Forecasting Convective Storms Trajectory and Intensity by Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Neural Predictive Model
- number of hidden layers = {1, 2};
- number of nodes = {8, 16, 32};
- optimization algorithm = {adam, AdaGrad, RMSProp};
- learning rate = {0.0001, 0.001, 0.01, 0.1};
- activation function = {ReLU, sigmoid};
- batch size = {32, 64, 128}.
3. Results
3.1. Model Performance
3.2. Sample Storm Trajectories
3.2.1. Case 1
3.2.2. Case 2
3.2.3. Case 3
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Byers, H.R.; Braham, R.R. The Thunderstorm: Report of the Thunderstorm Project; US Government Printing Office: Washington, DC, USA, 1949.
- Wallemacq, P.; Guha-Sapir, D.; McClean, D.; CRED; UNISDR. The Human Cost of Natural Disasters—A Global Perspective; Centre for Research on the Epidemiology of Disaster (CRED): Brussels, Belgium, 2015. [Google Scholar]
- Levizzani, V.; Cattani, E. Satellite Remote Sensing of Precipitation and the Terrestrial Water Cycle in a Changing Climate. Remote Sens. 2019, 11, 2301. [Google Scholar] [CrossRef]
- Bontempi, G.; Ben Taieb, S.; Borgne, Y.A.L. Machine learning strategies for time series forecasting. In Proceedings of the European Business Intelligence Summer School, Brussels, Belgium, 15–21 July 2012; pp. 62–77. [Google Scholar] [CrossRef]
- Sangiorgio, M.; Dercole, F. Robustness of LSTM neural networks for multi-step forecasting of chaotic time series. Chaos Solitons Fractals 2020, 139, 110045. [Google Scholar] [CrossRef]
- Livieris, I.E.; Stavroyiannis, S.; Pintelas, E.; Pintelas, P. A novel validation framework to enhance deep learning models in time-series forecasting. Neural Comput. Appl. 2020, 32, 17149–17167. [Google Scholar] [CrossRef]
- Mahmoud, A.; Mohammed, A. A survey on deep learning for time-series forecasting. In Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges; Springer: Cham, Switzerland, 2021; pp. 365–392. [Google Scholar] [CrossRef]
- Lara-Benítez, P.; Carranza-García, M.; Riquelme, J.C. An experimental review on deep learning architectures for time series forecasting. Int. J. Neural Syst. 2021, 31, 2130001. [Google Scholar] [CrossRef] [PubMed]
- Sangiorgio, M.; Dercole, F.; Guariso, G. Forecasting of noisy chaotic systems with deep neural networks. Chaos Solitons Fractals 2021, 153, 111570. [Google Scholar] [CrossRef]
- Chow, T.; Cho, S. Development of a recurrent Sigma-Pi neural network rainfall forecasting system in Hong Kong. Neural Comput. Appl. 1997, 5, 66–75. [Google Scholar] [CrossRef]
- Maqsood, I.; Khan, M.R.; Abraham, A. An ensemble of neural networks for weather forecasting. Neural Comput. Appl. 2004, 13, 112–122. [Google Scholar] [CrossRef]
- Corani, G.; Guariso, G. An application of pruning in the design of neural networks for real time flood forecasting. Neural Comput. Appl. 2005, 14, 66–77. [Google Scholar] [CrossRef]
- Salman, A.G.; Kanigoro, B.; Heryadi, Y. Weather forecasting using deep learning techniques. In Proceedings of the 2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Hong Kong, China, 19–21 August 2015; pp. 281–285. [Google Scholar] [CrossRef]
