Forecasting Thailand’s Transportation CO2 Emissions: A Comparison among Artificial Intelligent Models
Abstract
:1. Introduction
Authors | Method | Region | Input Variable | Output Variable | Performance Evaluation |
---|---|---|---|---|---|
Salangam [19] | Regression, ANN * | Thai | GDP, population, energy consumption, number of registered vehicles | CO2 | MAD, R-squared |
Ağbulut [8] | DL, SVM *, ANN | Turkey | GDP, population, vehicle-km | CO2 | R-squared, RMSE, MAPE, MBE, MABE |
Ning, Pei, and Li [11] | ARIMA | China | Previous CO2 data | CO2 | R-squared, AIC, SC |
Fatima, Saad, Zia, Hussain, Fraz, Mehwish, and Khan [16] | SES, ARIMA | Japan, Iran, Bangladesh, China, Pakistan, India, Sri Lanka, Singapore, Nepal | Previous CO2 data | CO2 | FMAE |
Xu, Schwarz, and Yang [12] | NARX | China | Industrialization rate, urbanization rate, GDP, proportions of industry and service sectors, proportions of tertiary sector, population, energy consumption | CO2 | MAE |
Ratanavaraha and Jomnonkwao [17] | log-linear regression, path analysis, ARIMA *, curve estimation | Thailand | GDP, population, number of small-sized registered vehicles, number of medium-sized registered vehicles, number of large-sized registered vehicles | CO2 | R-squared, MSE, MAPE |
Sahraei, Duman, Çodur, and Eyduran [9] | MARS | Turkey | GDP, oil price, population, ton-km, vehicle-km, passenger-km | Transport energy demand | GR-squared, R-squared, adjust R-squared, RMSE, AIC |
Tawiah, Daniyal, and Qureshi [10] | ARIMA, ETS, Naïve Approach, MLP, NAR * | Pakistan | Previous CO2 data | CO2 | RMSE, MAE |
Sutthichaimethee and Ariyasajjakorn [18] | ARIMAX | Thai | Population, GDP | CO2 | R-squared |
Liu, Fu, Bielefield, and Liu [13] | MLR, SVR, GRU ANN * | China | GDP, population, population, import trade volume, export trade volume | CO2 | MAPE, RMSE |
Thabani and Bonga [15] | ARIMA | India | Previous CO2 data | CO2 | AIC, MAE, RMSE, MAPE |
Sun and Liu [14] | LSSVM *, GM, ANN, Logistic Model | China | Factors related to major industries and household consumption such as GDP, passenger traffic, urban population, and total retail sales of consumer products | CO2 | MAPE, RMSE, MaxAPE, MdAPE |
Ghalandari et al. [26] | GMDH, ANN * | UK, Germany, Italy, France | GDP, oil consumption, coal, natural gas, nuclear energy, renewable energy consumption | CO2 | R-squared, MSE |
Faruque et al. [27] | LSTM, CNN, CNN-LSTM, DNN * | Bangladesh | GDP, electrical energy consumption | CO2 | MAPE, RMSE, MAE, |
Shabri [28] | GM, ANN, GMDH, Lasso-GMDH * | Malaysia | Population, GDP, energy consumption, number of registered motor vehicles, amount invested | CO2 | MAPE |
Rahman and Hasan [29] | ARIMA | Bangladesh | Previous CO2 data | CO2 | RMSE, MAE, MPE, MAPE, MASE, AIC, BIC |
Kour [30] | ARIMA | South Africa | Previous CO2 data | CO2 | RMSE |
Kamoljitprapa and Sookkhee [31] | ARIMA | Thailand | Previous CO2 data | CO2 | R-squared, adjusted R-squared, AIC |
Zhu et al. [32] | SVR | China | Population, GDP, urbanization rate, energy consumption structure, energy intensity, industrial structure | CO2 | MSE |
Li et al. [33] | GM, DGM, RDGM ARIMA * | China | Previous CO2 data, GDP | CO2 | MAPE |
Yang et al. [34] | SVR | China | GDP, coal, coke, gasoline, diesel oil, crude oil, kerosene, fuel oil, and natural gas consumption | CO2 | MAPE |
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
2.2.1. Artificial Neural Network
2.2.2. Support Vector Regression
2.2.3. Bayesian Optimization
2.2.4. Autoregressive Integrated Moving Average with Exogenous Variables
2.2.5. Scenario Analysis
2.3. Evaluation Metrics and Statistical Tests
3. Results
3.1. Data Descriptive
3.2. ANN Results
3.3. SVR Results
3.4. ARIMAX Results
3.5. HLN Test Results
4. Discussion
4.1. Model Performance
4.2. Forecasting and Scenarios
- The Benchmark Scenario: This scenario assumes the continuation of current vehicle usage patterns and reliance on traditional energy sources.
