Investigation of Building Materials Belonging to the Ruins of the Tsogt Palace in Mongolia
Abstract
:1. Introduction
1.1. Historical Background
1.2. Climatic Setting
2. Materials and Methods
2.1. Material Sampling
2.2. Analyses
3. Results and Discussion
3.1. Materials Characterisation
3.1.1. Plasters and Mortars
3.1.2. Bricks
3.1.3. Tiles
3.2. State of Conservation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Arce, P.; García-Guinea, J. Weathering traces in ancient bricks from historic buildings. Build. Environ. 2005, 40, 929–941. [Google Scholar] [CrossRef] [Green Version]
- Amoroso, G.G. Trattato di Scienza della Conservazione dei Monumenti: Etica della Conservazione, Degrado dei Monumenti, Interventi conservativi, Consolidanti e Protettivi; Alinea Editrice: Florence, Italy, 2002. [Google Scholar]
- Jin, P.J.; Zhang, Y.; Wang, S.; Yang, X.G.; Zhang, M. Characterization of the superficial weathering of bricks on the City Wall of Xi’an, China. Constr. Build. Mater. 2017, 149, 139–148. [Google Scholar] [CrossRef]
- Comite, V.; De Buergo, M.Á.; Barca, D.; Belfiore, C.M.; Bonazza, A.; La Russa, M.F.; Pezzino, A.; Randazzo, L.; Ruffolo, S.A. Damage monitoring on carbonate stones: Field exposure tests contributing to pollution impact evaluation in two Italian sites. Constr. Build. Mater. 2017, 152, 907–922. [Google Scholar] [CrossRef]
- Marrocchino, E.; Telloli, C.; Pedrini, M.; Vaccaro, C. Natural stones used in the Orsi-Marconi palace façade (Bologna): A petro-mineralogical characterization. Heritage 2020, 3, 1109–1123. [Google Scholar] [CrossRef]
- Fermo, P.; Comite, V.; Ciantelli, C.; Sardella, A.; Bonazza, A. A multi-analytical approach to study the chemical composition of total suspended particulate matter (TSP) to assess the impact on urban monumental heritage in Florence. Sci. Total. Environ. 2020, 740, 140055. [Google Scholar] [CrossRef]
- Grossi, C.M.; Brimblecombe, P. Effect of long-term changes in air pollution and climate on the decay and blackening of European stone buildings. Geol. Soc. Lond. Spec. Publ. 2007, 271, 117–130. [Google Scholar] [CrossRef]
- Basu, S.; Orr, S.A.; Aktas, Y.D. A geological perspective on climate change and building stone deterioration in London: Implications for urban stone-built heritage research and management. Atmosphere 2020, 11, 788. [Google Scholar] [CrossRef]
- Sardella, A.; Palazzi, E.; von Hardenberg, J.; Del Grande, C.; De Nuntiis, P.; Sabbioni, C.; Bonazza, A. Risk mapping for the sustainable protection of cultural heritage in extreme changing environments. Atmosphere 2020, 11, 700. [Google Scholar] [CrossRef]
- Bonazza, A.; Messina, P.; Sabbioni, C.; Grossi, C.M.; Brimblecombe, P. Mapping the impact of climate change on surface recession of carbonate buildings in Europe. Sci. Total. Environ. 2009, 407, 2039–2050. [Google Scholar] [CrossRef]
- Gómez-Bolea, A.; Llop, E.; Ariño, X.; Saiz-Jimenez, C.; Bonazza, A.; Messina, P.; Sabbioni, C. Mapping the impact of climate change on biomass accumulation on stone. J. Cult. Herit. 2012, 13, 254–258. [Google Scholar] [CrossRef]
- Bonazza, A.; Sabbioni, C.; Messina, P.; Guaraldi, C.; De Nuntiis, P. Climate change impact: Mapping thermal stress on Carrara marble in Europe. Sci. Total. Environ. 2009, 407, 4506–4512. [Google Scholar] [CrossRef]
- Ciantelli, C.; Palazzi, E.; Von Hardenberg, J.; Vaccaro, C.; Tittarelli, F.; Bonazza, A. How can climate change affect the UNESCO cultural heritage sites in Panama? Geosciences 2018, 8, 296. [Google Scholar] [CrossRef] [Green Version]
- Tumen, D.; Navaan, D.; Erdene, M. Archaeology of the Mongolian period: A brief introduction. Silk Road 2006, 4, 51–55. [Google Scholar]
- Habu, J.; Lape, P.V.; Olsen, J.W. Handbook of East and Southeast Asian Archaeology, 1st ed.; Springer: New York, NY, USA, 2017. [Google Scholar]
- Solmon, J. Мoнгoл нутаг дахь түүх, сoёлын үл хөдлөх дурсгал Орч. Ц.Цoлмoн/Historical and Cultural Immovable Properties in Mongolia; Cultural Heritage Center: Ulaanbaatar, Mongolia, 2012. [Google Scholar]
- Bemmann, J.; Reichert, S. Karakorum, the first capital of the Mongol world empire: An imperial city in a non-urban society. Asian Archaeol. 2020, 4, 121–143. [Google Scholar] [CrossRef]
- Historical Dictionary of Mongolia—Alan J.K. Sanders—Google Libri. Available online: https://books.google.it/books?id=5JN83EDDLl4C&pg=PA60&dq=tsogt+palace+ruins+mongolia+history&hl=it&sa=X&ved=0ahUKEwjpzdTandPlAhXCyaQKHcX_DMsQ6AEIMTAB#v=onepage&q=tsogtpalaceruinsmongoliahistory&f=false (accessed on 14 November 2019).
