A.R.; Zwittink, R.D.; Tsoukalas, D.; Sarandi, E.; et al. Impacts of Dietary Exposure to Pesticides on Faecal Microbiome Metabolism in Adult Twins. Environ. Health 2022, 21, 46. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, L.N.; Roager, H.M.; Casas, M.E.; Frandsen, H.L.; Gosewinkel, U.; Bester, K.; Licht, T.R.; Hendriksen, N.B.; Bahl, M.I. Glyphosate Has Limited Short-Term Effects on Commensal Bacterial Community Composition in the Gut Environment Due to Sufficient Aromatic Amino Acid Levels. Environ. Pollut. 2018, 233, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Sun, T.; Wang, X.; Ren, K.; Min, T.; Xie, X.; Wang, D.; Li, K.; Zhang, Y.; Zhu, K.; et al. Chronic Exposure to Low-Dose Deltamethrin Can Lead to Colon Tissue Injury through PRDX1 Inactivation-Induced Mitochondrial Oxidative Stress Injury and Gut Microbial Dysbiosis. Ecotoxicol. Environ. Saf. 2023, 264, 115475. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chen, H.; Xu, B.; Yu, M.; Li, J.; Shi, Y.; Xia, S.; Wu, S. Deciphering the Interplay between LPS/TLR4 Pathways, Neurotransmitter, and Deltamethrin-Induced Depressive-like Behavior: Perspectives from the Gut-Brain Axis. Pestic. Biochem. Physiol. 2023, 197, 105697. [Google Scholar] [CrossRef]
- Jin, C.; Weng, Y.; Zhang, Y.; Bao, Z.; Yang, G.; Fu, Z.; Jin, Y. Propamocarb Exposure Has the Potential to Accelerate the Formation of Atherosclerosis in Both WT and ApoE−/− Mice Accompanied by Gut Microbiota Dysbiosis. Sci. Total Environ. 2021, 800, 149602. [Google Scholar] [CrossRef] [PubMed]
- Ku, T.; Liu, Y.; Xie, Y.; Hu, J.; Hou, Y.; Tan, X.; Ning, X.; Li, G.; Sang, N. Tebuconazole Mediates Cognitive Impairment via the Microbe-Gut-Brain Axis (MGBA) in Mice. Environ. Int. 2023, 173, 107821. [Google Scholar] [CrossRef]
- Hu, J.; Lesseur, C.; Miao, Y.; Manservisi, F.; Panzacchi, S.; Mandrioli, D.; Belpoggi, F.; Chen, J.; Petrick, L. Low-Dose Exposure of Glyphosate-Based Herbicides Disrupt the Urine Metabolome and Its Interaction with Gut Microbiota. Sci. Rep. 2021, 11, 3265. [Google Scholar] [CrossRef]
- Bellot, M.; Carrillo, M.P.; Bedrossiantz, J.; Zheng, J.; Mandal, R.; Wishart, D.S.; Gómez-Canela, C.; Vila-Costa, M.; Prats, E.; Piña, B.; et al. From Dysbiosis to Neuropathologies: Toxic Effects of Glyphosate in Zebrafish. Ecotoxicol. Environ. Saf. 2024, 270, 115888. [Google Scholar] [CrossRef]
- Tang, Q.; Tang, J.; Ren, X.; Li, C. Glyphosate Exposure Induces Inflammatory Responses in the Small Intestine and Alters Gut Microbial Composition in Rats. Environ. Pollut. 2020, 261, 114129. [Google Scholar] [CrossRef]
- Lozano, V.L.; Defarge, N.; Rocque, L.-M.; Mesnage, R.; Hennequin, D.; Cassier, R.; de Vendômois, J.S.; Panoff, J.-M.; Séralini, G.-E.; Amiel, C. Sex-Dependent Impact of Roundup on the Rat Gut Microbiome. Toxicol. Rep. 2018, 5, 96–107. [Google Scholar] [CrossRef]