- The Policy Scenario: This scenario incorporates the effects of the “30@30” policy, hypothesizing that 30% of vehicle-kilometers will shift to electric vehicles by 2030. The independent variables VK—passenger, VK—freight, and VK—motorcycle are adjusted to reflect this shift, while GDP and population remain the same as they are in the benchmark scenario.
5. Conclusions
6. Limitations and Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EPA. Overview of Greenhouse Gases. Available online: https://www.epa.gov/ghgemissions/overview-greenhouse-gases (accessed on 21 December 2023).
- NOAA. Increase in Atmospheric Methane Set Another Record during 2021. Available online: https://www.noaa.gov/news-release/increase-in-atmospheric-methane-set-another-record-during-2021 (accessed on 21 December 2023).
- Bolan, S.; Padhye, L.P.; Jasemizad, T.; Govarthanan, M.; Karmegam, N.; Wijesekara, H.; Amarasiri, D.; Hou, D.; Zhou, P.; Biswal, B.K.; et al. Impacts of climate change on the fate of contaminants through extreme weather events. Sci. Total Environ. 2024, 909, 168388. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Global Warming of 1.5 °C: Summary for Policymakers. Available online: https://www.ipcc.ch/sr15/chapter/spm/ (accessed on 21 December 2023).
- ONEP. Thailand’s Nationally Determined Contribution Roadmap on Mitigation 2021–2030; Office of Natural Resources and Environmental Policy and Planning: Bangkok, Thailand, 2020. [Google Scholar]
- ONEP. Thailand’s Fourth Biennial Update Report (BUR4); Office of Natural Resources and Environmental Policy and Planning: Bangkok, Thailand, 2022. [Google Scholar]
- Rogelj, J.; Den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Ağbulut, Ü. Forecasting of transportation-related energy demand and CO2 emissions in Turkey with different machine learning algorithms. Sustain. Prod. Consum. 2022, 29, 141–157. [Google Scholar] [CrossRef]
- Sahraei, M.A.; Duman, H.; Çodur, M.Y.; Eyduran, E. Prediction of transportation energy demand: Multivariate Adaptive Regression Splines. Energy 2021, 224, 120090. [Google Scholar] [CrossRef]
- Tawiah, K.; Daniyal, M.; Qureshi, M. Pakistan CO2 Emission Modelling and Forecasting: A Linear and Nonlinear Time Series Approach. J. Environ. Public Health 2023, 2023, 5903362. [Google Scholar] [CrossRef] [PubMed]
- Ning, L.; Pei, L.; Li, F. Forecast of China’s Carbon Emissions Based on ARIMA Method. Discret. Dyn. Nat. Soc. 2021, 2021, 1441942. [Google Scholar] [CrossRef]
- Xu, G.; Schwarz, P.; Yang, H. Determining China’s CO2 emissions peak with a dynamic nonlinear artificial neural network approach and scenario analysis. Energy Policy 2019, 128, 752–762. [Google Scholar] [CrossRef]
- Liu, B.; Fu, C.; Bielefield, A.; Liu, Y.Q. Forecasting of Chinese Primary Energy Consumption in 2021 with GRU Artificial Neural Network. Energies 2017, 10, 1453. [Google Scholar] [CrossRef]
- Sun, W.; Liu, M. Prediction and analysis of the three major industries and residential consumption CO2 emissions based on least squares support vector machine in China. J. Clean. Prod. 2016, 122, 144–153. [Google Scholar] [CrossRef]
- Nyoni, T.; Bonga, W.G. Prediction of CO2 Emissions in India using ARIMA Models. DRJ-J. Econ. Financ. 2019, 4, 01–10. [Google Scholar]
- Fatima, S.; Saad, S.; Zia, S.; Hussain, E.; Fraz, T.; Mehwish, S.; Khan. Forecasting Carbon Dioxide Emission of Asian Countries Using ARIMA and Simple Exponential Smoothing Models. Int. J. Econ. Environ. Geol. 2019, 10, 64–69. [Google Scholar] [CrossRef]