- Holmstrom, M.; Liu, D.; Vo, C. Machine learning applied to weather forecasting. Meteorol. Appl. 2016, 10, 1–5. [Google Scholar]
- Rasel, R.I.; Sultana, N.; Meesad, P. An application of data mining and machine learning for weather forecasting. In Proceedings of the International Conference on Computing and Information Technology, Druskininkai, Lithuania, 12–14 October 2017; pp. 169–178. [Google Scholar] [CrossRef]
- Scher, S.; Messori, G. Predicting weather forecast uncertainty with machine learning. Q. J. R. Meteorol. Soc. 2018, 144, 2830–2841. [Google Scholar] [CrossRef]
- Singh, N.; Chaturvedi, S.; Akhter, S. Weather forecasting using machine learning algorithm. In Proceedings of the 2019 International Conference on Signal Processing and Communication (ICSC), Noida, India, 7–9 March 2019; pp. 171–174. [Google Scholar] [CrossRef]
- Sangiorgio, M.; Barindelli, S.; Guglieri, V.; Venuti, G.; Guariso, G. Reconstructing environmental variables with missing field data via end-to-end machine learning. In Proceedings of the International Conference on Engineering Applications of Neural Networks, Halkidiki, Greece, 5–7 June 2020; pp. 167–178. [Google Scholar] [CrossRef]
- Bhimavarapu, U. IRF-LSTM: Enhanced regularization function in LSTM to predict the rainfall. Neural Comput. Appl. 2022, 34, 20165–20177. [Google Scholar] [CrossRef]
- Barrera-Animas, A.Y.; Oyedele, L.O.; Bilal, M.; Akinosho, T.D.; Delgado, J.M.D.; Akanbi, L.A. Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting. Mach. Learn. Appl. 2022, 7, 100204. [Google Scholar] [CrossRef]
- Luo, C.; Xu, G.; Li, X.; Ye, Y. The Reconstitution Predictive Network for Precipitation Nowcasting. Neurocomputing 2022, 507, 1–15. [Google Scholar] [CrossRef]
- Marrocu, M.; Massidda, L. Coupling a Neural Network with a Spatial Downscaling Procedure to Improve Probabilistic Nowcast for Urban Rain Radars. Forecasting 2022, 4, 845–865. [Google Scholar] [CrossRef]
- Yano, J.I.; Ziemiański, M.Z.; Cullen, M.; Termonia, P.; Onvlee, J.; Bengtsson, L.; Carrassi, A.; Davy, R.; Deluca, A.; Gray, S.L.; et al. Scientific challenges of convective-scale numerical weather prediction. Bull. Am. Meteorol. Soc. 2018, 99, 699–710. [Google Scholar] [CrossRef]
- Sapucci, L.F.; Machado, L.A.T.; de Souza, E.M.; Campos, T.B. Global Positioning System precipitable water vapour (GPS-PWV) jumps before intense rain events: A potential application to nowcasting. Meteorol. Appl. 2019, 26, 49–63. [Google Scholar] [CrossRef]
- Hudnurkar, S.; Rayavarapu, N. Binary classification of rainfall time-series using machine learning algorithms. Int. J. Electr. Comput. Eng. 2022, 12, 1945–1954. [Google Scholar] [CrossRef]
- Fang, W.; Xue, Q.; Shen, L.; Sheng, V.S. Survey on the Application of Deep Learning in Extreme Weather Prediction. Atmosphere 2021, 12, 661. [Google Scholar] [CrossRef]
- Hussein, E.A.; Ghaziasgar, M.; Thron, C.; Vaccari, M.; Jafta, Y. Rainfall Prediction Using Machine Learning Models: Literature Survey. Artif. Intell. Data Sci. Theory Pract. 2022, 1006, 75–108. [Google Scholar] [CrossRef] [PubMed]