- Buchenauer, L.; Haange, S.-B.; Bauer, M.; Rolle-Kampczyk, U.E.; Wagner, M.; Stucke, J.; Elter, E.; Fink, B.; Vass, M.; von Bergen, M.; et al. Maternal Exposure of Mice to Glyphosate Induces Depression- and Anxiety-like Behavior in the Offspring via Alterations of the Gut-Brain Axis. Sci. Total Environ. 2023, 905, 167034. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Sun, W.; Liu, W.; Wang, Y.; Jia, M.; Tian, S.; Chen, X.; Zhu, W.; Zhou, Z. A Common Fungicide Tebuconazole Promotes Colitis in Mice via Regulating Gut Microbiota. Environ. Pollut. 2022, 292, 118477. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, F.; Xu, Y.; Qiu, J.; Qian, Y. Gut Flora-Mediated Metabolic Health, the Risk Produced by Dietary Exposure to Acetamiprid and Tebuconazole. Foods 2021, 10, 835. [Google Scholar] [CrossRef]
- Zhang, R.; Pan, Z.; Wang, X.; Shen, M.; Zhou, J.; Fu, Z.; Jin, Y. Short-Term Propamocarb Exposure Induces Hepatic Metabolism Disorder Associated with Gut Microbiota Dysbiosis in Adult Male Zebrafish. Acta Biochim. Biophys. Sin. 2018, 51, 88–96. [Google Scholar] [CrossRef]
- Wu, S.; Jin, C.; Wang, Y.; Fu, Z.; Jin, Y. Exposure to the Fungicide Propamocarb Causes Gut Microbiota Dysbiosis and Metabolic Disorder in Mice. Environ. Pollut. 2018, 237, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Pittayanon, R.; Lau, J.T.; Leontiadis, G.I.; Tse, F.; Yuan, Y.; Surette, M.; Moayyedi, P. Differences in Gut Microbiota in Patients with vs Without Inflammatory Bowel Diseases: A Systematic Review. Gastroenterology 2020, 158, 930–946.e1. [Google Scholar] [CrossRef]
- Ma, R.; Wang, X.; Ren, K.; Ma, Y.; Min, T.; Yang, Y.; Xie, X.; Li, K.; Zhu, K.; Yuan, D.; et al. Chronic Low-Dose Deltamethrin Exposure Induces Colon Injury and Aggravates DSS-Induced Colitis via Promoting Cellular Senescence. Ecotoxicol. Environ. Saf. 2024, 274, 116214. [Google Scholar] [CrossRef] [PubMed]
- Chatelier, E.L.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.-M.; Kennedy, S.; et al. Richness of Human Gut Microbiome Correlates with Metabolic Markers. Nature 2013, 500, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.-C.; Kim, D.-H.; Jeong, C.-H.; Kim, Y.-J.; Han, J.-H.; Lim, S.-J.; Shin, D.-M.; Kim, D.-W.; Han, S.-G. Tebuconazole Fungicide Induces Lipid Accumulation and Oxidative Stress in HepG2 Cells. Foods 2021, 10, 2242. [Google Scholar] [CrossRef]
- Wu, S.; Luo, T.; Wang, S.; Zhou, J.; Ni, Y.; Fu, Z.; Jin, Y. Chronic Exposure to Fungicide Propamocarb Induces Bile Acid Metabolic Disorder and Increases Trimethylamine in C57BL/6J Mice. Sci. Total Environ. 2018, 642, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Huang, Q.; Chen, X.; Qiu, L.; Wang, S.; Ouyang, K.; Chen, Y. Associations between Urinary Glyphosate and Diabetes Mellitus in the US General Adult: A Cross-Sectional Study from NHANES 2013–2016. Environ. Sci. Pollut. Res. Int. 2023, 30, 124195–124203. [Google Scholar] [CrossRef]
- Li, W.; Lei, D.; Huang, G.; Tang, N.; Lu, P.; Jiang, L.; Lv, J.; Lin, Y.; Xu, F.; Qin, Y.-J. Association of Glyphosate Exposure with Multiple Adverse Outcomes and Potential Mediators. Chemosphere 2023, 345, 140477. [Google Scholar] [CrossRef]
- Eskenazi, B.; Gunier, R.B.; Rauch, S.; Kogut, K.; Perito, E.R.; Mendez, X.; Limbach, C.; Holland, N.; Bradman, A.; Harley, K.G.; et al. Association of Lifetime Exposure to Glyphosate and Aminomethylphosphonic Acid (AMPA) with Liver Inflammation and Metabolic Syndrome at Young Adulthood: Findings from the CHAMACOS Study. Environ. Health Perspect. 2023, 131, 37001. [Google Scholar] [CrossRef]
