Riding into Danger: Predictive Modeling for ATV-Related Injuries and Seasonal Patterns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Treatment
2.2. Neural Prophet Model
2.3. SARIMA Model
2.4. LSTM Model
2.5. Accuracy Assessment of the Models
3. Results and Discussion
3.1. Demographic Characteristics and Overall Trends in Hospitalization
3.2. Performance Assessment of the Models
3.3. Insights and Recommendations for Developing Effective Safety Guidelines and Prevention Programs
4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weichelt, B.; Gorucu, S.; Jennissen, C.; Denning, G.; Oesch, S. Assessing the emergent public health concern of all-terrain vehicle injuries in rural and agricultural environments: Initial review of available national datasets in the United States. JMIR Public Health Surveill. 2020, 6, e15477. [Google Scholar] [CrossRef] [PubMed]
- Khorsandi, F.; Ayers, P.D.; Fong, E.J. Evaluation of Crush Protection Devices for agricultural All-Terrain Vehicles. Biosyst. Eng. 2019, 185, 161–173. [Google Scholar] [CrossRef]
- Zhang, C. 2022 Report of Deaths and Injuries Involving Off-Highway Vehicles with More than Two Wheels; U.S. Consumer Product Safety Commission: Bethesda, MD, USA, 2023.
- Topping, J. 2018 Annual Report of ATV-Related Deaths and Injuries; U.S. Consumer Product Safety Commission: Bethesda, MD, USA, 2020; p. 29.
- CDC. Web-Based Injury Statistics Query and Reporting System (WISQARS) Cost of Injury. Available online: https://wisqars.cdc.gov/cost/?y=2020&o=HOSP&i=0&m=3020&g=00&s=0&u=AVG&t=COMBO&t=MED&t=LIFE&t=WORK&a=5Yr&g1=0&g2=85&a1=0&a2=199&r1=MECH&r2=INTENT&r3=NONE&r4=NONE&c1=&c2= (accessed on 14 May 2023).
- Phrampus, E.D.; Shultz, B.L.; Saladino, R.A. Injuries Associated with All-Terrain Vehicles: A New Epidemic. Clin. Pediatr. Emerg. Med. 2005, 6, 57–61. [Google Scholar] [CrossRef]
- Grzebieta, R.R.G.; McIntosh, A.S.; Mitchell, R.; Patton, D.; Simmons, K. Investigation and Analysis of Quad Bike and Side by Side Vehicle (SSV) Fatalities and Injuries; University of New South Wales: Sydney, Australia, 2015. [Google Scholar]
- Lagerstrom, E.; Magzamen, S.; Stallones, L.; Gilkey, D.; Rosecrance, J. Understanding risk factor patterns in ATV fatalities: A recursive partitioning approach. J. Saf. Res. 2016, 59, 23–31. [Google Scholar] [CrossRef]
- Kute, B.; Nyland, J.A.; Roberts, C.S.; Hartwick-Barnes, V. Recreational All-Terrain Vehicle Injuries Among Children: An 11-Year Review of a Central Kentucky Level I Pediatric Trauma Center Database. J. Pediatr. Orthop. 2007, 27, 5. [Google Scholar] [CrossRef]
- Long, B.; Tan, F.; Newman, M. Forecasting the Monkeypox Outbreak Using ARIMA, Prophet, NeuralProphet, and LSTM Models in the United States. Forecasting 2023, 5, 127–137. [Google Scholar] [CrossRef]
- Rahimi, I.; Chen, F.; Gandomi, A.H. A review on COVID-19 forecasting models. Neural Comput. Appl. 2021, 35, 23671–23681. [Google Scholar] [CrossRef] [PubMed]
- Karingula, S.R.; Ramanan, N.; Tahmasbi, R.; Amjadi, M.; Jung, D.; Si, R.; Thimmisetty, C.; Polania, L.F.; Sayer, M.; Taylor, J. Boosted Embeddings for Time-Series Forecasting. In Proceedings of the International Conference on Machine Learning, Optimization, and Data Science, Grasmere, UK, 4–8 October 2021; pp. 1–14. [Google Scholar]
- Feng, T.; Zheng, Z.; Xu, J.; Liu, M.; Li, M.; Jia, H.; Yu, X. The comparative analysis of SARIMA, Facebook Prophet, and LSTM for road traffic injury prediction in Northeast China. Front. Public Health 2022, 10, 946563. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, W.; Wushour, S. Traffic Accident Prediction Based on LSTM-GBRT Model. J. Control Sci. Eng. 2020, 2020, 4206919. [Google Scholar] [CrossRef]
