Principal Component Analysis (PCA) Combined with Naturally Occurring Crystallization Inhibitors: An Integrated Strategy for a more Sustainable Control of Salt Decay in Built Heritage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
- Number of PCs: identify the number of latent variables effective in defining the data structure.
- Loadings plot: shows the correlation among variables used.
- Scores plot: shows eventual clustering and can be used as pattern recognition method for classification problems.
- Information included in the residues: these values describe the non-systematic part of the data series, i.e., the part not explained by the model.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bracciale, M.P.; Sammut, S.; Cassar, J.; Santarelli, M.L.; Marrocchi, A. Molecular crystallization inhibitors for salt damage control in porous materials: An overview. Molecules 2020, 25, 1873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granneman, S.J.C.; Lubelli, B.; van Hees, R.P.J. Mitigating salt damage in building materials by the use of crystallization modifiers–a review and outlook. J. Cult. Herit. 2019, 40, 183–194. [Google Scholar] [CrossRef]
- Espinosa-Marzal, R.M.; Scherer, G.W. Advances in Understanding Damage by Salt Crystallization. Acc. Chem. Res. 2010, 43, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Lubelli, B.; Van Hees, R.P.J. Effectiveness of crystallization inhibitors in preventing salt damage in building materials. J. Cult. Herit. 2007, 8, 223–234. [Google Scholar] [CrossRef]
- Gupta, S.; Pel, L.; Steiger, M.; Kopinga, K. The effect of ferrocyanide ions on sodium chloride crystallization in salt mixtures. J. Cryst. Growth 2015, 410, 7–13. [Google Scholar] [CrossRef]
- Gupta, S.; Huinink, H.P.; Pel, L.; Kopinga, K. How Ferrocyanide Influences NaCl Crystallization under Different Humidity Conditions. Cryst. Growth Des. 2014, 14, 1591–1599. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Terheiden, K.; Pel, L.; Sawdy, A. Influence of Ferrocyanide Inhibitors on the Transport and Crystallization Processes of Sodium Chloride in Porous Building Materials. Cryst. Growth Des. 2012, 12, 3888–3898. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Navarro, C.; Linares-Fernandez, L.; Doehne, E.; Sebastian, E. Effects of ferrocyanide ions on NaCl crystallization in porous stone. J. Cryst. Growth 2002, 243, 503–516. [Google Scholar] [CrossRef] [Green Version]
- Amjad, Z. Advances in Crystal Growth Inhibition Technologies; Kluwer Academic/Plenum: New York, NY, USA, 2000. [Google Scholar]
- Rodriguez-Navarro, C.; Doehne, E.; Sebastian, E. Influencing crystallization damage in porous materials through the use of surfactans: Experimental results using sodium dodecyl sulfate and cetylmethylbenzylammonium chloride. Langmuir 1999, 16, 947–954. [Google Scholar] [CrossRef]
- Franceschini, M.; Broggi, A.; Bracciale, M.P.; Sommei, L.; Santarelli, M.L.; Marrocchi, A. Effectiveness of Phosphocitrate as Salt Crystallization Inhibitor in Porous Materials: Case Study of the Roman Mosaic of Orpheus and the Beasts (Perugia, Italy). Int. J. Arch. Herit. 2015, 9, 195–200. [Google Scholar] [CrossRef]
- Cardinali, F. Degrado dei Materiali Lapidei. Inibitori Organici Eco-Compatibili Della Cristallizzazione Salina. Nanotecnologie per il Restauro; Nardini Editore: Firenze, Italia, 2013. [Google Scholar]
- Cassar, J.; Marrocchi, A.; Santarelli, M.L.; Muscat, M. Controlling crystallization damage by the use of salt inhibitors on Malta’s limestone. Mater. Construcción 2008, 58, 281–293. [Google Scholar]
- Marrocchi, A.; Taticchi, A.; Orrù, M.; Minuti, L.; Santarelli, M.L.; Librando, V. Inibitori organici della cristallizzazione salina nei materiali lapidei porosi. 4. Sci. Technol. Cult. Herit. 2007, 16, 143–151. [Google Scholar]
- Marrocchi, A.; Taticchi, A.; Santarelli, M.L.; Broggi, A.; Minuti, L.; Librando, V. Acidi organici quali inibitori della cristallizzazione del cloruro di sodio e di miscele cloruro di sodio-solfato di sodio nei materiali lapidei porosi. 3. Sci. Technol. Cult. Herit. 2006, 15, 115–124. [Google Scholar]
- Marrocchi, A.; Taticchi, A.; Santarelli, M.L.; Minuti, L.; Broggi, A.; Garibaldi, V. Acidi organici quali inibitori della cristallizzazione di Sali nei materiali lapidei. 2. Sci. Technol. Cult. Herit. 2006, 15, 109–114. [Google Scholar]
- Marrocchi, A.; Santarelli, M.L.; Taticchi, A.; Minuti, L.; Broggi, A. Inibitori della crescita di cristalli di solfato di sodio in materiali lapidei. 1. Sci. Technol. Cult. Herit. 2006, 15, 101–108. [Google Scholar]
- Bracciale, M.P.; Bretti, G.; Broggi, A.; Ceseri, M.; Marrocchi, A.; Natalini, R.; Russo, C. Mathematical modelling of experimental data for crystallization inhibitors. Appl. Math. Model. 2017, 48, 21–38. [Google Scholar] [CrossRef]
- Bracciale, M.P.; Broggi, A.; Chandraiahgari, C.R.; De Bellis, G.; Santarelli, M.L.; Sarto, M.S.; Uccelletti, D.; Zanni, E.; Marrocchi, A. Coating Composition with Antimicrobial and Antisaline Activity, and Process for the Preparation Thereof. Patent International Application No. PCT/EP2017/050890, 27 July 2017. [Google Scholar]
- Sammut, S. Limiting Salt Damage—A Study on the Effectiveness of Salt Inhibitors on Globigerina Limestone. Ph.D. Thesis, University of Malta, Msida, Malta, 2017. [Google Scholar]
- Werpy, T.; Petersen, G.; Aden, A.; Bozell, J.; Holladay, J.; White, J.; Manheim, A.; Eliot, D.; Lasure, L.; Jones, S. Top Value Added Chemicals from Biomass. Volume I—Results of Screening for Potential Candidates from Sugars and Syn-thesis Gas; Technical Report; U.S. Department of Commerce National: Oak Ridge, TN, USA, 2004; 76p. [CrossRef] [Green Version]
- EUR-Lex. Available online: https://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:02006R1907-20180509&from=EN (accessed on 29 November 2020).
