A Brief Taxonomy of Hybrid Intelligence
Abstract
:1. Introduction
2. Biological Intelligence
3. Algorithms as Assistants
4. Algorithms as Peers
5. Algorithms as Facilitators
6. Algorithms as System-Level Operators
7. Future Directions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Hassabis, D.; Kumaran, D.; Summerfield, C.; Botvinick, M. Neuroscience-Inspired Artificial Intelligence. Neuron 2017, 95, 245–258. [Google Scholar] [CrossRef] [Green Version]
- Leudar, I.; James, L.; McClelland, D.R.; The PDP Research Group. Parallel distributed processing: Explorations in the microstructure of cognition. Vol. 1. Foundations. Vol. 2. Psychological and biological models. J. Child Lang. 1989, 16, 467–470. [Google Scholar] [CrossRef]
- Hebb, D.O. The first stage of perception: Growth of the assembly. In The Organization of Behavior; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1949; Volume 4, pp. 60–78. [Google Scholar]
- Whittington, J.C.; Bogacz, R. Theories of Error Back-Propagation in the Brain. Trends Cogn. Sci. 2019, 23, 235–250. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, M. Artificial Intelligence: A Guide for Thinking Humans; Picador: London, UK, 2020. [Google Scholar]
- Guo, H.; Peng, L.; Zhang, J.; Qi, F.; Duan, L. Fooling AI with AI: An Accelerator for Adversarial Attacks on Deep Learning Visual Classification. In Proceedings of the 2019 IEEE 30th International Conference on Application-Specific Systems, Architectures and Processors (ASAP), New York, NY, USA, 15–17 July 2019; p. 136. [Google Scholar]
- Chang, C.-L.; Hung, J.-L.; Tien, C.-W.; Kuo, S.-Y. Evaluating Robustness of AI Models against Adversarial Attacks. In Proceedings of the 1st ACM Workshop on Security and Privacy on Artificial Intelligence; Association for Computing Machinery (ACM): New York, NY, USA, 2020; pp. 47–54. [Google Scholar]
- Chen, L.; Ning, H.; Nugent, C.D.; Yu, Z. Hybrid Human-Artificial Intelligence. Computer 2020, 53, 14–17. [Google Scholar] [CrossRef]
- Dekker, S.W.A.; Woods, D.D. MABA-MABA or Abracadabra? Progress on Human-Automation Co-ordination. Cogn. Technol. Work. 2002, 4, 240–244. [Google Scholar] [CrossRef]
- Sankar, S. Transcript of “The Rise of Human-Computer Cooperation”. Available online: https://www.ted.com/talks/shyam_sankar_the_rise_of_human_computer_cooperation/transcript?language=en (accessed on 10 July 2021).
- Akata, Z.; Balliet, D.; De Rijke, M.; Dignum, F.; Dignum, V.; Eiben, G.; Fokkens, A.; Grossi, D.; Hindriks, K.; Hoos, H.; et al. Research Agenda for Hybrid Intelligence: Augment-ing Human Intellect With Collaborative, Adaptive, Responsible, and Explainable Artificial Intelligence. Computer 2020, 53, 18–28. [Google Scholar] [CrossRef]
- Kambhampati, S. Challenges of Human-Aware AI Systems. AI Mag. 2020, 41, 3–17. [Google Scholar] [CrossRef]
- Rendell, L.; Boyd, R.; Cownden, D.; Enquist, M.; Eriksson, K.; Feldman, M.W.; Fogarty, L.; Ghirlanda, S.; Lillicrap, T.; Laland, K.N. Why Copy Others? Insights from the Social Learning Strategies Tournament. Science 2010, 328, 208–213. [Google Scholar] [CrossRef] [Green Version]
- Bahrami, B.; Olsen, K.; Latham, P.E.; Roepstorff, A.; Rees, G.; Frith, C. Optimally Interacting Minds. Science 2010, 329, 1081–1085. [Google Scholar] [CrossRef] [Green Version]
- Sorkin, R.D.; Hays, C.J.; West, R. Signal-detection analysis of group decision making. Psychol. Rev. 2001, 108, 183–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pescetelli, N.; Rees, G.; Bahrami, B. The perceptual and social components of metacognition. J. Exp. Psychol. Gen. 2016, 145, 949–965. [Google Scholar] [CrossRef]