- Ratanavaraha, V.; Jomnonkwao, S. Trends in Thailand CO2 emissions in the transportation sector and Policy Mitigation. Transp. Policy 2015, 41, 136–146. [Google Scholar] [CrossRef]
- Sutthichaimethee, P.; Ariyasajjakorn, D. Forecast of Carbon Dioxide Emissions from Energy Consumption in Industry Sectors in Thailand. Environ. Clim. Technol. 2018, 22, 107–117. [Google Scholar] [CrossRef]
- Salangam, S. Towards a predictor for CO2 emission usingregression analysis and an artificial neural network. J. Ind. Technol. Suan SunandhaRajabhat Univ. 2022, 10, 54–65. [Google Scholar]
- Yun, S.; Zanetti, R. Bayesian Estimation with Artificial Neural Network. In Proceedings of the 2021 IEEE 24th International Conference on Information Fusion (FUSION), Sun City, South Africa, 1–4 November 2021; pp. 1–7. [Google Scholar]
- Guh, R.-S. Effects of Non-Normality on Artificial Neural Network Based Control Chart Pattern Recognizer. J. Chin. Inst. Ind. Eng. 2002, 19, 13–22. [Google Scholar] [CrossRef]
- Shen, S.; Du, Y.; Xu, Z.; Qin, X.; Chen, J. Temperature Prediction Based on STOA-SVR Rolling Adaptive Optimization Model. Sustainability 2023, 15, 11068. [Google Scholar] [CrossRef]
- Kongcharoen, C.; Kruangpradit, T. Autoregressive integrated moving average with explanatory variable (ARIMAX) model for Thailand export. In Proceedings of the 33rd International Symposium on Forecasting, Seoul, Republic of Korea, 23–26 June 2013; pp. 1–8. [Google Scholar]
- Ling, A.; Darmesah, G.; Chong, K.; Ho, C. Application of ARIMAX model to forecast weekly cocoa black pod disease incidence. Math. Stat. 2019, 7, 29–40. [Google Scholar]
- Peter, Ď.; Silvia, P. ARIMA vs. ARIMAX—Which approach is better to analyze and forecast macroeconomic time series. In Proceedings of the 30th International Conference Mathematical Methods in Economics, Karviná, Czech Republic, 11–13 September 2012; pp. 136–140. [Google Scholar]
- Ghalandari, M.; Forootan Fard, H.; Komeili Birjandi, A.; Mahariq, I. Energy-related carbon dioxide emission forecasting of four European countries by employing data-driven methods. J. Therm. Anal. Calorim. 2021, 144, 1999–2008. [Google Scholar] [CrossRef]
- Faruque, M.O.; Rabby, M.A.J.; Hossain, M.A.; Islam, M.R.; Rashid, M.M.U.; Muyeen, S.M. A comparative analysis to forecast carbon dioxide emissions. Energy Rep. 2022, 8, 8046–8060. [Google Scholar] [CrossRef]
- Shabri, A. Forecasting the annual carbon dioxide emissions of Malaysia using Lasso-GMDH neural network-based. In Proceedings of the 2022 IEEE 12th Symposium on Computer Applications & Industrial Electronics (ISCAIE), Virtual, 21–22 May 2022; pp. 123–127. [Google Scholar]
- Rahman, A.; Hasan, M.M. Modeling and forecasting of carbon dioxide emissions in Bangladesh using Autoregressive Integrated Moving Average (ARIMA) models. Open J. Stat. 2017, 7, 560–566. [Google Scholar] [CrossRef]
- Kour, M. Modelling and forecasting of carbon-dioxide emissions in South Africa by using ARIMA model. Int. J. Environ. Sci. Technol. 2023, 20, 11267–11274. [Google Scholar] [CrossRef]
- Kamoljitprapa, P.; Sookkhee, S. Forecasting models for carbon dioxide emissions in major economic sectors of Thailand. J. Phys. Conf. Ser. 2022, 2346, 012001. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, M.; Du, W. Prediction on Peak Values of Carbon Dioxide Emissions from the Chinese Transportation Industry Based on the SVR Model and Scenario Analysis. J. Adv. Transp. 2020, 2020, 8848149. [Google Scholar] [CrossRef]