- Erdenebold, L.; Tolnai, K.; Harmath, A.; Siklodi, C.; Szilagyi, Z.; Laslovzky, J. Research on landscape archaeology in the context of nomad towns: Results of the third field season of the KHI-LAND project, 2018. Hung. Archaeol. 2018, 7, 15–25. [Google Scholar]
- Rinchinkhorol, M. Mongolia. In The Twentieth Regular Report; Nara, 2018; Volume 13, pp. 23–25. Available online: https://www.google.com.hk/search?q=The+Twentieth+Regular+Report (accessed on 4 January 2020).
- Remaining of White House of Prince Tsogt. Available online: https://mongolia-guide.com/place/remaining-of-white-house-of-prince-tsogt (accessed on 21 November 2019).
- Chuluun, S.; Enkhtuul, C.; Battsooj, B. Archaeological Excavation Report: ‘XVII ЗУУНЫ МОНГОЛЫН ХОТУУД’ ТӨСӨЛ. БУЛГАН АЙМГИЙН БАЯННУУР СУМЫН НУТАГ ДАХЬ ЦОГТЫН ЦАГААН БАЙШИНГИЙН ТУУРЬТ ЯВУУЛСАН; Ulaanbaatar, Mongolia, 2018. [Google Scholar]
- Climate Risk Profile Mongolia. 2017. Available online: https://www.climatelinks.org/resources/climate-change-risk-profile-mongolia (accessed on 4 January 2020).
- Otgonbayar, M.; Atzberger, C.; Mattiuzzi, M.; Erdenedalai, A. Estimation of climatologies of average monthly air temperature over mongolia using MODIS land surface temperature (LST) time series and machine learning techniques. Remote Sens. 2019, 11, 2588. [Google Scholar] [CrossRef] [Green Version]
- Doljinsuren, A.B.J.; Suzanna, S. Mongolia Voluntary National Review 2019. Implementation of the Sustainable Development Goals, Ulaanbaatar. 2019. Available online: https://sustainabledevelopment.un.org/content/documents/23342MONGOLIA_VOLUNTARY_NATIONAL_REVIEW_REPORT_2019.pdf (accessed on 6 June 2021).
- Vergès-Belmin, V. Illustrated Glossary on Stone Deterioration Patterns; Monuments and Sites XV; ICOMOS: Paris, France, 2008. [Google Scholar]
- Terry, R.D.; Chilingar, G.V. Percent coverage comparison charts. J. Sediment. Petrol. 1955, 24, 229–234. [Google Scholar] [CrossRef]
- Yaseen, I.A.B.; Al-Amoush, H.; Al-Farajat, M.; Mayyas, A. Petrography and mineralogy of Roman mortars from buildings of the ancient city of Jerash, Jordan. Constr. Build. Mater. 2013, 38, 465–471. [Google Scholar] [CrossRef]
- Diekamp, A.; Konzett, J.; Mirwald, P.W. Magnesian lime mortars–Identification of magnesium phases in medieval mortars and plasters with imaging techniques. In Proceedings of the 12th Euroseminar on Microscopy Applied to Building Materials, Dortmund, Germany, 14–18 September 2009; pp. 309–317. Available online: https://www.researchgate.net/publication/236875128 (accessed on 6 June 2021).