- Koriat, A. When Are Two Heads Better than One and Why? Science 2012, 336, 360–362. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, L.; Baltaxe, D.; Pescetelli, N. Crowds vs. swarms, a comparison of intelligence. In Proceedings of the 2016 Swarm/Human Blended Intelligence Workshop (SHBI), Cleveland, OH, USA, 21–23 October 2016; pp. 1–4. [Google Scholar]
- Tetlock, P.E.; Gardner, D. Superforecasting: The Art and Science of Prediction; Crown Publishers: New York, NY, USA, 2015. [Google Scholar]
- Silver, I.; Mellers, B.A.; Tetlock, P.E. Wise teamwork: Collective confidence calibration predicts the effectiveness of group dis-cussion. J. Exp. Soc. Psychol. 2021, 96, 104157. [Google Scholar] [CrossRef]
- Pescetelli, N.; Rutherford, A.; Rahwan, I. Modularity and composite diversity affect the collective gathering of information online. Nat. Commun. 2021, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Almaatouq, A.; Noriega-Campero, A.; Alotaibi, A.; Krafft, P.M.; Moussaid, M.; Pentland, A. Adaptive social networks promote the wisdom of crowds. Proc. Natl. Acad. Sci. USA 2020, 117, 11379–11386. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.; Brackbill, D.; Centola, D. Network dynamics of social influence in the wisdom of crowds. Proc. Natl. Acad. Sci. USA 2017, 114, E5070–E5076. [Google Scholar] [CrossRef] [Green Version]
- Mason, W.; Watts, D.J. Collaborative learning in networks. Proc. Natl. Acad. Sci. USA 2012, 109, 764–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barkoczi, D.; Galesic, M. Social learning strategies modify the effect of network structure on group performance. Nat. Commun. 2016, 7, 13109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenz, J.; Rauhut, H.; Schweitzer, F.; Helbing, D. How social influence can undermine the wisdom of crowd effect. Proc. Natl. Acad. Sci. USA 2011, 108, 9020–9025. [Google Scholar] [CrossRef] [Green Version]
- Hahn, U.; Von Sydow, M.; Merdes, C. How Communication Can Make Voters Choose Less Well. Top. Cogn. Sci. 2019, 11, 194–206. [Google Scholar] [CrossRef]
- Kao, A.B.; Miller, N.; Torney, C.; Hartnett, A.; Couzin, I.D. Collective Learning and Optimal Consensus Decisions in Social Ani-mal Groups. PLoS Comput. Biol. 2014, 10, e1003762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surowiecki, J. The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How Collective Wisdom Shapes Business, Economies, Societies and Nations; Abacus: London, UK; Little, Brown Book Group: Boston, MA, USA, 2004; p. 271. [Google Scholar]
- De Condorcet, M. Essai sur L’application de L’analyse à la Probabilité des Decisions Rendues à la Pluralité des Vois; De l’Imprimerie Royale: Paris, France, 1785. [Google Scholar]
- Brill, T.M.; Munoz, L.; Miller, R.J. Siri, Alexa, and other digital assistants: A study of customer satisfaction with artificial intelli-gence applications. J Mark Manag. 2019, 35, 1401–1436. [Google Scholar] [CrossRef]
- Hennig, N. Siri, Alexa, and Other Digital Assistants: The Librarian’s Quick Guide; ABC-CLIO: Santa Barbara, CA, USA, 2018. [Google Scholar]
- Sarikaya, R. The technology powering personal digital assistants. In Proceedings of the Sixteenth Annual Conference of the International Speech Communication Association, Dresden, Germany, 6–10 September 2015; Available online: https://www.isca-speech.org/archive/interspeech_2015/i15_4002.html (accessed on 23 August 2021).