- Li, Y.; Wei, Y.; Dong, Z. Will China Achieve Its Ambitious Goal?—Forecasting the CO2 Emission Intensity of China towards 2030. Energies 2020, 13, 2924. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Ao, W.; Bai, Y.; Li, C. Prediction and analysis of CO2 emission in Chongqing for the protection of environment and public health. Int. J. Environ. Res. Public Health 2018, 15, 530. [Google Scholar] [CrossRef] [PubMed]
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 1–58. [Google Scholar] [CrossRef]
- Wilcox, R.R. Applying Contemporary Statistical Techniques; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Yaro, A.S.; Maly, F.; Prazak, P. Outlier Detection in Time-Series Receive Signal Strength Observation Using Z-Score Method with Sn Scale Estimator for Indoor Localization. Appl. Sci. 2023, 13, 3900. [Google Scholar] [CrossRef]
- Swinscow, T.D.V.; Campbell, M.J. Statistics at Square One; BMJ Publishing Group: London, UK, 2002. [Google Scholar]
- Zhang, Z.; Beck, M.W.; Winkler, D.A.; Huang, B.; Sibanda, W.; Goyal, H. Opening the black box of neural networks: Methods for interpreting neural network models in clinical applications. Ann. Transl. Med. 2018, 6, 216. [Google Scholar] [CrossRef] [PubMed]
- Junhuathon, N.; Chayakulkheeree, K. Deep-learning-based short-term photovoltaic power generation forecasting using improved self-organization map neural network. J. Renew. Sustain. Energy 2022, 14, 043702. [Google Scholar] [CrossRef]
- Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. In Proceedings of the 9th International Conference on Neural Information Processing Systems, Denver, Colorado, 2–5 December 1996; pp. 155–161. [Google Scholar]
- Schölkopf, B.; Smola, A.J.; Williamson, R.C.; Bartlett, P.L. New support vector algorithms. Neural Comput. 2000, 12, 1207–1245. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Kao, Y.-S.; Nawata, K.; Huang, C.-Y. Predicting Primary Energy Consumption Using Hybrid ARIMA and GA-SVR Based on EEMD Decomposition. Mathematics 2020, 8, 1722. [Google Scholar] [CrossRef]
- Sutthison, T.; Thepchim, S. Application of Empirical Mode Decomposition with Box—Jankins and Support Vector Regression for Time Series Forecasting. J. Sci. Technol. Ubon Ratchathani Univ. 2020, 22, 59–74. [Google Scholar]
- Cho, H.U.; Nam, Y.; Choi, E.J.; Choi, Y.J.; Kim, H.; Bae, S.; Moon, J.W. Comparative analysis of the optimized ANN, SVM, and tree ensemble models using Bayesian optimization for predicting GSHP COP. J. Build. Eng. 2021, 44, 103411. [Google Scholar] [CrossRef]
- Dabboor, M.; Atteia, G.; Meshoul, S.; Alayed, W. Deep Learning-Based Framework for Soil Moisture Content Retrieval of Bare Soil from Satellite Data. Remote Sens. 2023, 15, 1916. [Google Scholar] [CrossRef]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process. Syst. 2012, 25. [Google Scholar]
- Elgeldawi, E.; Sayed, A.; Galal, A.R.; Zaki, A.M. Hyperparameter tuning for machine learning algorithms used for arabic sentiment analysis. Informatics 2021, 8, 79. [Google Scholar] [CrossRef]
