Roman Wall Paintings: Characterisation of Plaster Coats Made of Clay Mud
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vitruvius. On Architecture; Schofield, R., Ed.; Penguin classics; Penguin Books Limited: London, UK, 2009; ISBN 9780141931951. [Google Scholar]
- Pliny. Natural History; Eichholz, D.E., Ed.; Loeb Classical Library; Heinemann: Cambridge, UK, 1962. [Google Scholar]
- Laurie, A.P. Greek and Roman Methods of Painting: Some Comments on the Statements Made by Pliny and Vitruvius about Wall and Panel Painting; Cambridge University Press: Cambridge, UK, 1910. [Google Scholar]
- Bugini, R.; Folli, L.; Biondelli, D. Grain morphology of aggregates in Roman plasters. In Proceedings of the 14th Euroseminar on Microscopy on Applied to Building Materials, Helsingør, Denmark, 10–14 June 2013; Danish Technological Institute: Taastrup, Denmark, 2013; pp. 25–28. [Google Scholar]
- Bugini, R.; Folli, L. Critères pour la comparaison des enduits peints romains de la Lombardie. ArcheoSciences 2013, 37, 41–50. [Google Scholar] [CrossRef]
- Ergenç, D.; La Russa, M.F.; Ruffolo, S.A.; Fort, R.; Sánchez Montes, A.L. Characterization of the wall paintings in La Casa de los Grifos of Roman city Complutum. Eur. Phys. J. Plus 2018, 133, 355. [Google Scholar] [CrossRef]
- Mateos, L.D.; Esquivel, D.; Cosano, D.; Jiménez-Sanchidrián, C.; Ruiz, J.R. Micro-Raman analysis of mortars and wall paintings in the Roman villa of Fuente Alamo (Puente Genil, Spain) and identification of the application technique. Sens. Actuators A Phys. 2018, 281, 15–23. [Google Scholar] [CrossRef]
- Giorgi, L.; Nevin, A.; Nodari, L.; Comelli, D.; Alberti, R.; Gironda, M.; Mosca, S.; Zendri, E.; Piccolo, M.; Izzo, F.C. In-situ technical study of modern paintings part 1: The evolution of artistic materials and painting techniques in ten paintings from 1889 to 1940 by Alessandro Milesi (1856–1945). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 219, 530–538. [Google Scholar] [CrossRef]
- Nodari, L.; Ricciardi, P. Non-invasive identification of paint binders in illuminated manuscripts by ER-FTIR spectroscopy: A systematic study of the influence of different pigments on the binders’ characteristic spectral features. Herit. Sci. 2019, 7, 7. [Google Scholar] [CrossRef]
- La Nasa, J.; Moretti, P.; Maniccia, E.; Pizzimenti, S.; Colombini, M.P.; Miliani, C.; Modugno, F.; Carnazza, P.; De Luca, D. Discovering Giuseppe Capogrossi: Study of the Painting Materials in Three Works of Art Stored at Galleria Nazionale (Rome). Heritage 2020, 3, 52. [Google Scholar] [CrossRef]
- Pronti, L.; Romani, M.; Viviani, G.; Stani, C.; Gioia, P.; Cestelli-Guidi, M. Advanced methods for the analysis of Roman wall paintings: Elemental and molecular detection by means of synchrotron FT-IR and SEM micro-imaging spectroscopy. Rend. Lincei Sci. Fis. Nat. 2020, 31, 485–493. [Google Scholar] [CrossRef]
- Sbroscia, M.; Cestelli-Guidi, M.; Colao, F.; Falzone, S.; Gioia, C.; Gioia, P.; Marconi, C.; Mirabile Gattia, D.; Loreti, E.M.; Marinelli, M.; et al. Multi-analytical non-destructive investigation of pictorial apparatuses of “Villa della Piscina” in Rome. Microchem. J. 2020, 153, 104450. [Google Scholar] [CrossRef]
- Cortea, I.M.; Ghervase, L.; Țentea, O.; Pârău, A.C.; Rădvan, R. First Analytical Study on Second-Century Wall Paintings from Ulpia Traiana Sarmizegetusa: Insights on the Materials and Painting Technique. Int. J. Archit. Herit. 2020, 14, 751–761. [Google Scholar] [CrossRef]
- Bugini, R.; Corti, C.; Folli, L.; Rampazzi, L. Unveiling the Use of Creta in Roman Plasters: Analysis of Clay Wall Paintings From Brixia (Italy). Archaeometry 2017, 59, 84–95. [Google Scholar] [CrossRef]