- Picard, C.; Smith, K.E.; Picard, K.; Douma, M.J. Can Alexa, Cortana, Google Assistant and Siri save your life? A mixed-methods analysis of virtual digital assistants and their responses to first aid and basic life support queries. BMJ Innov. 2020, 6, 26–31. [Google Scholar] [CrossRef]
- Boyd, M.; Wilson, N. Just ask Siri? A pilot study comparing smartphone digital assistants and laptop Google searches for smoking cessation advice. PLoS ONE 2018, 13, e0194811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricci, F.; Rokach, L.; Shapira, B. Introduction to recommender systems handbook. In Recommender Systems Handbook; Springer: Boston, MA, USA, 2011; pp. 1–35. [Google Scholar]
- Koren, Y.; Bell, R. Advances in Collaborative Filtering. In Recommender Systems Handbook; Ricci, F., Rokach, L., Shapira, B., Eds.; Springer: Boston, MA, USA, 2015; pp. 77–118. [Google Scholar]
- Epstein, R.; Robertson, R.E. The search engine manipulation effect (SEME) and its possible impact on the outcomes of elections. Proc. Natl. Acad. Sci. USA 2015, 112, E4512–E4521. [Google Scholar] [CrossRef] [Green Version]
- Hannak, A.; Sapiezynski, P.; Kakhki, A.M.; Krishnamurthy, B.; Lazer, D.; Mislove, A.; Wilson, C. Measuring personalization of web search. In Proceedings of the 22nd international conference on World Wide Web-WWW ’13, Rio de Janeiro, Brazil, 13–17 May 2013; pp. 527–538. [Google Scholar]
- Steiner, M.; Magin, M.; Stark, B.; Geiß, S. Seek and you shall find? A content analysis on the diversity of five search engines’ re-sults on political queries. Inf. Commun. Soc. 2020, 1–25. [Google Scholar] [CrossRef]
- Dwork, C.; Kumar, R.; Naor, M.; Sivakumar, D. Page Rank Aggregation Methods A Review. Int. J. Comput. Sci. Eng. 2018, 6, 976–980. [Google Scholar] [CrossRef]
- Schwartz, C. Web search engines. J. Am. Soc. Inf. Sci. 1998, 49, 973–982. [Google Scholar] [CrossRef]
- Damaschk, M.; Donicke, T.; Lux, F. Multiclass Text Classification on Unbalanced, Sparse and Noisy Data; Linköping University Electronic Press: Turku, Finland, 2019; pp. 58–65. [Google Scholar]
- Perkel, J.M. Data visualization tools drive interactivity and reproducibility in online publishing. Nat. Cell Biol. 2018, 554, 133–134. [Google Scholar] [CrossRef]
- Ali, S.M.; Gupta, N.; Nayak, G.K.; Lenka, R.K. Big data visualization: Tools and challenges. In Proceedings of the 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), Noida, India, 14–17 December 2016; pp. 656–660. [Google Scholar]
- Simari, G.; Rahwan, I. (Eds.) Argumentation in Artificial Intelligence; Springer: Boston, MA, USA, 2009. [Google Scholar]
- You, Q.; Jin, H.; Wang, Z.; Fang, C.; Luo, J. Image Captioning with Semantic Attention. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4651–4659. [Google Scholar]
- Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv 2016, arXiv:1609.08144. [Google Scholar]
- Varela-Salinas, M.J.; Burbat, R. Google Translate and deepl: Breaking Taboos in Translator Training. 2018. Available online: https://riuma.uma.es/xmlui/handle/10630/16310 (accessed on 20 June 2021).
- Nakazawa, T.; Yu, K.; Kawahara, D.; Kurohashi, S. Example-based machine translation based on deeper NLP. In Proceedings of the International Workshop on Spoken Language Translation (IWSLT) 2006, Kyoto, Japan, 27–28 November 2006; Available online: https://www.isca-speech.org/archive/iwslt_06/papers/slt6_064.pdf (accessed on 23 August 2021).