- Pecchioni, E.; Fratini, F.; Cantisani, E. Atlante delle Malte Antiche in Sezione Sottile al Microscopio Ottico; Nardini Editore: Florence, Italy, 2014. [Google Scholar]
- Montoya, C.; Lanas, J.; Arandigoyen, M.; Navarro, I.; Casado, P.G.; Alvarez, J.I. Study of ancient dolomitic mortars of the church of Santa María de Zamarce in Navarra (Spain): Comparison with simulated standards. Thermochim. Acta 2003, 398, 107–122. [Google Scholar] [CrossRef] [Green Version]
- Villaseñor, I.; Price, C.A. Technology and decay of magnesian lime plasters: The sculptures of the funerary crypt of Palenque, Mexico. J. Archaeol. Sci. 2008, 35, 1030–1039. [Google Scholar] [CrossRef]
- Ouahabi, M.E.; Daoudi, L.; Hatert, F.; Fagel, N. Modified mineral phases during clay ceramic firing. Clays Clay Miner. 2015, 63, 404–413. [Google Scholar] [CrossRef]
- Albero Santacreu, D. Materiality, Techniques and Society in Pottery Production: The Technological Study of Archaeological Ceramics through Paste Analysis; De Gruyter Open Ltd.: Berlin, Germany, 2014. [Google Scholar]
- López-Arce, P.; Garcia-Guinea, J.; Gracia, M.; Obis, J. Bricks in historical buildings of Toledo City: Characterisation and restoration. Mater. Charact. 2003, 50, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Cardiano, P.; Ioppolo, S.; De Stefano, C.; Pettignano, A.; Sergi, S.; Piraino, P. Study and characterization of the ancient bricks of monastery of “San Filippo di Fragalà” in Frazzanò (Sicily). Anal. Chim. Acta 2004, 519, 103–111. [Google Scholar] [CrossRef]
- Tanevska, V.; Colomban, P.; Minčeva-Šukarova, B.; Grupče, O. Characterization of pottery from the Republic of Macedonia I: Raman analyses of Byzantine glazed pottery excavated from Prilep and Skopje (12th–14th century). J. Raman Spectrosc. 2009, 40, 1240–1248. [Google Scholar] [CrossRef]
- Hoo, Q.; Wang, X.; Yuan, F.; Cao, X.; Cao, T.; Zhang, M. Microstructure and coloring mechanism of iron spots on bluish white porcelain from Jingdezhen of the Song Dynasty. J. Eur. Ceram. Soc. 2021, 41, 3816–3822. [Google Scholar] [CrossRef]
- Ricci, G. Archaeometric Studies of Historical Ceramic Materials; Università Ca’Foscari: Venice, Italy, 2016. [Google Scholar]
- Molera, J.; Pradell, T.; Salvadó, N.; Vendrell-Saz, M. Interactions between clay bodies and lead glazes. J. Am. Ceram. Soc. 2001, 84, 1120–1128. [Google Scholar] [CrossRef]
- Pradell, T.; Molera, J. Ceramic technology. How to characterise ceramic glazes. Archaeol. Anthropol. Sci. 2020, 12, 1–28. [Google Scholar] [CrossRef]
- Hanesch, M. Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys. J. Int. 2009, 177, 941–948. [Google Scholar] [CrossRef]
- Peltier, L.C. The geographic cycle in periglacial regions as it is related to climatic geomorphology. Ann. Assoc. Am. Geogr. 1950, 40, 214–236. [Google Scholar] [CrossRef]
Sample Name | Material Sampled | Sampling High (cm from the Ground Floor) | Sampling Depth (cm from the External Surface) | Brief Description | ||
---|---|---|---|---|---|---|
from | to | from | to | |||
TPR1P | P | 45 | 50 | 0 | 1 | White plaster |
TPR2M | M | 40 | 45 | 0 | 1 | Brown bedding mortar |
TPR3B | B | 150 | 160 | 0 | 2 | Brown-yellowish brick |
TPR4B | B | 105 | 110 | 0 | 2 | Green-grey brick |
TPR5P | P | 130 | 135 | 0 | 2 | White plaster |
TPR6M | M | 125 | 130 | 0 | 2 | Light brown bedding mortar |
TPR7B | B | 125 | 128 | 0 | 2 | Grey brick |
TPR8B | B | 130 | 135 | 0 | 2 | Red brick |
TPR9AT | T | / | / | / | / | Light yellow glazed tile |
TPR9BT | T | / | / | / | / | Dark yellow glazed tile |
TPR10T | T | / | / | / | / | Dark green glazed tile |
TPR11T | T | / | / | / | / | Green glazed tile |
TPR12T | T | / | / | / | / | Green-light blue glazed tile |
TPR13T | T | / | / | / | / | Red glazed tile |
TPR14T | T | / | / | / | / | Grey-light blue glazed tile |