- Germinario, C.; Francesco, I.; Mercurio, M.; Langella, A.; Sali, D.; Kakoulli, I.; De Bonis, A.; Grifa, C. Multi-analytical and non-invasive characterization of the polychromy of wall paintings at the Domus of Octavius Quartio in Pompeii. Eur. Phys. J. Plus 2018, 133, 359. [Google Scholar] [CrossRef]
- Biron, C.; Mounier, A.; Arantegui, J.P.; Bourdon, G.L.; Servant, L.; Chapoulie, R.; Roldán, C.; Almazán, D.; Díez-de-Pinos, N.; Daniel, F. Colours of the «images of the floating world». Non-invasive analyses of Japanese ukiyo-e woodblock prints (18th and 19th centuries) and new contributions to the insight of oriental materials. Microchem. J. 2020, 152, 104374. [Google Scholar] [CrossRef]
- Daveri, A.; Malagodi, M.; Vagnini, M. The Bone Black Pigment Identification by Noninvasive, In Situ Infrared Reflection Spectroscopy. J. Anal. Methods Chem. 2018, 2018, 6595643. [Google Scholar] [CrossRef] [Green Version]
- Izzo, F.; Germinario, C.; Grifa, C.; Langella, A.; Mercurio, M. External reflectance FTIR dataset (4000–400 cm−1) for the identification of relevant mineralogical phases forming Cultural Heritage materials. Infrared Phys. Technol. 2020, 106, 103266. [Google Scholar] [CrossRef]
- Zuena, M.; Buemi, L.P.; Stringari, L.; Legnaioli, S.; Lorenzetti, G.; Palleschi, V.; Nodari, L.; Tomasin, P. An integrated diagnostic approach to Max Ernst’s painting materials in his Attirement of the Bride. J. Cult. Herit. 2020, 43, 329–337. [Google Scholar] [CrossRef]
- Rosi, F.; Miliani, C.; Delaney, J.; Dooley, K.; Stringari, L.; Subelyte, G.; Buemi, L.P. CHAPTER 1. Jackson Pollock’s Drip Paintings: Tracing the Introduction of Alkyds Through Non-invasive Analysis of Mid-1940s Paintings. In Science and Art; The Royal Society of Chemistry: London, UK, 2020; pp. 1–18. ISBN 9781788016384. [Google Scholar]
- Ranalli, G.; Zanardini, E.; Andreotti, A.; Colombini, M.P.; Corti, C.; Bosch-Roig, P.; De Nuntiis, P.; Lustrato, G.; Mandrioli, P.; Rampazzi, L.; et al. Hi-tech restoration by two-steps biocleaning process of Triumph of Death fresco at the Camposanto Monumental Cemetery (Pisa, Italy). J. Appl. Microbiol. 2018, 125, 800–812. [Google Scholar] [CrossRef]
- Goldstein, J.I.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.M.; Scott, J.H.J.; Joy, D.C. Scanning Electron Microscopy and X-ray Microanalysis; Springer: New York, NY, USA, 2017; ISBN 9781493966769. [Google Scholar]
- Thorez, J. Phyllosilicates and Clay Minerals: A Laboratory Handbook for Their X-ray Diffraction Analysis; Lelotte: Dison, Belgium, 1975. [Google Scholar]
- Moore, D.M.; Reynolds, R.C., Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals; Oxford University Press: Oxford, UK, 1997; ISBN 9780195087130. [Google Scholar]
- Farmer, V.C. The Infrared Spectra of Minerals; Mineralogical Society monograph; Mineralogical Society: London, UK, 1974; ISBN 9780903056052. [Google Scholar]
- Wilson, M.J. Clay Mineralogy: Spectroscopic and Chemical Determinative Methods; Wilson, M.J., Ed.; Chapman & Hall: London, UK, 1994; ISBN 9780412533808. [Google Scholar]
- Mirti, P.; Appolonia, L.; Casoli, A.; Ferrari, R.P.; Laurenti, E.; Amisano Canesi, A.; Chiari, G. Spectrochemical and structural studies on a roman sample of Egyptian blue. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1995, 51, 437–446. [Google Scholar] [CrossRef]
- Rampazzi, L.; Andreotti, A.; Bressan, M.; Colombini, M.P.; Corti, C.; Cuzman, O.; D’Alessandro, N.; Liberatore, L.; Palombi, L.; Raimondi, V.; et al. An interdisciplinary approach to a knowledge-based restoration: The dark alteration on Matera Cathedral (Italy). Appl. Surf. Sci. 2018, 458, 529–539. [Google Scholar] [CrossRef]