- Rosenberg, L.; Pescetelli, N.; Willcox, G. Artificial Swarm Intelligence amplifies accuracy when predicting financial markets. In Proceedings of the 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), New York, NY, USA, 19–21 October 2017; pp. 58–62. [Google Scholar]
- Keller, N.; Jenny, M.A.; Spies, C.A.; Herzog, S.M. Augmenting Decision Competence in Healthcare Using AI-based Cognitive Models. In Proceedings of the 2020 IEEE International Conference on Healthcare Informatics (ICHI), Oldenburg, Germany, 15–18 June 2020; pp. 1–4. [Google Scholar]
- Difallah, D.E.; Catasta, M.; Demartini, G.; Ipeirotis, P.G.; Cudré-Mauroux, P. The Dynamics of Micro-Task Crowdsourcing: The Case of Amazon MTurk. In Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 238–247. [Google Scholar]
- Pickard, G.; Pan, W.; Rahwan, I.; Cebrian, M.; Crane, R.; Madan, A.; Pentland, A. Time-Critical Social Mobilization. Science 2011, 334, 509–512. [Google Scholar] [CrossRef] [Green Version]
- Stefanovitch, N.; Alshamsi, A.; Cebrian, M.; Rahwan, I. Error and attack tolerance of collective problem solving: The DARPA Shredder Challenge. EPJ Data Sci. 2014, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Ungar, L.; Mellers, B.; Satopää, V.; Tetlock, P.; Baron, J. The good judgment project: A large scale test of different methods of combining expert predictions. In Proceedings of the 2012 AAAI Fall Symposium Series, Arlington, VA, USA, 2–4 November 2012; Available online: http://people.uvawise.edu/pww8y/Supplement/-ConceptsSup/Orgs/DecMking/MassDecmking/GoodJudgmentProj/MethodsCombineExpertPredictions.pdf (accessed on 31 August 2021).
- Bak-Coleman, J.B.; Alfano, M.; Barfuss, W.; Bergstrom, C.T.; Centeno, M.A.; Couzin, I.D.; Donges, J.F.; Galesic, M.; Gersick, A.S.; Jacquet, J.; et al. Stewardship of global collective behavior. Proc. Natl. Acad. Sci. USA 2021, 10, 118. [Google Scholar] [CrossRef]
- Pipergias Analytis, P.; Barkoczi, D.; Lorenz-Spreen, P.; Herzog, S. The Structure of Social Influence in Recommender Networks. In Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; pp. 2655–2661. [Google Scholar]
- Analytis, P.P.; Barkoczi, D.; Herzog, S.M. Social learning strategies for matters of taste. Nat. Hum. Behav. 2018, 2, 415–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforce-ment learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef]
- Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [Google Scholar] [CrossRef]
- Hassabis, D. Artificial Intelligence: Chess match of the century. Nature 2017, 544, 413–414. [Google Scholar] [CrossRef] [Green Version]
- Hsu, F.-H. Behind Deep Blue: Building the Computer that Defeated the World Chess Champion; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Brynjolfsson, E.; McAfee, A. The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies; W. W. Norton & Company: New York, NY, USA, 2014. [Google Scholar]
- Frank, M.R.; Sun, L.; Cebrian, M.; Youn, H.; Rahwan, I. Small cities face greater impact from automation. J. R. Soc. Interface 2018, 15, 20170946. [Google Scholar] [CrossRef]
- Frank, M.R.; Autor, D.; Bessen, J.E.; Brynjolfsson, E.; Cebrian, M.; Deming, D.J.; Feldman, M.; Groh, M.; Lobo, J.; Moro, E.; et al. Toward understanding the impact of artificial intelligence on labor. Proc. Natl. Acad. Sci. USA 2019, 116, 6531–6539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hancock, B.; Lazaroff-Puck, K.; Rutherford, S. Getting practical about the future of work. McKinsey Q. 2020, 2, 123–132. [Google Scholar]