- Available online: https://www.congress.gov/114/plaws/publ182/PLAW-114publ182.pdf (accessed on 29 November 2020).
- Available online: https://www.epa.gov/laws-regulations/summary-toxic-substancescontrol-act, (accessed on 29 November 2020).
- Ha, S.; Seidle, T.; Lim, K.-M. Act on the Registration and Evaluation of Chemicals (K-REACH) and replacement, reduction or refinement best practices. Environ. Health Toxicol. 2016, 31, e2016026. [Google Scholar] [CrossRef] [PubMed]
- Visco, G.; Avino, P. Employ of multivariate analysis and chemometrics in cultural heritage and environment fields. Environ. Sci. Pollut. Res. Int. 2017, 24, 13863–13865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatta, T.; Gregori, E.; Marini, F.; Tomassetti, M.; Visco, G.; Campanella, L. New approach to the differentiation of marble samples using thermal analysis and chemometrics in order to identify provenance. Chem. Cent. J. 2014, 8, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musumarra, G.; Fichera, M. Chemometrics and cultural heritage. Chemom. Intell. Lab. Syst. 1998, 44, 363–372. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis; Springer Series in Statistics; Springer: New York, NY, USA, 2013. [Google Scholar]
- SIMCA. Available online: https://umetrics.com/products/simca (accessed on 23 July 2020).
Peculiarities Selected | Codes |
---|---|
Stone | T: tuff R: brick N: Noto Limestone (Sicily) P: Palazzolo Limestone (Sicily) A: Malta Globigerina Limestone, Soll B: Malta Globigerina Limestone, Bajda C: Malta Globigerina Limestone, Safra |
Salt type | C: NaCl S: Na2SO4 K: 3:1 NaCl:Na2SO4 Z: 1:3 NaCl:Na2SO4 X: 1:1 NaCl:Na2SO4 O: CaSO4 H: NaCl (1): NaHCO3 (1) |
Inhibitor type | F: phosphocitrate C: citrate L: maleate T: tartrate N: not treated |
Inhibitor concentration | 6: 1 ppm 5: 10 ppm 4: 100 ppm 0: not treated |
Variables, k | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ΔW/S (t1) | ΔW/S (t2) | ΔW/S (t3) | ΔW/S (t4) | ΔW/S (t5) | ΔW/S (t6) | ΔW/S (t7) | ΔW/S (t8) | ΔW/S (t9) | |||
Objects, i | 1 | TKF4 | |||||||||
2 | RSL6 | xi,k | |||||||||
… | … | ||||||||||
140 | CSF6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardinali, F.; Bracciale, M.P.; Santarelli, M.L.; Marrocchi, A. Principal Component Analysis (PCA) Combined with Naturally Occurring Crystallization Inhibitors: An Integrated Strategy for a more Sustainable Control of Salt Decay in Built Heritage. Heritage 2021, 4, 220-229. https://doi.org/10.3390/heritage4010013
Cardinali F, Bracciale MP, Santarelli ML, Marrocchi A. Principal Component Analysis (PCA) Combined with Naturally Occurring Crystallization Inhibitors: An Integrated Strategy for a more Sustainable Control of Salt Decay in Built Heritage. Heritage. 2021; 4(1):220-229. https://doi.org/10.3390/heritage4010013
Chicago/Turabian StyleCardinali, Francesca, Maria Paola Bracciale, Maria Laura Santarelli, and Assunta Marrocchi. 2021. "Principal Component Analysis (PCA) Combined with Naturally Occurring Crystallization Inhibitors: An Integrated Strategy for a more Sustainable Control of Salt Decay in Built Heritage" Heritage 4, no. 1: 220-229. https://doi.org/10.3390/heritage4010013
APA StyleCardinali, F., Bracciale, M. P., Santarelli, M. L., & Marrocchi, A. (2021). Principal Component Analysis (PCA) Combined with Naturally Occurring Crystallization Inhibitors: An Integrated Strategy for a more Sustainable Control of Salt Decay in Built Heritage. Heritage, 4(1), 220-229. https://doi.org/10.3390/heritage4010013