- Jariego Pérez, L.C.; Garrido Merchán, E.C. Towards Automatic Bayesian Optimization: A first step involving acquisition functions. In Proceedings of the Advances in Artificial Intelligence: 19th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2020/2021, Málaga, Spain, 22–24 September 2021; Proceedings 19. pp. 160–169. [Google Scholar]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Pankratz, A. Forecasting with Univariate Box-Jenkins Models: Concepts and Cases; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Chodakowska, E.; Nazarko, J.; Nazarko, Ł. ARIMA Models in Electrical Load Forecasting and Their Robustness to Noise. Energies 2021, 14, 7952. [Google Scholar] [CrossRef]
- Williams, B.M. Multivariate vehicular traffic flow prediction: Evaluation of ARIMAX modeling. Transp. Res. Rec. 2001, 1776, 194–200. [Google Scholar] [CrossRef]
- Kosow, H.; Gaßner, R. Methods of Future and Scenario Analysis: Overview, Assessment, and Selection Criteria; Deutsches Institut für Entwicklungspolitik: Bonn, Germany, 2007; Volume 39. [Google Scholar]
- Bakay, M.S.; Ağbulut, Ü. Electricity production based forecasting of greenhouse gas emissions in Turkey with deep learning, support vector machine and artificial neural network algorithms. J. Clean. Prod. 2021, 285, 125324. [Google Scholar] [CrossRef]
- Emang, D.; Shitan, M.; Abd Ghani, A.N.; Noor, K.M. Forecasting with univariate time series models: A case of export demand for peninsular Malaysia’s moulding and chipboard. J. Sustain. Dev. 2010, 3, 157. [Google Scholar] [CrossRef]
- Lewis, C. Industrial and Business Forecasting Methods; Butterworths: London, UK, 1982. [Google Scholar]
- Harvey, D.; Leybourne, S.; Newbold, P. Testing the equality of prediction mean squared errors. Int. J. Forecast. 1997, 13, 281–291. [Google Scholar] [CrossRef]
- Bianchi, D.; Büchner, M.; Tamoni, A. Bond risk premiums with machine learning. Rev. Financ. Stud. 2021, 34, 1046–1089. [Google Scholar] [CrossRef]
- Mizen, P.; Tsoukas, S. Forecasting US bond default ratings allowing for previous and initial state dependence in an ordered probit model. Int. J. Forecast. 2012, 28, 273–287. [Google Scholar] [CrossRef]
- Jiao, X.; Li, G.; Chen, J.L. Forecasting international tourism demand: A local spatiotemporal model. Ann. Tour. Res. 2020, 83, 102937. [Google Scholar] [CrossRef]
- Song, H.; Li, G.; Witt, S.F.; Athanasopoulos, G. Forecasting tourist arrivals using time-varying parameter structural time series models. Int. J. Forecast. 2011, 27, 855–869. [Google Scholar] [CrossRef]
- Nau, R. Introduction to ARIMA: Nonseasonal Models. Available online: https://people.duke.edu/~rnau/411arim.htm (accessed on 13 June 2024).
- Rhanoui, M.; Yousfi, S.; Mikram, M.; Merizak, H. Forecasting financial budget time series: ARIMA random walk vs LSTM neural network. IAES Int. J. Artif. Intell. 2019, 8, 317. [Google Scholar] [CrossRef]
- Lawler, G.F.; Limic, V. Random Walk: A Modern Introduction; Cambridge University Press: Cambridge, UK, 2010; Volume 123. [Google Scholar]
Variable | Source | Description |
---|---|---|
CO2 (kTons) | EPPO | CO2 emissions from the transportation sector |
Population (103 Peoples) | World Bank | Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates. |
GDP (109 Baht) | Bank of Thailand | Gross domestic product—chain volume measures. |
VK Passenger (106 vehicle-kilometers) | Bureau of Highway Safety, Department of Highways, Thailand | Travel volume in the study area classified by type of vehicle. VK Passenger consists of five vehicle types; namely, passenger cars carrying fewer than seven persons, passenger cars carrying more than seven persons, light buses, medium buses, and heavy buses. |