- Benevides, P.; Catalão, J.; Miranda, P.M.A. On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall. Nat. Hazards Earth Syst. Sci. 2015, 15, 2605–2616. [Google Scholar] [CrossRef]
- Benevides, P.; Catalão, J.; Nico, G.; Miranda, P.M. Evaluation of rainfall forecasts combining GNSS precipitable water vapor with ground and remote sensing meteorological variables in a neural network approach. In Proceedings of the Remote Sensing of Clouds and the Atmosphere XXIII, SPIE, Berlin, Germany, 12–13 September 2018; Volume 10786, pp. 29–38. [Google Scholar] [CrossRef]
- Benevides, P.; Catalão, J.; Nico, G. Neural Network Approach to Forecast Hourly Intense Rainfall Using GNSS Precipitable Water Vapor and Meteorological Sensors. Remote Sens. 2019, 11, 966. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Zhang, K.; Wu, S.; Xu, Y.; Liu, Y.; Qiu, C.; Zhang, J.; Fu, E.; Li, L. A neural network-based approach for the detection of heavy precipitation using GNSS observations and surface meteorological data. J. Atmos.-Sol.-Terr. Phys. 2021, 225, 105763. [Google Scholar] [CrossRef]
- Sangiorgio, M.; Barindelli, S.; Biondi, R.; Solazzo, E.; Realini, E.; Venuti, G.; Guariso, G. Improved extreme rainfall events forecasting using neural networks and water vapor measures. In Proceedings of the 6th International Conference on Time Series and Forecasting, Granada, Spain, 25–27 September 2019; pp. 820–826. [Google Scholar]
- Han, L.; Fu, S.; Zhao, L.; Zheng, Y.; Wang, H.; Lin, Y. 3D convective storm identification, tracking, and forecasting—An enhanced TITAN algorithm. J. Atmos. Ocean. Technol. 2009, 26, 719–732. [Google Scholar] [CrossRef]
- Alemany, S.; Beltran, J.; Perez, A.; Ganzfried, S. Predicting Hurricane Trajectories Using a Recurrent Neural Network. Proc. Aaai Conf. Artif. Intell. 2019, 33, 468–475. [Google Scholar] [CrossRef]
- Oueslati, W.; Tahri, S.; Limam, H.; Akaichi, J. A New Approach for Predicting the Future Position of a Moving Object: Hurricanes’ Case Study. Appl. Artif. Intell. 2021, 35, 2037–2066. [Google Scholar] [CrossRef]
- Sangiorgio, M.; Barindelli, S.; Guglieri, V.; Biondi, R.; Solazzo, E.; Realini, E.; Venuti, G.; Guariso, G. A comparative study on machine learning techniques for intense convective rainfall events forecasting. In Proceedings of the International Conference on Time Series and Forecasting, Granada, Spain, 25–27 September 2019; pp. 305–317. [Google Scholar] [CrossRef]
- Cornejo, A.; Landeros-Ayala, S.; Matias, J.M.; Ortiz-Gomez, F.; Martinez, R.; Salas-Natera, M. Method of rain attenuation prediction based on long–short term memory network. Neural Process. Lett. 2022, 54, 2959–2995. [Google Scholar] [CrossRef]
- Huang, X.; Luo, C.; Ye, Y.; Li, X.; Zhang, B. Location-Refining neural network: A new deep learning-based framework for Heavy Rainfall Forecast. Comput. Geosci. 2022, 166, 105152. [Google Scholar] [CrossRef]