- Jia, C.; Qiu, G.; Wang, H.; Zhang, S.; An, J.; Cheng, X.; Li, P.; Li, W.; Zhang, X.; Yang, H.; et al. Lipid Metabolic Links between Serum Pyrethroid Levels and the Risk of Incident Type 2 Diabetes: A Mediation Study in the Prospective Design. J. Hazard. Mater. 2023, 459, 132082. [Google Scholar] [CrossRef]
- Park, J.; Park, S.K.; Choi, Y.-H. Environmental Pyrethroid Exposure and Diabetes in U.S. Adults. Environ. Res. 2019, 172, 399–407. [Google Scholar] [CrossRef]
- Zuo, L.; Chen, L.; Chen, X.; Liu, M.; Chen, H.; Hao, G. Pyrethroids Exposure Induces Obesity and Cardiometabolic Diseases in a Sex-Different Manner. Chemosphere 2022, 291, 132935. [Google Scholar] [CrossRef]
- Tsakiridis, E.E.; Morrow, M.R.; Desjardins, E.M.; Wang, D.; Llanos, A.; Wang, B.; Wade, M.G.; Morrison, K.M.; Holloway, A.C.; Steinberg, G.R. Effects of the Pesticide Deltamethrin on High Fat Diet-Induced Obesity and Insulin Resistance in Male Mice. Food Chem. Toxicol. 2023, 176, 113763. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Li, L.; Chen, J.; Wei, G.; Ji, Y.; Chen, X.; Liu, J.; Huo, J. Human Gut-Microbiome Interplay: Analysis of Clinical Studies for the Emerging Roles of Diagnostic Microbiology in Inflammation, Oncogenesis and Cancer Management. Infect. Genet. Evol. 2021, 93, 104946. [Google Scholar] [CrossRef] [PubMed]
- Mishra, Y.; Ranjan, A.; Mishra, V.; Chattaraj, A.; Aljabali, A.A.A.; El-Tanani, M.; Hromić-Jahjefendić, A.; Uversky, V.N.; Tambuwala, M.M. The Role of the Gut Microbiome in Gastrointestinal Cancers. Cell. Signal. 2024, 115, 111013. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Ma, W.; Wang, Y.; Wang, Y.; Sun, X.; Zheng, Q. Gut Microbiome-Metabolites Axis: A Friend or Foe to Colorectal Cancer Progression. Biomed. Pharmacother. 2024, 173, 116410. [Google Scholar] [CrossRef]
- Yu, G.; Torres, J.; Hu, N.; Medrano-Guzman, R.; Herrera-Goepfert, R.; Humphrys, M.S.; Wang, L.; Wang, C.; Ding, T.; Ravel, J.; et al. Molecular Characterization of the Human Stomach Microbiota in Gastric Cancer Patients. Front. Cell. Infect. Microbiol. 2017, 7, 302. [Google Scholar] [CrossRef]
- Flemer, B.; Lynch, D.B.; Brown, J.M.R.; Jeffery, I.B.; Ryan, F.J.; Claesson, M.J.; O’Riordain, M.; Shanahan, F.; O’Toole, P.W. Tumour-Associated and Non-Tumour-Associated Microbiota in Colorectal Cancer. Gut 2017, 66, 633–643. [Google Scholar] [CrossRef]
- Cao, S.; Ye, L.; Wu, Y.; Mao, B.; Chen, L.; Wang, X.; Huang, P.; Su, Y.; Ge, R.-S. The Effects of Fungicides on Human 3β-Hydroxysteroid Dehydrogenase 1 and Aromatase in Human Placental Cell Line JEG-3. Pharmacology 2017, 100, 139–147. [Google Scholar] [CrossRef]
- Ullman, T.A.; Itzkowitz, S.H. Intestinal Inflammation and Cancer. Gastroenterology 2011, 140, 1807–1816.e1. [Google Scholar] [CrossRef]
- Rubin, D.C.; Shaker, A.; Levin, M.S. Chronic Intestinal Inflammation: Inflammatory Bowel Disease and Colitis-Associated Colon Cancer. Front. Immunol. 2012, 3, 107. [Google Scholar] [CrossRef]