- Zhu, W.; Wu, J.; Fu, T.; Wang, J.; Zhang, J.; Shangguan, Q. Dynamic prediction of traffic incident duration on urban expressways: A deep learning approach based on LSTM and MLP. J. Intell. Connect. Veh. 2021, 4, 80–91. [Google Scholar] [CrossRef]
- Deretić, N.; Stanimirović, D.; Awadh, M.A.; Vujanović, N.; Djukić, A. SARIMA modelling approach for forecasting of traffic accidents. Sustainability 2022, 14, 4403. [Google Scholar] [CrossRef]
- Erdebil, Y.; Frize, M. An Analysis Of Chirpp Data To Predict Severe ATV Injuries Using Artificial Neural Networks. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 1–4 September 2006; pp. 871–874. [Google Scholar]
- Miller, A.; Gallegly, J.D.; Orsak, G.; Huff, S.D.; Peters, J.A.; Murry, J.; Ndetan, H.; Singh, K.P. Potential predictors of hospital length of stay and hospital charges among patients with all-terrain vehicle injuries in rural Northeast Texas. J. Inj. Violence Res. 2020, 12, 55. [Google Scholar]
- CPSC. National Electronic Injury Surveillance System (NEISS). Available online: https://www.cpsc.gov/Research--Statistics/NEISS-Injury-Data (accessed on 20 January 2023).
- NEISS. National Electronic Injury Surveillance System: Coding Manual; U.S. Consumer Product Safety Commission, Division of Hazard and Injury Data Systems: Washington, DC, USA, 2019.
- CPSC. Standards for All Terrain Vehicles and Ban of Three-Wheeled All-Terrain Vehicles; Notice of Proposed Rulemaking. Fed. Regist. 2006, 71, 45904–45962. [Google Scholar]
- Triebe, O.; Hewamalage, H.; Pilyugina, P.; Laptev, N.; Bergmeir, C.; Rajagopal, R. Neuralprophet: Explainable forecasting at scale. arXiv 2021, arXiv:2111.15397. [Google Scholar]
- ChikkaKrishna, N.K.; Rachakonda, P.; Tallam, T. Short-Term Traffic Prediction Using Fb-PROPHET and Neural-PROPHET. In Proceedings of the 2022 IEEE Delhi Section Conference (DELCON), New Delhi, India, 11–13 February 2022; pp. 1–4. [Google Scholar]
- Rostami-Tabar, B.; Rendon-Sanchez, J.F. Forecasting COVID-19 daily cases using phone call data. Appl. Soft. Comput. 2021, 100, 106932. [Google Scholar] [CrossRef]
- He, K.; Ji, L.; Wu, C.W.D.; Tso, K.F.G. Using SARIMA–CNN–LSTM approach to forecast daily tourism demand. J. Hosp. Tour. Manag. 2021, 49, 25–33. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, W.; Wu, X.; Chen, P.C.; Liu, J. LSTM network: A deep learning approach for short-term traffic forecast. IET Intell. Transp. Syst. 2017, 11, 68–75. [Google Scholar] [CrossRef]
- Brownlee, J. Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras. Available online: https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/ (accessed on 22 November 2022).
- Weichelt, B.; Salzwedel, M.; Heiberger, S.; Lee, B.C. Establishing a publicly available national database of US news articles reporting agriculture-related injuries and fatalities. Am. J. Ind. Med. 2018, 61, 667–674. [Google Scholar] [CrossRef]
- Neves, H.; Brazile, W.; Gilkey, D.P. ATVs and Agriculture: A Review of the Literature. Acta Sci. Agric. 2018, 2, 178–194. [Google Scholar]
- Pollack-Nelson, C.; Vredenburgh, A.G.; Zackowitz, I.B.; Kalsher, M.J.; Miller, J.M. Adult Products That Kill and Injure Children. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2017, 6, 886–889. [Google Scholar] [CrossRef]
- Strohecker, K.A.; Gaffney, C.J.; Graham, J.; Irgit, K.; Smith, W.R.; Bowen, T.R. Pediatric all-terrain vehicle (ATV) injuries: An epidemic of cost and grief. Acta Orthop. Traumatol. Turc. 2017, 51, 416–419. [Google Scholar] [CrossRef] [PubMed]
- GAO. ALL-TERRAIN VEHICLES: How They Are Used, Crashes, and Sales of Adult-Sized Vehicles for Children’s Use; General Accounting Office (GAO): Washington, DC, USA, 2010.