- Bouget, V.; Béréziat, D.; Brajard, J.; Charantonis, A.; Filoche, A. Fusion of Rain Radar Images and Wind Forecasts in a Deep Learning Model Applied to Rain Nowcasting. Remote Sens. 2021, 13, 246. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, X.; Guan, J. A Novel Multi-Input Multi-Output Recurrent Neural Network Based on Multimodal Fusion and Spatiotemporal Prediction for 0–4 Hour Precipitation Nowcasting. Atmosphere 2021, 12, 1596. [Google Scholar] [CrossRef]
- Peng, X.; Li, Q.; Jing, J. CNGAT: A Graph Neural Network Model for Radar Quantitative Precipitation Estimation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Hering, A.; Morel, C.; Galli, G.; Sénési, S.; Ambrosetti, P.; Boscacci, M. Nowcasting thunderstorms in the Alpine region using a radar based adaptive thresholding scheme. In Proceedings of the European Conference on Radar in Meteorology and Hydrology (ERAD), Visby, Sweden, 6–10 September 2004; pp. 206–211. [Google Scholar]
- Hering, A.M.; Germann, U.; Boscacci, M.; Sénési, S. Operational nowcasting of thunderstorms in the Alps during MAP D-PHASE. In Proceedings of the Fifth European Conference on Radar in Meteorology and Hydrology, Helsinki, Finland, 30 June–4 July 2008. [Google Scholar]
- Davini, P.; Bechini, R.; Cremonini, R.; Cassardo, C. Radar-Based Analysis of Convective Storms over Northwestern Italy. Atmosphere 2011, 3, 33. [Google Scholar] [CrossRef]
- Sangiorgio, M.; Barindelli, S. Spatio-temporal analysis of intense convective storms tracks in a densely urbanized Italian basin. ISPRS Int. J. Geo-Inf. 2020, 9, 183. [Google Scholar] [CrossRef]
- Lima, A.R.; Cannon, A.J.; Hsieh, W.W. Nonlinear regression in environmental sciences using extreme learning machines: A comparative evaluation. Environ. Model. Softw. 2015, 73, 175–188. [Google Scholar] [CrossRef]
- Abdulkarim, S.A.; Engelbrecht, A.P. Time series forecasting using neural networks: Are recurrent connections necessary? Neural Process. Lett. 2019, 50, 2763–2795. [Google Scholar] [CrossRef]
- Guariso, G.; Nunnari, G.; Sangiorgio, M. Multi-step solar irradiance forecasting and domain adaptation of deep neural networks. Energies 2020, 13, 3987. [Google Scholar] [CrossRef]
- Cano-Rocha, H.; Gonzalez-Garcia, R. Stochastic one-step training for feedforward artificial neural networks. Neural Process. Lett. 2020, 52, 2021–2041. [Google Scholar] [CrossRef]
- Sangiorgio, M.; Dercole, F.; Guariso, G. Neural Approaches for Time Series Forecasting. In Deep Learning in Multi-Step Prediction of Chaotic Dynamics; Springer International Publishing: Cham, Switzerland, 2021; pp. 43–57. [Google Scholar] [CrossRef]
- Watson, P.L.; Koukoula, M.; Anagnostou, E. Influence of the characteristics of weather information in a thunderstorm-related power outage prediction system. Forecasting 2021, 3, 541–560. [Google Scholar] [CrossRef]
- Kober, K.; Tafferner, A. Tracking and nowcasting of convective cells using remote sensing data from radar and satellite. Meteorol. Z. 2009, 1, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Marrocu, M.; Massidda, L. Performance comparison between deep learning and optical flow-based techniques for nowcast precipitation from radar images. Forecasting 2020, 2, 194–210. [Google Scholar] [CrossRef]