- Mendonça, F.M.; de Sousa, F.R.; Barbosa, A.L.; Martins, S.C.; Araújo, R.L.; Soares, R.; Abreu, C. Metabolic Syndrome and Risk of Cancer: Which Link? Metabolism 2015, 64, 182–189. [Google Scholar] [CrossRef]
- Ulaganathan, V.; Kandiah, M.; Shariff, Z. A Case–Control Study on the Association of Abdominal Obesity and Hypercholesterolemia with the Risk of Colorectal Cancer. J. Carcinog. 2018, 17, 4. [Google Scholar] [CrossRef]
- Van Duijnhoven, F.J.B.; Bueno-De-Mesquita, H.B.; Calligaro, M.; Jenab, M.; Pischon, T.; Jansen, E.H.J.M.; Frohlich, J.; Ayyobi, A.; Overvad, K.; Toft-Petersen, A.P.; et al. Blood Lipid and Lipoprotein Concentrations and Colorectal Cancer Risk in the European Prospective Investigation into Cancer and Nutrition. Gut 2011, 60, 1094–1102. [Google Scholar] [CrossRef]
- Vulcan, A.; Manjer, J.; Ohlsson, B. High Blood Glucose Levels Are Associated with Higher Risk of Colon Cancer in Men: A Cohort Study. BMC Cancer 2017, 17, 842. [Google Scholar] [CrossRef]
- Zaytseva, Y. Lipid Metabolism as a Targetable Metabolic Vulnerability in Colorectal Cancer. Cancers 2021, 13, 301. [Google Scholar] [CrossRef]
- Xie, P.-P.; Zong, Z.-Q.; Qiao, J.-C.; Li, Z.-Y.; Hu, C.-Y. Exposure to Pesticides and Risk of Colorectal Cancer: A Systematic Review and Meta-Analysis. Environ. Pollut. 2024, 345, 123530. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Q.; Guo, J.; Ares, I.; Martínez, M.; Martínez-Larrañaga, M.-R.; Wang, X.; Anadón, A.; Martínez, M.-A. Oxidative Stress and Metabolism: A Mechanistic Insight for Glyphosate Toxicology. Annu. Rev. Pharmacol. Toxicol. 2022, 62, 617–639. [Google Scholar] [CrossRef] [PubMed]
- IARC. IARC Monograph on Glyphosate; IARC: Lyon, France, 2018. [Google Scholar]
- Greim, H.; Saltmiras, D.; Mostert, V.; Strupp, C. Evaluation of Carcinogenic Potential of the Herbicide Glyphosate, Drawing on Tumor Incidence Data from Fourteen Chronic/Carcinogenicity Rodent Studies. Crit. Rev. Toxicol. 2015, 45, 185–208. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.T.; Guyton, K.Z.; Gibbons, C.F.; Fritz, J.M.; Portier, C.J.; Rusyn, I.; DeMarini, D.M.; Caldwell, J.C.; Kavlock, R.J.; Lambert, P.F.; et al. Key Characteristics of Carcinogens as a Basis for Organizing Data on Mechanisms of Carcinogenesis. Environ. Health Perspect. 2016, 124, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Rana, I.; Nguyen, P.K.; Rigutto, G.; Louie, A.; Lee, J.; Smith, M.T.; Zhang, L. Mapping the Key Characteristics of Carcinogens for Glyphosate and Its Formulations: A Systematic Review. Chemosphere 2023, 339, 139572. [Google Scholar] [CrossRef]
- Agostini, L.P.; Dettogni, R.S.; dos Reis, R.S.; Stur, E.; Santos, E.V.W.d.; Ventorim, D.P.; Garcia, F.M.; Cardoso, R.C.; Graceli, J.B.; Louro, I.D. Effects of Glyphosate Exposure on Human Health: Insights from Epidemiological and in Vitro Studies. Sci. Total Environ. 2020, 705, 135808. [Google Scholar] [CrossRef]
- Karalexi, M.A.; Tagkas, C.F.; Markozannes, G.; Tseretopoulou, X.; Hernández, A.F.; Schüz, J.; Halldorsson, T.I.; Psaltopoulou, T.; Petridou, E.T.; Tzoulaki, I.; et al. Exposure to Pesticides and Childhood Leukemia Risk: A Systematic Review and Meta-Analysis. Environ. Pollut. 2021, 285, 117376. [Google Scholar] [CrossRef]