TPR15T | T | / | / | / | / | Red-brownish glazed tile |
TPR16R | R | / | / | / | / | Whitish residual material |
Sample Name | Sampling Point | Main Damage Types | Degree of Damage | |
---|---|---|---|---|
TPR1P | Biological colonisationMaterial loss/Missing parts/Detachment of the plaster from the masonry | +++ +++ | ||
TPR2M | Crack/Fracture Material loss/Missing parts/Erosion | +++ +++ | ||
TPR3B | Material loss/Erosion | + | ||
TPR4B | Crack/Fracture Material loss/Missing parts Biological colonisation | ++ ++ ++ | ||
TPR5P | Material loss/Missing parts/Detachment of the plaster from the masonry Material loss/Microkarst | +++ ++ | ||
TPR6M | Material loss/Microkarst Material loss/Erosion | ++ ++ | ||
TPR7B | Discolouration & Deposits/Colouration | ++ | ||
TPR8B | Biological colonisation | ++ | ||
TPR9AT | Well preserved fragments collected from the ground | |||
TPR9BT | ||||
TPR10T | ||||
TPR11T | ||||
TPR12T | ||||
TPR13T | ||||
TPR14T | ||||
TPR15T | ||||
TPR16R | Deposit of residual material |
Sample | Material | Analyses | ||||
---|---|---|---|---|---|---|
PLM | XRPD | IC | SEM-EDS | Raman | ||
TPR1P | Plasters | |||||
TPR5P | ||||||
TPR2M | Mortars | |||||
TPR6M | ||||||
TPR3B | Bricks | |||||
TPR4B | ||||||
TPR7B | ||||||
TPR8B | ||||||
TPR9AT | Tiles | |||||
TPR9BT | ||||||
TPR10T | ||||||
TPR11T | ||||||
TPR12T | ||||||
TPR13T | ||||||
TPR14T | ||||||
TPR15T | ||||||
TPR16R | Residual material |
Sample | Material | Cal | Qtz | Fsp | Chl | Mic | Amph | Hmgs | Hem |
---|---|---|---|---|---|---|---|---|---|
TPR1P | Plaster | +++++ | ++ | - | - | - | - | - | - |
TPR5P | +++++ | ++ | - | - | - | - | - | - | |
TPR2M | Mortar | + | +++++ | +++ | +/- | - | - | - | - |
TPR6M | ++ | +++++ | +++/++++ | + | +/- | +/- | - | - | |
TPR3B | Brick | + | +++++ | +++ | +/- | - | - | - | - |
TPR4B | - | +++++ | ++ | - | - | - | - | + | |
TPR7B | - | +++++ | ++ | - | - | - | - | - | |
TPR8B | - | +++++ | ++ | - | - | - | - | - | |
TPR9AT | Tile | - | +++++ | ++ | - | - | - | - | - |
TPR9BT | - | +++++ | +/++ | - | - | - | - | - | |
TPR10T | - | +++++ | +/++ | - | - | - | - | - | |
TPR11T | - | +++++ | +/++ | - | +/- | +/- | - | - | |
TPR12T | - | +++++ | ++ | - | - | - | - | - | |
TPR13T | - | +++++ | +/++ | - | +/- | - | - | - | |
TPR14T | - | +++++ | +/++ | - | - | - | - | - | |
TPR15T | - | +++++ | ++ | - | - | - | - | - | |
TPR16R | Residual material | +++++ | + | - | - | - | - | + | - |
Sample | PO43− | C2O4= | NO2− | NO3− | SO4= | Cl− | F− |
---|---|---|---|---|---|---|---|
TPR1P | 621 | 542 | 45 | 107 | 645 | 152 | 227 |
TPR2M | 240 | 27 | 11 | 208 | 531 | 210 | 66 |
TPR5P | 295 | 139 | 26 | 358 | 1464 | 314 | 49 |
TPR6M | 211 | 39 | 40 | 91 | 2504 | 134 | 119 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sardella, A.; Canevarolo, S.; Marrocchino, E.; Tittarelli, F.; Bonazza, A. Investigation of Building Materials Belonging to the Ruins of the Tsogt Palace in Mongolia. Heritage 2021, 4, 2494-2514. https://doi.org/10.3390/heritage4030141
Sardella A, Canevarolo S, Marrocchino E, Tittarelli F, Bonazza A. Investigation of Building Materials Belonging to the Ruins of the Tsogt Palace in Mongolia. Heritage. 2021; 4(3):2494-2514. https://doi.org/10.3390/heritage4030141
Chicago/Turabian StyleSardella, Alessandro, Sonia Canevarolo, Elena Marrocchino, Francesca Tittarelli, and Alessandra Bonazza. 2021. "Investigation of Building Materials Belonging to the Ruins of the Tsogt Palace in Mongolia" Heritage 4, no. 3: 2494-2514. https://doi.org/10.3390/heritage4030141
APA StyleSardella, A., Canevarolo, S., Marrocchino, E., Tittarelli, F., & Bonazza, A. (2021). Investigation of Building Materials Belonging to the Ruins of the Tsogt Palace in Mongolia. Heritage, 4(3), 2494-2514. https://doi.org/10.3390/heritage4030141