- Ghimire, G.R.; Sharma, S.; Panthi, J.; Talchabhadel, R.; Parajuli, B.; Dahal, P.; Baniya, R. Benchmarking real-time streamflow forecast skill in the Himalayan region. Forecasting 2020, 2, 230–247. [Google Scholar] [CrossRef]
- Gürses-Tran, G.; Monti, A. Advances in time series forecasting development for power systems’ operation with MLOps. Forecasting 2022, 4, 501–524. [Google Scholar] [CrossRef]
- Shouman, M.A. New Weather Forecasting Applications. Alex. J. Manag. Res. Inf. Syst. 2023, 1, 45–70. [Google Scholar] [CrossRef]
- Pirone, D.; Cimorelli, L.; Del Giudice, G.; Pianese, D. Short-term rainfall forecasting using cumulative precipitation fields from station data: A probabilistic machine learning approach. J. Hydrol. 2023, 617, 128949. [Google Scholar] [CrossRef]
- Saadi, M.; Furusho-Percot, C.; Belleflamme, A.; Trömel, S.; Kollet, S.; Reinoso-Rondinel, R. Comparison of three radar-based precipitation nowcasts for the extreme July 2021 flooding event in Germany. J. Hydrometeorol. 2023, 24, 1241–1261. [Google Scholar] [CrossRef]
- Massidda, L.; Bettio, F.; Marrocu, M. Probabilistic day-ahead prediction of PV generation. A comparative analysis of forecasting methodologies and of the factors influencing accuracy. Sol. Energy 2024, 271, 112422. [Google Scholar] [CrossRef]
- Melgar-García, L.; Gutiérrez-Avilés, D.; Rubio-Escudero, C.; Troncoso, A. A novel distributed forecasting method based on information fusion and incremental learning for streaming time series. Inf. Fusion 2023, 95, 163–173. [Google Scholar] [CrossRef]
- Aichinger-Rosenberger, M.; Aregger, M.; Kopp, J.; Soja, B. Detecting Signatures of Convective Storm Events in GNSS-SNR: Two Case Studies From Summer 2021 in Switzerland. Geophys. Res. Lett. 2023, 50, e2023GL104916. [Google Scholar] [CrossRef]
- Aragón Paz, J.M.; Mendoza, L.P.O.; Fernández, L.I. Near-real-time GNSS tropospheric IWV monitoring system for South America. GPS Solut. 2023, 27, 93. [Google Scholar] [CrossRef]
- Baldysz, Z.; Nykiel, G.; Baranowski, D.B.; Latos, B.; Figurski, M. Diurnal variability of atmospheric water vapour, precipitation and cloud top temperature across the global tropics derived from satellite observations and GNSS technique. Clim. Dyn. 2023, 62, 1965–1982. [Google Scholar] [CrossRef]
- Dewitte, S.; Cornelis, J.P.; Müller, R.; Munteanu, A. Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sens. 2021, 13, 3209. [Google Scholar] [CrossRef]
- Scher, S.; Messori, G. Ensemble methods for neural network-based weather forecasts. J. Adv. Model. Earth Syst. 2021, 13, e2020MS00233. [Google Scholar] [CrossRef]
Statistic | Latitude (°) | Longitude (°) | Av. Reflect. (dBZ) | Max Reflect. (dbZ) | Area (km2) |
---|---|---|---|---|---|
mean | 45.728 | 9.118 | 42.356 | 49.770 | 106.780 |
std | 0.248 | 0.388 | 3.230 | 4.986 | 118.101 |
CV | 0.005 | 0.043 | 0.076 | 0.100 | 1.106 |
Time | Latitude | Longitude | ||||
---|---|---|---|---|---|---|
FFNN | Persistent | % Difference | FFNN | Persistent | % Difference | |
0.022 | 0.018 | −18.18% | 0.042 | 0.026 | −38.10% | |
0.027 | 0.032 | 18.52% | 0.045 | 0.045 | 0.88% | |