- Navarrete-Meneses, M.d.P.; Pérez-Vera, P. Pyrethroid Pesticide Exposure and Hematological Cancer: Epidemiological, Biological and Molecular Evidence. Rev. Environ. Health 2019, 34, 197–210. [Google Scholar] [CrossRef]
- Maele-Fabry, G.V.; Gamet-Payrastre, L.; Lison, D. Household Exposure to Pesticides and Risk of Leukemia in Children and Adolescents: Updated Systematic Review and Meta-Analysis. Int. J. Hyg. Environ. Health 2019, 222, 49–67. [Google Scholar] [CrossRef]
- Piel, C.; Pouchieu, C.; Carles, C.; Béziat, B.; Boulanger, M.; Bureau, M.; Busson, A.; Grüber, A.; Lecluse, Y.; Migault, L.; et al. Agricultural Exposures to Carbamate Herbicides and Fungicides and Central Nervous System Tumour Incidence in the Cohort AGRICAN. Environ. Int. 2019, 130, 104876. [Google Scholar] [CrossRef]
- Juliette, H.; Marine, R.; Séverine, T.; Mathilde, B.; Anne-Valérie, G.; Elisabeth, M.; Mathilde, B.; Isabelle, B.; Pierre, L. O-51 Occupational Exposure to Triazole Fungicides and Risk of Prostate Cancer in the AGRIculture and CANcer (AGRICAN) Cohort. Abstracts. Occup. Environ. Med. 2023, 80, A79–A80. [Google Scholar] [CrossRef]
- Kašuba, V.; Milić, M.; Rozgaj, R.; Kopjar, N.; Mladinić, M.; Žunec, S.; Vrdoljak, A.L.; Pavičić, I.; Čermak, A.M.M.; Pizent, A.; et al. Effects of Low Doses of Glyphosate on DNA Damage, Cell Proliferation and Oxidative Stress in the HepG2 Cell Line. Environ. Sci. Pollut. Res. 2017, 24, 19267–19281. [Google Scholar] [CrossRef]
- Bianco, C.D.; Ourique, F.; dos Santos, D.C.; Pedrosa, R.C.; Kviecisnki, M.R.; Zamoner, A. Glyphosate-Induced Glioblastoma Cell Proliferation: Unraveling the Interplay of Oxidative, Inflammatory, Proliferative, and Survival Signaling Pathways. Environ. Pollut. 2023, 338, 122695. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.; Al-Ahmad, A.J. Effects of Glyphosate and Aminomethylphosphonic Acid on an Isogeneic Model of the Human Blood-Brain Barrier. Toxicol. Lett. 2019, 304, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Winstone, J.K.; Pathak, K.V.; Winslow, W.; Piras, I.S.; White, J.; Sharma, R.; Huentelman, M.J.; Pirrotte, P.; Velazquez, R. Glyphosate Infiltrates the Brain and Increases Pro-Inflammatory Cytokine TNFα: Implications for Neurodegenerative Disorders. J. Neuroinflamm. 2022, 19, 193. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, J.P.; Araya-Osorio, R.; Mera-Adasme, R.; Calaf, G.M. Glyphosate Mimics 17β-Estradiol Effects Promoting Estrogen Receptor Alpha Activity in Breast Cancer Cells. Chemosphere 2023, 313, 137201. [Google Scholar] [CrossRef]
- Sritana, N.; Suriyo, T.; Kanitwithayanun, J.; Songvasin, B.H.; Thiantanawat, A.; Satayavivad, J. Glyphosate Induces Growth of Estrogen Receptor Alpha Positive Cholangiocarcinoma Cells via Non-Genomic Estrogen Receptor/ERK1/2 Signaling Pathway. Food Chem. Toxicol. 2018, 118, 595–607. [Google Scholar] [CrossRef]
- Rossetti, M.F.; Canesini, G.; Lorenz, V.; Milesi, M.M.; Varayoud, J.; Ramos, J.G. Epigenetic Changes Associated with Exposure to Glyphosate-Based Herbicides in Mammals. Front. Endocrinol. 2021, 12, 671991. [Google Scholar] [CrossRef]