- Licklider, J.C.R. Man-Computer Symbiosis. IRE Trans. Hum. Factors Electron. 1960, 14, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Abeliuk, A.; Benjamin, D.M.; Morstatter, F.; Galstyan, A. Quantifying machine influence over human forecasters. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Miyoshi, T.; Matsubara, S. Dynamically Forming a Group of Human Forecasters and Machine Forecaster for Forecasting Economic Indicators. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 461–467. [Google Scholar]
- Huang, W.; Nakamori, Y.; Wang, S.-Y. Forecasting stock market movement direction with support vector machine. Comput. Oper. Res. 2005, 32, 2513–2522. [Google Scholar] [CrossRef]
- Beger, A.; Ward, M.D. Assessing Amazon Turker and automated machine forecasts in the Hybrid Forecasting Competition. In Proceedings of the 7th Annual Asian Political Methodology Conference, Kyoto, Japan, 5–6 January 2019; Available online: https://www.cambridge.org/core/membership/services/aop-file-manager/file/5c17e2e44e1070411cb0e7e6/APMM-2019-Andreas-Beger.pdf (accessed on 31 August 2021).
- Zellner, M.; Abbas, A.E.; Budescu, D.V.; Galstyan, A. A survey of human judgement and quantitative forecasting methods. R. Soc. Open Sci. 2021, 8, 201187. [Google Scholar] [CrossRef] [PubMed]
- Chong, E.; Han, C.; Park, F.C. Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies. Expert Syst. Appl. 2017, 83, 187–205. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Abeliuk, A.; Morstatter, F.; Atanasov, P.; Galstyan, A. Anchor Attention for Hybrid Crowd Forecasts Aggregation. arXiv 2020, arXiv:2003.12447. [Google Scholar]
- Tversky, A.; Kahneman, D. Judgment under Uncertainty: Heuristics and Biases. Science 1974, 185, 1124–1131. [Google Scholar] [CrossRef]
- Gigerenzer, G. Why Heuristics Work? Perspect. Psychol. Sci. 2008, 3, 20–29. [Google Scholar] [CrossRef]
- Hertwig, R.; Gigerenzer, G. The “Conjunction Fallacy” Revisited: How Intelligent Inferences Look Like Reasoning Errors. J Behav. Decis. Mak. 1999, 12, 275–305. [Google Scholar] [CrossRef]
- Gigerenzer, G.; Hoffrage, U. How to Improve Bayesian Reasoning without Instruction: Frequency Formats. Psychol. Rev. 1995, 102, 684–704. [Google Scholar] [CrossRef]
- Pescetelli, N.; Yeung, N. The role of decision confidence in advice-taking and trust formation. J. Exp. Psychol. Gen. 2021, 150, 507–526. [Google Scholar] [CrossRef]
- Pescetelli, N.; Yeung, N. The effects of recursive communication dynamics on belief updating. Proc. R. Soc. B 2020, 287, 20200025. [Google Scholar] [CrossRef]
- Kahneman, D. Thinking Fast and Slow; Farrar, Straus & Giroux: New York, NY, USA, 2011. [Google Scholar]
- Tversky, A.; Kahneman, D. Loss Aversion in Riskless Choice: A Reference-Dependent Model. Q. J. Econ. 1991, 106, 1039–1061. [Google Scholar] [CrossRef]
- Cook, M.B.; Smallman, H.S. Human Factors of the Confirmation Bias in Intelligence Analysis: Decision Support from Graphical Evidence Landscapes. Hum. Factors 2008, 50, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Juvina, I.; LaRue, O.; Widmer, C.; Ganapathy, S.; Nadella, S.; Minnery, B.; Ramshaw, L.; Servan-Schreiber, E.; Balick, M.; Weischedel, R. Computer-Supported Collaborative Information Search for Geopolitical Forecasting. In Understanding and Improving Information Search: A Cognitive Approach; Fu, W.T., van Oostendorp, H., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 245–266. [Google Scholar]