- Edlund, B.; Lindroos, O.; Nordfjell, T. The effect of rollover protection systems and trailers on quad bike stability. Int. J. For. Eng. 2020, 31, 95–105. [Google Scholar] [CrossRef]
- Abdelrahman, H.; Khan, N.A.; El-Menyar, A.; Consunji, R.; Asim, M.; Alani, M.; Shunni, A.; Al-Aieb, A.; Al-Thani, H. All-terrain vehicle (ATV)-related injuries among different age groups: Insights from a 9-year observational study. Eur. J. Trauma Emerg. Surg. 2022, 48, 4971–4981. [Google Scholar] [CrossRef] [PubMed]
- Nolan, H.R.; Ashley, D.W.; Stokes, N.A.; Christie III, D.B. Increasing incidence of All-Terrain Vehicle trauma admissions in the pediatric and adult populations: An evaluation of injury types and severity. Int. J. Orthop. Trauma Nurs. 2018, 28, 33–36. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, A.S.; Patton, D.A.; Rechnitzer, G.; Grzebieta, R. Injury mechanisms in fatal Australian quad bike incidents. Traffic Inj. Prev. 2016, 17, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Hicks, D.; Grzebieta, R.; Mongiardini, M.; Rechnitzer, G.; Simmons, K.; Olivier, J. Investigation of when quad bikes rollover in the farming environment. Saf. Sci. 2018, 106, 28–34. [Google Scholar] [CrossRef]
- Helmkamp, J.C.; Marsh, S.M.; Aitken, M.E. Occupational All-Terrain Vehicle Deaths among Workers 18 Years and Older in the United States, 1992–2007. J. Agric. Saf. Health 2011, 17, 147–155. [Google Scholar] [CrossRef] [PubMed]
- OSHA: Occupational Safety and Health Administration Occupational Health and Safety Act of 1970. 1970. Available online: https://www.osha.gov/laws-regs/oshact/completeoshact (accessed on 17 May 2023).
- Khorsandi, F.; De Moura Araujo, G.; Fathallah, F. A systematic review of youth and all-terrain vehicles safety in agriculture. J. Agromed. 2022, 28, 254–276. [Google Scholar] [CrossRef] [PubMed]
- Gillory, L.; Cairo, S.; Megison, S.; Vinson, L.; Chung, D.H.; Ryan, M.L. Effect of quarantine and reopening measures on pediatric trauma admissions during the 2019 SARS-CoV-2 virus pandemic. J. Am. Coll. Surg. 2022, 234, 685–690. [Google Scholar] [CrossRef]
- Zhang, X.; Pang, Y.; Cui, M.; Stallones, L.; Xiang, H. Forecasting mortality of road traffic injuries in China using seasonal autoregressive integrated moving average model. Ann. Epidemiol. 2015, 25, 101–106. [Google Scholar] [CrossRef]
- Bahadorimonfared, A.; Soori, H.; Mehrabi, Y.; Delpisheh, A.; Esmaili, A.; Salehi, M.; Bakhtiyari, M. Trends of fatal road traffic injuries in Iran (2004–2011). PLoS ONE 2013, 8, e65198. [Google Scholar] [CrossRef]
- Hao, W.; Sun, X.; Wang, C.; Chen, H.; Huang, L. A hybrid EMD-LSTM model for non-stationary wave prediction in offshore China. Ocean Eng. 2022, 246, 110566. [Google Scholar] [CrossRef]
- Khorsandi, F.; Ayers, P.; Denning, G.; Jennissen, C.; Jepsen, D.; Myers, M.; Oesch, S.; Pate, M.; White, D.J. Hazard Control Methods to Improve Agricultural All-Terrain Vehicle Safety. J. Agromed. 2020, 26, 420–435. [Google Scholar] [CrossRef] [PubMed]
- Araujo, G.D.M.; Khorsandi, F.; Fathallah, F. Forces required to operate controls on agricultural all-terrain vehicles: Implications for youth. Ergonomics 2022, 66, 1280–1294. [Google Scholar] [CrossRef]