- Ranalli, G.; Zanardini, E.; Rampazzi, L.; Corti, C.; Andreotti, A.; Colombini, M.P.; Bosch-Roig, P.; Lustrato, G.; Giantomassi, C.; Zari, D.; et al. Onsite advanced biocleaning system for historical wall paintings using new agar-gauze bacteria gel. J. Appl. Microbiol. 2019, 126, 1785–1796. [Google Scholar] [CrossRef]
- Brunello, V.; Corti, C.; Sansonetti, A.; Tedeschi, C.; Rampazzi, L. Non-invasive FTIR study of mortar model samples: Comparison among innovative and traditional techniques. Eur. Phys. J. Plus 2019, 134, 270. [Google Scholar] [CrossRef]
- Arrizabalaga, I.; Gomez-Laserna, O.; Carrero, J.A.; Bustamante, J.; Rodriguez, A.; Arana, G.; Madariaga, J.M.; Antonio Carrero, J.; Bustamante, J.; Rodriguez, A.; et al. Diffuse reflectance FTIR database for the interpretation of the spectra obtained with a handheld device on built heritage materials. Anal. Methods 2015, 7, 1061–1070. [Google Scholar] [CrossRef]
- Bruni, S.; Cariati, F.; Casadio, F.; Toniolo, L. Spectrochemical characterization by micro-FTIR spectroscopy of blue pigments in different polychrome works of art. Vib. Spectrosc. 1999, 20, 15–25. [Google Scholar] [CrossRef]
- Ramjoue, E. Quelques particularites techniques des fresques romaines de Vandoeuvres dans le Canton de Geneve. In Roman Wall Painting; Béarat, H., Ed.; Fribourg University, Institute of Mineralogy and Petrography: Fribourg, Switzerland, 1997; pp. 167–179. [Google Scholar]
- Carta Geologica d’Italia (CARG) 1:50.000—Foglio Milano n. 118, Servizio Geologico d’Italia (Piacenza, Italia). Available online: https://www.isprambiente.gov.it/Media/carg/lombardia.html (accessed on 28 April 2021).
- Gettens, R.J.; Stout, G.L. Painting Materials: A Short Encyclopaedia; Dover Publications: New York, NY, USA, 1966; ISBN 0486215970. [Google Scholar]
- Riederer, J. Egyptian blue. In Artists’ Pigments. A Handbook of Their History and Characteristics—Vol. 3; West FitzHugh, E., Ed.; National Gallery of Art, Washington and Oxford University Press: Oxford, UK, 1997; pp. 23–45. ISBN 9782970013204. [Google Scholar]
- Edreira, M.C.; Feliu, M.J.; Fernández-Lorenzo, C.; Martín, J. Spectroscopic Study of Egyptian Blue Mixed with Other Pigments. Helv. Chim. Acta 2003, 86, 29–49. [Google Scholar] [CrossRef]
- Alberghina, M.F.; Germinario, C.; Bartolozzi, G.; Bracci, S.; Grifa, C.; Izzo, F.; La Russa, M.F.; Magrini, D.; Massa, E.; Mercurio, M.; et al. Non-invasive characterization of the pigment’s palette used on the painted tomb slabs at Paestum archaeological site. IOP Conf. Ser. Mater. Sci. Eng. 2020, 949, 012002. [Google Scholar] [CrossRef]
Site | Number of Samples with the Same Stratigraphy | Chronology (Century *) | Plaster Thickness (mm) | Render Coat: Aggregate Composition | Finish Coat | Pigment | ||
---|---|---|---|---|---|---|---|---|
Binder Composition | Aggregate Composition | Crystal Size (mm) | ||||||
Milano | ||||||||
Università Cattolica | 6 | 1st | 12–30 | quartz, silicates, limestone | Mg lime | quartz, limestone, brick | 0.04–3.0 | not examined |
Università Cattolica | 17 | 3rd | 18–35 | quartz, silicates, brick | Mg lime | calcite, quartz, silicates | 0.04–2.7 0.1–3.0 | not examined |
piazza Fontana | 6 | mid 1st | 20–35 | quartz, silicates | Mg lime | quartz, silicates | 1.0–3.0 | cinnabar, carbon black |
piazza Fontana | 2 | early 1st | 25 | quartz, silicates | Mg lime | quartz | 0.1–3.0 | carbon black |
piazza Meda | 2 | mid 1st | 25–30 | quartz, silicates, brick | Mg lime | quartz | 0.4 | red ochre |
piazza Meda | 1 | early 4th | 28 | quartz, silicates, brick | Mg lime | quartz | 0.4 | green earth |
via Correnti | 9 | 1st | 15–25 | quartz, silicates, limestone | Mg lime | quartz, silicates, limestone | 0.1–1.2 | green earth |
via Correnti | 25 | 2nd | 15–20 | quartz, silicates, limestone | Mg lime | quartz, limestone, calcite | 0.05–2.5 0.04–2.0 | green earth, yellow ochre |