- Shirado, H.; Christakis, N.A. Locally noisy autonomous agents improve global human coordination in network experiments. Nature 2017, 545, 370–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yates, C.A.; Erban, R.; Escudero, C.; Couzin, I.; Buhl, J.; Kevrekidis, I.G.; Maini, P.K.; Sumpter, D.J.T. Inherent noise can facilitate coherence in collective swarm motion. Proc. Natl. Acad. Sci. USA 2009, 106, 5464–5469. [Google Scholar] [CrossRef] [Green Version]
- Brinkmann, L.; Gezerli, D.; von Kleist, K.; Müller, T.F.; Rahwan, I.; Pescetelli, N. Hybrid social learning in human-algorithm cul-tural transmission. SocArXiv. [CrossRef]
- Jung, M.F.; Martelaro, N.; Hinds, P.J. Using Robots to Moderate Team Conflict. In Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, Portland, OR, USA, 2–5 March 2015; pp. 229–236. [Google Scholar]
- Guszcza, J. Smarter Together: Why Artificial Intelligence Needs Human-Centered Design; Deloitte: London, UK, 2018. [Google Scholar]
- Merriam, G. If A.I. Only Had a Heart: Why Artificial Intelligence Research Needs to Take Emotions More Seriously. J. Artif. Intell. Conscious. 2021, 2150012. [Google Scholar] [CrossRef]
- Dautenhahn, K. A Paradigm Shift in Artificial Intelligence: Why Social Intelligence Matters in the Design and Development of Robots with Human-Like Intelligence. Comput. Vis. 2007, 4850, 288–302. [Google Scholar]
- Wenskovitch, J.; North, C. Interactive Artificial Intelligence: Designing for the “Two Black Boxes” Problem. Computer 2020, 53, 29–39. [Google Scholar] [CrossRef]
- Pescetelli, N.; Cebrian, M.; Rahwan, I. BeeMe: Real-Time Internet Control of Situated Human Agents. Computer 2020, 53, 49–58. [Google Scholar] [CrossRef]
- Burton, J.; Hahn, U.; Almaatouq, A.; Amin Rahimian, M. Algorithmically Mediating Communication to Enhance Collective Decision-Making in Online Social Networks. In Proceedings of the ACM Collective Intelligence Conference 2021, Pittsburgh, PA, USA, 29–30 June 2021. [Google Scholar]
- Kaufmann, R.; Gupta, P.; Taylor, J. An Active Inference Model of Collective Intelligence. Entropy 2021, 23, 830. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.; Shrewsbury, B.; Bertrand, S.; Wu, T.; Duran, D.; Floyd, M.; Abeles, P.; Stephen, D.; Mertins, N.; Lesman, A.; et al. Team IHMC’s lessons learned from the DARPA ro-botics challenge trials. J. Field Robot. 2015, 32, 192–208. [Google Scholar] [CrossRef]
- Supers vs. Hybrid Systems-Good Judgment. Available online: https://goodjudgment.com/resources/the-superforecasters-track-record/supers-vs-hybrid-systems/ (accessed on 10 July 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pescetelli, N. A Brief Taxonomy of Hybrid Intelligence. Forecasting 2021, 3, 633-643. https://doi.org/10.3390/forecast3030039
Pescetelli N. A Brief Taxonomy of Hybrid Intelligence. Forecasting. 2021; 3(3):633-643. https://doi.org/10.3390/forecast3030039
Chicago/Turabian StylePescetelli, Niccolo. 2021. "A Brief Taxonomy of Hybrid Intelligence" Forecasting 3, no. 3: 633-643. https://doi.org/10.3390/forecast3030039
APA StylePescetelli, N. (2021). A Brief Taxonomy of Hybrid Intelligence. Forecasting, 3(3), 633-643. https://doi.org/10.3390/forecast3030039