- Araujo, G.D.M.; Khorsandi, F.; Fathallah, F. Ability of youth operators to reach agricultural all-terrain vehicles controls. J. Saf. Res. 2022, 84, 353–363. [Google Scholar] [CrossRef]
- Bernard, A.C.; Mullineaux, D.R.; Auxier, J.T.; Forman, J.L.; Shapiro, R.; Pienkowski, D. Pediatric anthropometrics are inconsistent with current guidelines for assessing rider fit on all-terrain vehicles. Accid. Anal. Prev. 2010, 42, 1220–1225. [Google Scholar] [CrossRef] [PubMed]
- Day, L.; Rechnitzer, G.; Lough, J. An Australian experience with tractor rollover protective structure rebate programs: Process, impact and outcome evaluation. Accid. Anal. Prev. 2004, 36, 861–867. [Google Scholar] [CrossRef]
- Sorensen, J.A.; Milkovich, P.J.; Dorfman, L.; Mejia, P.; Perez-Sanz, S.B. ROPS commentary—Addressing our fatal blind spot: Applying evidence-based solutions to reduce the most frequent cause of death on US farms. Am. J. Ind. Med. 2023, 66, 554–557. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Number of layers | 3 |
Dropout | 0.1 |
Activation function | Linear |
Optimizer | Adam |
Batch size | 6 |
Maximum epochs | 400 |
Variable | Gender | |||||
---|---|---|---|---|---|---|
Combined | Male | Female | ||||
Number | Percentage | Number | Percentage | Number | Percentage | |
Total | 5321 | 100.00% | 3945 | 74.14% | 1377 | 25.88% |
Age | ||||||
<12 | 771 | 14.49% | 623 | 15.79% | 148 | 10.75% |
12–15 | 862 | 16.20% | 600 | 15.21% | 262 | 19.03% |
16–18 | 425 | 7.99% | 282 | 7.15% | 143 | 10.38% |
18–22 | 531 | 9.98% | 384 | 9.73% | 147 | 10.68% |
23–29 | 651 | 12.23% | 504 | 12.78% | 147 | 10.68% |
30–39 | 777 | 14.60% | 602 | 15.26% | 175 | 12.71% |
40–49 | 604 | 11.35% | 469 | 11.89% | 135 | 9.80% |
50–59 | 450 | 8.46% | 347 | 8.80% | 103 | 7.48% |
60> | 354 | 6.65% | 310 | 7.86% | 44 | 3.20% |
Location | ||||||
Not recorded | 2642 | 49.65% | 1929 | 48.90% | 713 | 51.78% |
Place of recreation or sports | 939 | 17.65% | 712 | 18.05% | 227 | 16.49% |
Home | 600 | 11.28% | 428 | 10.85% | 172 | 12.49% |
Other public property | 586 | 11.01% | 433 | 10.98% | 153 | 11.11% |
Street or highway | 515 | 9.68% | 413 | 10.47% | 102 | 7.41% |
Farm/ranch | 38 | 0.71% | 30 | 0.76% | 8 | 0.58% |
School/daycare | 1 | 0.02% | 0 | 0.00% | 1 | 0.07% |
Models | Accuracy Metrics | ||
---|---|---|---|
RMSE | MAE | MAPE | |
LSTM | 3.71 | 3.31 | 7.06% |
SARIMA | 9.21 | 6.90 | 11.59% |
Neural Prophet | 8.96 | 6.83 | 11.74% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira Lima dos Santos, F.; Khorsandi, F. Riding into Danger: Predictive Modeling for ATV-Related Injuries and Seasonal Patterns. Forecasting 2024, 6, 266-278. https://doi.org/10.3390/forecast6020015
Ferreira Lima dos Santos F, Khorsandi F. Riding into Danger: Predictive Modeling for ATV-Related Injuries and Seasonal Patterns. Forecasting. 2024; 6(2):266-278. https://doi.org/10.3390/forecast6020015
Chicago/Turabian StyleFerreira Lima dos Santos, Fernando, and Farzaneh Khorsandi. 2024. "Riding into Danger: Predictive Modeling for ATV-Related Injuries and Seasonal Patterns" Forecasting 6, no. 2: 266-278. https://doi.org/10.3390/forecast6020015
APA StyleFerreira Lima dos Santos, F., & Khorsandi, F. (2024). Riding into Danger: Predictive Modeling for ATV-Related Injuries and Seasonal Patterns. Forecasting, 6(2), 266-278. https://doi.org/10.3390/forecast6020015