via Broletto | 9 | 3rd | 15–22 | quartz, silicates | Mg lime | quartz, silicates, calcite | 0.05–0.4 | cinnabar, red ochre, green earth |
corso Magenta (Monastero Maggiore) | 10 | 3rd | 25–55 | quartz, silicates, brick | Mg lime | quartz, calcite | 0.1–2.0 | red ochre |
corso Magenta (palazzo Litta) | 6 | 3rd | 40–45 | quartz, silicates | Mg lime | quartz | 1.0–3.0 | Egyptian blue, green earth, red ochre, carbon black |
via S. Maria Porta | 3 | 3rd | 15–60 | quartz, silicates | Mg lime | calcite | 0.2–1.5 | cinnabar, yellow ochre, Egyptian blue |
Brescia | ||||||||
Under the Sanctuary | 6 | 2nd BCE | 2–5 | limestone, gneiss | Mg lime | quartz, limestone | 0.4 | red earth, carbon black, chalk |
Sanctuary | 34 | early 1st BCE | 5–10 | quartz, limestone, dolomite | Ca lime | dolomite | 0.3–3.0 | yellow ochre, red earth, Egyptian blue + green earth, cinnabar, carbon black |
Sanctuary | 18 | early 1st BCE | 20–25 | limestone, quartz, brick | Ca lime | clay + quartz | 0.1–0.3 | Egyptian blue, red ochre |
Sanctuary | 1 | early 1st | 30 | limestone, flint | Ca lime | dolomite, limestone | 0.3–3.0 | not examined |
via Trieste | 6 | mid 1st | 2–3 | quartz, limestone | Mg lime | calcite | 1.5 | red earth, green earth, yellow ochre |
palazzo Martinengo | 7 | early 1st | 4–5 | limestone | Mg lime | dolomite | 0.3–3.5 | red earth, Egyptian blue + green earth |
palazzo Martinengo | 14 | late 1st | 4–13 | quartz, limestone | Mg lime | dolomite | 0.3–4.0 | Egyptian blue + green earth, red earth |
Liceo Arnaldo | 19 | mid 1st–early 2nd | 4–8 | dolomite | Mg lime | dolomite | 0.5–1.5 | red earth, green earth, yellow ochre |
Santa Giulia | 42 | late 2nd–early 3rd | 3–11 | dolomite | Mg lime | dolomite | 0.3–2.5 | green earth, yellow ochre, Egyptian blue |
Brescia Province | ||||||||
Cividate Camuno | ||||||||
via Palazzo | 9 | 1st | 10–20 | quartz, silicates | Mg lime | calcite, limestone | 0.1–3.5 | red ochre, yellow ochre, Egyptian blue |
Theatre | 5 | late 1st | 5 | quartz, limestone, brick | Mg lime | calcite | 0.1–1.0 | red earth |
domus | 7 | mid 1st | 10–20 | quartz, limestone | Mg lime | calcite | 0.3–4.0 | not examined |
Amphitheatre | 10 | early 1st | 5–15 | quartz, limestone | Mg lime | calcite | 0.3–4.0 | red ochre, green earth |
Sanctuary of Minerva-Breno | 18 | 1st | 10–20 | quartz, limestone | Mg lime | calcite | 0.1–3.5 | red ochre, yellow ochre, Egyptian blue |
Sirmione-Villa Grotte di Catullo | 19 | 2nd | 15–50 | limestone | Ca lime | calcite, limestone | 0.2–4.0 0.2–0.6 | Egyptian blue, cinnabar, red and yellow ochre, minium (lead), green earth, carbon back |
Bedriacum | ||||||||
domus | 20 | 1st–2nd | 15–20 | quartz, limestone | Ca lime | brick, calcite, limestone | 0.4–5.0 0.1–0.8 | yellow ochre, red earth, green earth |
Rubble pit | 8 | 1st–5th | 10–20 | quartz, limestone | Mg lime | quartz, limestone, brick | 0.5–5.0 | red ochre, red earth, chalk |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bugini, R.; Corti, C.; Folli, L.; Rampazzi, L. Roman Wall Paintings: Characterisation of Plaster Coats Made of Clay Mud. Heritage 2021, 4, 889-905. https://doi.org/10.3390/heritage4020048
Bugini R, Corti C, Folli L, Rampazzi L. Roman Wall Paintings: Characterisation of Plaster Coats Made of Clay Mud. Heritage. 2021; 4(2):889-905. https://doi.org/10.3390/heritage4020048
Chicago/Turabian StyleBugini, Roberto, Cristina Corti, Luisa Folli, and Laura Rampazzi. 2021. "Roman Wall Paintings: Characterisation of Plaster Coats Made of Clay Mud" Heritage 4, no. 2: 889-905. https://doi.org/10.3390/heritage4020048
APA StyleBugini, R., Corti, C., Folli, L., & Rampazzi, L. (2021). Roman Wall Paintings: Characterisation of Plaster Coats Made of Clay Mud. Heritage, 4(2), 889-905. https://doi.org/10.3390/heritage4020048