0.035 | 0.045 | 28.57% | 0.050 | 0.063 | 26.00% | |
0.043 | 0.058 | 34.88% | 0.055 | 0.081 | 47.27% | |
0.052 | 0.071 | 36.54% | 0.062 | 0.100 | 61.29% | |
0.059 | 0.085 | 44.07% | 0.070 | 0.119 | 70.00% | |
0.066 | 0.098 | 48.48% | 0.079 | 0.138 | 74.68% | |
0.073 | 0.111 | 52.05% | 0.088 | 0.156 | 77.27% | |
0.080 | 0.124 | 55.00% | 0.097 | 0.174 | 79.38% | |
0.086 | 0.138 | 60.47% | 0.107 | 0.193 | 80.37% | |
0.092 | 0.152 | 65.22% | 0.117 | 0.212 | 81.20% | |
0.099 | 0.166 | 67.68% | 0.127 | 0.231 | 81.89% |
Time | Average Radar Reflectivity | Maximum Radar Reflectivity | ||||
---|---|---|---|---|---|---|
FFNN | Persistent | % Difference | FFNN | Persistent | % Difference | |
t + 5 | 1.469 | 1.514 | 3.06% | 1.791 | 1.846 | 3.07% |
t + 10 | 1.730 | 1.899 | 9.77% | 2.244 | 2.462 | 9.71% |
t + 15 | 1.908 | 2.162 | 13.31% | 2.518 | 2.802 | 11.28% |
t + 20 | 2.017 | 2.314 | 14.72% | 2.722 | 3.030 | 11.32% |
t + 25 | 2.112 | 2.452 | 16.10% | 2.888 | 3.211 | 11.18% |
t + 30 | 2.183 | 2.564 | 17.45% | 3.012 | 3.373 | 11.99% |
t + 35 | 2.261 | 2.675 | 18.31% | 3.131 | 3.533 | 12.84% |
t + 40 | 2.335 | 2.787 | 19.36% | 3.246 | 3.675 | 13.22% |
t + 45 | 2.400 | 2.931 | 22.13% | 3.379 | 3.836 | 13.52% |
t + 50 | 2.479 | 3.037 | 22.51% | 3.541 | 4.086 | 15.39% |
t + 55 | 2.554 | 3.182 | 24.59% | 3.723 | 4.363 | 17.19% |
t + 60 | 2.690 | 3.369 | 25.24% | 3.986 | 4.719 | 18.39% |
Time | FFNN | Persistent | % Difference |
---|---|---|---|
t + 5 | 54.039 | 55.945 | 3.53% |
t + 10 | 63.362 | 70.394 | 11.10% |
t + 15 | 69.944 | 81.002 | 15.81% |
t + 20 | 74.521 | 88.594 | 18.88% |
t + 25 | 77.937 | 93.816 | 20.37% |
t + 30 | 80.843 | 98.124 | 21.38% |
t + 35 | 82.855 | 100.938 | 21.82% |
t + 40 | 84.639 | 102.787 | 21.44% |
t + 45 | 85.416 | 106.172 | 24.30% |
t + 50 | 86.791 | 107.582 | 23.96% |
t + 55 | 87.280 | 108.484 | 24.29% |
t + 60 | 88.297 | 110.395 | 25.03% |
Time | Latitude (°) | Longitude (°) | ||
---|---|---|---|---|
70 min | 40 min | 70 min | 40 min | |
t + 5 | 0.986 | 0.981 | 0.984 | 0.984 |
t + 10 | 0.980 | 0.975 | 0.982 | 0.977 |
t + 15 | 0.971 | 0.962 | 0.979 | 0.976 |
t + 20 | 0.960 | 0.949 | 0.976 | 0.968 |
t + 25 | 0.946 | 0.943 | 0.972 | 0.956 |
t + 30 | 0.932 | 0.936 | 0.967 | 0.948 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borghi, N.; Guariso, G.; Sangiorgio, M. Forecasting Convective Storms Trajectory and Intensity by Neural Networks. Forecasting 2024, 6, 326-342. https://doi.org/10.3390/forecast6020018
Borghi N, Guariso G, Sangiorgio M. Forecasting Convective Storms Trajectory and Intensity by Neural Networks. Forecasting. 2024; 6(2):326-342. https://doi.org/10.3390/forecast6020018
Chicago/Turabian StyleBorghi, Niccolò, Giorgio Guariso, and Matteo Sangiorgio. 2024. "Forecasting Convective Storms Trajectory and Intensity by Neural Networks" Forecasting 6, no. 2: 326-342. https://doi.org/10.3390/forecast6020018
APA StyleBorghi, N., Guariso, G., & Sangiorgio, M. (2024). Forecasting Convective Storms Trajectory and Intensity by Neural Networks. Forecasting, 6(2), 326-342. https://doi.org/10.3390/forecast6020018