VK Freight (106 vehicle-kilometers) | Travel volume in the study area classified by type of vehicle. VK Freight consists of five vehicle types, including light trucks, medium trucks, heavy trucks, full trailers, and semi-trailers. | |
VK Motorcycle (106 vehicle-kilometers) | Travel volume in the study area classified by motorcycle. |
Variable | Population | GDP | VK Passenger | VK Freight | VK Motorcycle | CO2 |
---|---|---|---|---|---|---|
Population | 1 | 0.949 | 0.947 | 0.914 | 0.828 | 0.824 |
GDP | 0.949 | 1 | 0.950 | 0.944 | 0.870 | 0.839 |
VK Passenger | 0.947 | 0.950 | 1 | 0.982 | 0.936 | 0.837 |
VK Freight | 0.914 | 0.944 | 0.982 | 1 | 0.953 | 0.914 |
VK Motorcycle | 0.828 | 0.870 | 0.936 | 0.953 | 1 | 0.797 |
CO2 | 0.824 | 0.839 | 0.837 | 0.914 | 0.797 | 1 |
MAPE Range | Forecasting Accuracy |
---|---|
≤10% | High prediction accuracy |
>10% and ≤20% | Good prediction accuracy |
>20% and ≤50% | Reasonable prediction accuracy |
>50% | Inaccurate prediction accuracy |
Hyperparameter | Search Range |
---|---|
Number of fully connected layers | 1–3 |
First layer size | 1–300 |
Second layer size | 1–300 |
Third layer size | 1–300 |
Activation function | ReLu, Tanh, Sigmoid, None |
Regularization strength | 4.7619 × 10−7–4761.9048 |
Hyperparameter | Search Range |
---|---|
Box constraint (C) | 0.001–1000 |
epsilon | 7.3489–734,887.3239 |
Kernel function | Gaussian, linear, quadratic, cubic |
ADF Test | No Difference | First Difference |
---|---|---|
Null rejected | False | True |
p-Value | 0.9220 | 0.0031 |
Test statistic | 1.0927 | −3.2928 |
Critical value | −1.9524 | −1.9531 |
Significance level | 0.05 | 0.05 |
Model | ANN | SVR | ARIMAX |
---|---|---|---|
ANN | — | 4.182 ** | 12.221 *** |
SVR | 4.182 ** | — | 3.692 ** |
ARIMAX | 12.221 *** | 3.692 ** | — |
Model | Evaluation Metric | ||
---|---|---|---|
MAPE (%) | RSME (103 Tons) | MAE (103 Tons) | |
ANN | 6.395 | 5054.005 | 4259.170 |
SVR | 7.628 | 6193.925 | 4865.085 |
ARIMAX | 9.286% | 7916.483 | 6775.431 |
Variable | ARIMA Model (p,d,q) | MAPE (%) |
---|---|---|
Population | (0,2,1) | 0.376 |
GDP | (0,1,0) | 3.165 |
VK—passenger | (0,1,0) | 6.024 |
VK—freight | (0,1,0) | 5.692 |
VK—motorcycle | (0,1,0) | 3.210 |
Year | Prediction (103 Tons) |
---|---|
2027 | 76,339.847 |
2032 | 79,864.493 |
2037 | 82,880.635 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janhuaton, T.; Ratanavaraha, V.; Jomnonkwao, S. Forecasting Thailand’s Transportation CO2 Emissions: A Comparison among Artificial Intelligent Models. Forecasting 2024, 6, 462-484. https://doi.org/10.3390/forecast6020026
Janhuaton T, Ratanavaraha V, Jomnonkwao S. Forecasting Thailand’s Transportation CO2 Emissions: A Comparison among Artificial Intelligent Models. Forecasting. 2024; 6(2):462-484. https://doi.org/10.3390/forecast6020026
Chicago/Turabian StyleJanhuaton, Thananya, Vatanavongs Ratanavaraha, and Sajjakaj Jomnonkwao. 2024. "Forecasting Thailand’s Transportation CO2 Emissions: A Comparison among Artificial Intelligent Models" Forecasting 6, no. 2: 462-484. https://doi.org/10.3390/forecast6020026
APA StyleJanhuaton, T., Ratanavaraha, V., & Jomnonkwao, S. (2024). Forecasting Thailand’s Transportation CO2 Emissions: A Comparison among Artificial Intelligent Models. Forecasting, 6(2), 462-484. https://doi.org/10.3390/forecast6020026