- Duforestel, M.; Nadaradjane, A.; Bougras-Cartron, G.; Briand, J.; Olivier, C.; Frenel, J.-S.; Vallette, F.M.; Lelièvre, S.A.; Cartron, P.-F. Glyphosate Primes Mammary Cells for Tumorigenesis by Reprogramming the Epigenome in a TET3-Dependent Manner. Front. Genet. 2019, 10, 885. [Google Scholar] [CrossRef]
- Woźniak, E.; Reszka, E.; Jabłońska, E.; Balcerczyk, A.; Broncel, M.; Bukowska, B. Glyphosate Affects Methylation in the Promoter Regions of Selected Tumor Suppressors as Well as Expression of Major Cell Cycle and Apoptosis Drivers in PBMCs (in Vitro Study). Toxicol. Vitr. 2020, 63, 104736. [Google Scholar] [CrossRef]
- Woźniak, E.; Reszka, E.; Jabłońska, E.; Michałowicz, J.; Huras, B.; Bukowska, B. Glyphosate and AMPA Induce Alterations in Expression of Genes Involved in Chromatin Architecture in Human Peripheral Blood Mononuclear Cells (In Vitro). Int. J. Mol. Sci. 2021, 22, 2966. [Google Scholar] [CrossRef] [PubMed]
- Kubsad, D.; Nilsson, E.E.; King, S.E.; Sadler-Riggleman, I.; Beck, D.; Skinner, M.K. Assessment of Glyphosate Induced Epigenetic Transgenerational Inheritance of Pathologies and Sperm Epimutations: Generational Toxicology. Sci. Rep. 2019, 9, 6372. [Google Scholar] [CrossRef]
- Kumar, A.; Sasmal, D.; Sharma, N.; Bhaskar, A.; Chandra, S.; Mukhopadhyay, K.; Kumar, M. Deltamethrin, a Pyrethroid Insecticide, Could Be a Promising Candidate as an Anticancer Agent. Med. Hypotheses 2015, 85, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Banerjee, S.; Mazumder, P.M. Evaluation of the Mechanism of Anticancer Activity of Deltamethrin in Jurkat-J6 Cell Line. Pestic. Biochem. Physiol. 2018, 149, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Chi, C.-C.; Chou, C.-T.; Liang, W.-Z.; Jan, C.-R. Effect of the Pesticide, Deltamethrin, on Ca2+ Signaling and Apoptosis in OC2 Human Oral Cancer Cells. Drug Chem. Toxicol. 2014, 37, 25–31. [Google Scholar] [CrossRef]
- Othmène, Y.B.; Salem, I.B.; Hamdi, H.; Annabi, E.; Abid-Essefi, S. Tebuconazole Induced Cytotoxic and Genotoxic Effects in HCT116 Cells through ROS Generation. Pestic. Biochem. Physiol. 2021, 174, 104797. [Google Scholar] [CrossRef]
- Othmène, Y.B.; Monceaux, K.; Belhadef, A.; Karoui, A.; Salem, I.B.; Boussabbeh, M.; Abid-Essefi, S.; Lemaire, C. Triazole Fungicide Tebuconazole Induces Apoptosis through ROS-Mediated Endoplasmic Reticulum Stress Pathway. Environ. Toxicol. Pharmacol. 2022, 94, 103919. [Google Scholar] [CrossRef]
- Leite, F.G.; Silva, C.d.P.M.; Miranda, R.G.; Dorta, D.J. Comparison of in Vitro Toxicity in HepG2 Cells: Toxicological Role of Tebuconazole-Tert-Butyl-Hydroxy in Exposure to the Fungicide Tebuconazole. Pestic. Biochem. Physiol. 2024, 202, 105954. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Zhao, Q.; Guan, Y.; Sun, Z.; Li, W.; Guo, S.; Zhang, A. The Communication Mechanism of the Gut-Brain Axis and Its Effect on Central Nervous System Diseases: A Systematic Review. Biomed. Pharmacother. 2024, 178, 117207. [Google Scholar] [CrossRef] [PubMed]
- Ashique, S.; Mohanto, S.; Ahmed, M.G.; Mishra, N.; Garg, A.; Chellappan, D.K.; Omara, T.; Iqbal, S.; Kahwa, I. Gut-Brain Axis: A Cutting-Edge Approach to Target Neurological Disorders and Potential Synbiotic Application. Heliyon 2024, 10, e34092. [Google Scholar] [CrossRef]
- Argou-Cardozo, I.; Zeidán-Chuliá, F. Clostridium Bacteria and Autism Spectrum Conditions: A Systematic Review and Hypothetical Contribution of Environmental Glyphosate Levels. Med. Sci. 2018, 6, 29. [Google Scholar] [CrossRef]
- Pitzer, E.M.; Williams, M.T.; Vorhees, C.V. Effects of Pyrethroids on Brain Development and Behavior: Deltamethrin. Neurotoxicol. Teratol. 2021, 87, 106983. [Google Scholar] [CrossRef]
- Turner, P.V. The Role of the Gut Microbiota on Animal Model Reproducibility. Anim. Models Exp. Med. 2018, 1, 109–115. [Google Scholar] [CrossRef]
- Moser, V.C.; Morris-Schaffer, K.; Richardson, J.R.; Li, A.A. Glyphosate and Neurological Outcomes: A Systematic Literature Review of Animal Studies. J. Toxicol. Environ. Health Part B 2022, 25, 162–209. [Google Scholar] [CrossRef]
Pesticide | Classification Based on Target Pest | Chemical Classification | Approval for Use by EFSA | Chemical Structure |
---|---|---|---|---|
Glyphosate (N-phosphonomethyl glycine) | Herbicide | Organophosphate | Until 2033 | |
Deltamethrin ((S)-alpha-cyano-3-phenoxybenzyl-(1R)-cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane carboxylate) | Insecticide | Class II Pyrethroid | Until 2026 | |
Tebuconazole ([(RS)-1-p-chlorophenyl-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl) pentan-3-ol]) | Fungicide | Triazole | Until 2026 | |
Propamocarb (propyl -3-[dimethyl-amino] propyl carbamate) | Fungicide | Carbamate | Until 2025 |
Pesticide | NOAEL (mg/kg b.w./day) | Animal | Length of Exposure | Toxic Effects Observed at Doses Above NOAEL | Ref. |
---|---|---|---|---|---|
glyphosate | 59.4 | rats | 2 years | Liver and lung lesions, increased alkaline phosphatase (ALP), local effects in the G.I. tract, salivary glands and eyes. | [12] |
propamocarb | 29 | rats | 1 year | Intracytoplasmic vacuolation in the choroid plexus of the brain and lacrimal gland ducts | [18] |
deltamethrin | 12 (males), 15 (females) | Charles-River CD mice | 2 years | No toxicity observed | [56] |
16 (males), 189 (females) | Charles-River CD mice | 97 weeks | Skin ulceration, emaciation, and dyspnoea | ||
1 (males), 30 (females) | rats | 2 years | Uncoordinated movements reduced b.w., changes in food consumption, and haematological parameters |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fenech, K.; Baron, B. Unveiling the Impacts of Glyphosate, Deltamethrin, Propamocarb and Tebuconazole on Gut Health. J 2025, 8, 36. https://doi.org/10.3390/j8030036
Fenech K, Baron B. Unveiling the Impacts of Glyphosate, Deltamethrin, Propamocarb and Tebuconazole on Gut Health. J. 2025; 8(3):36. https://doi.org/10.3390/j8030036
Chicago/Turabian StyleFenech, Kimberly, and Byron Baron. 2025. "Unveiling the Impacts of Glyphosate, Deltamethrin, Propamocarb and Tebuconazole on Gut Health" J 8, no. 3: 36. https://doi.org/10.3390/j8030036
APA StyleFenech, K., & Baron, B. (2025). Unveiling the Impacts of Glyphosate, Deltamethrin, Propamocarb and Tebuconazole on Gut Health. J, 8(3), 36. https://doi.org/10.3390/j8030036