Production Technologies and Provenance of Ceramic Materials from the Earliest Foundry of Pre-Roman Padua, NE Italy
Abstract
:1. Introduction
1.1. Rock and Mineral Fragments and Clay Fractions of Padua’s Territory Sediments
1.2. The Earliest Foundry of Pre-Roman Padua and the Trade with the Adriatic Sea
2. Materials and Methods
2.1. The Pots from the Earliest Foundry of Pre-Roman Padua
2.2. Multi-Analytical Approach
- (i)
- Visual examination and macroscopic description of the potsherds, both external and freshly cut surfaces.
- (ii)
- Petrographic analysis, mainly to describe micromass and porosity and to identify the minerals and rock fragments that constitute the inclusions. The 40 potsherds were studied in thin section by Polarizing Optical Microscopy (POM), using a Nikon Eclipse E660 microscope fitted with a CANON 650 digital camera and the Camera EOS digital microphotography system. The petrographic and textural features were described according to systematics proposed by Whitbread [47] and Quinn [48].
- (iii)
- Spectroscopy analysis: on one side, mineralogical analyses of all the ceramic bodies were performed by means of X-ray Powder Diffraction (XRPD), in order to detect the mineral phases forming part of the ceramic bodies (pristine, firing and/or secondary phases). The external portion of each sherd was removed with a micro-drill to eliminate the material that could be differently manufactured and/or surface contamination. The ceramic bodies were reduced to powder in an agate mortar and then micronized (very fine powder, ≈10 μm) using a McCrone Micronising Mill [49]. X-ray Powder Diffraction data were obtained with a PANalytical X’Pert PRO diffractometer in Bragg–Brentano geometry equipped with a cobalt X-ray tube and a X’Celerator detector (40 kV voltage, 30 mA current, scanning interval 3–70°, equivalent step size 0.02° and equivalent counting time 1 s per step). The X’Pert HighScore Plus software was used to identify qualitatively mineral phases and XRPD data were statistically treated by cluster analysis according to the procedure proposed by Maritan et al. [50]. On the other, the chemical composition of the ceramic bodies of 29 sherds was determined by X-ray Fluorescence Spectrometry (XRF) on a WDS Panalytical Zetium sequential spectrometer. Beads were prepared from powder after calcination and mixed with Li2B4O7, at a dilution ratio of 1:10. Quantitative chemical analyses of major and minor (wt% of SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O and P2O5) and trace elements (ppm of S, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Nd, Pb, Th and U) were carried out. Geological standards were used for calibration [51]. Loss on ignition (LOI) was determined heating the samples in a furnace at 860 °C for 20 min, and then at 980 °C for 2 h.
3. Results and Discussion
3.1. Macroscopic Description of External and Freshly Cut Surfaces
- -
- Macro-group 1 (24 sherds) is composed by very dark-colored bodies with diverse grain-size inclusions: (i) heterogenous textured bodies with coarse-grained (2 mm—500 μm) and medium-grained (500—250 μm) inclusions; (ii) very uniform textured bodies (especially those shaping delicate pieces, ≈5 mm thick) with fine-grained (250—63 μm) inclusions and (iii) even textured bodies with many light, homogeneous in-size inclusions evenly spread. The inclusions are mainly coarse-grained (2 mm—500 μm) or medium-grained (500—250 μm), fine-grained inclusions (250—63 μm) only in sherd n°12.
- -
- Macro-group 2 (6 sherds) corresponds to dark and brown-colored bodies with many coarse-grained and medium-grained carbonate inclusions, with angular/sub-angular shapes and rather uniformly distributed.
- -
- Marco-group 3 (10 sherds) comprises a miscellany of pots with very dark or brown-colored bodies (towards an orange hue in sherds n°23 and 34). The inclusions are different in type, abundance and size.
3.2. Petrographic Features
3.2.1. Petro-Fabric 1: Potsherds with Silicate Inclusions (24 Sherds)
Petro-Fabric 1a: Uneven Textured Groundmass with Coarse- and Medium-Grained Inclusions (Sherds n°13, 24, 26, 30–32, 37, 39 and 40)
Petro-Fabric 1b: Even Textured Groundmass with Fine-Grained Inclusions (Sherds n°8, 16, 18, 20 and 28)
Petro-Fabric 1c: Highly Even Textured Groundmass with Silicate Tempering (Sherds n°7, 9, 10, 12, 15, 19 and 22)
3.2.2. Petro-Fabric 2: Potsherds with Calcite Temper (6 Sherds: n°1, 2, 5, 6, 25 and 38)
3.2.3. Miscellaneous Potsherds (10 Sherds: n°3, 14, 17, 21, 23, 27, 33–36)
3.3. Chemical Composition
3.4. Mineralogical Composition
n° | Qz | Ab | Ilt | Sa | Chl | Cal | Dol | Firing T (°C) | ||
---|---|---|---|---|---|---|---|---|---|---|
Petro-Fabric 1. Potsherds with Silicate Inclusions | Petro-fabric 1a | 13 | xxx | xx | xxx | x | - | - | - | <800 |
24 | xxx | x | xx | x | - | x | - | 800–850 | ||
26 | xxx | x | x | - | - | - | - | 850–900 | ||
30 | xxx | x | xx | xxx | - | - | - | 800–850 | ||
31 | xxx | x | xx | - | - | - | - | 800–850 | ||
32 | xxx | x | xx | - | - | - | - | 800–850 | ||
37 | xxx | xx | xxx | x | - | - | - | <800 | ||
39 | xxx | xx | x | - | - | - | - | 850–900 | ||
40 | xxx | xx | xxx | xxx | - | - | - | <800 | ||
Petro-fabric 1b | 8 | xxx | xx | x | xxx | - | - | - | 850–900 | |
16 | xxx | xx | x | xx | - | - | - | 850–900 | ||
18 | xxx | xxx | xx | xxx | x | x | - | ≈800 | ||
20 | xxx | xxx | x | xx | - | x | - | 850–900 | ||
28 | xxx | xx | xx | x | - | - | - | 800–850 | ||
11 | xxx | xx | xx | x | - | - | - | 800–850 | ||
12 | xxx | xx | xx | x | - | - | - | 800–850 | ||
29 | xxx | xxx | xxx | xx | - | - | - | <800 | ||
Petro-fabric 1c. Si-rich tempering | 9 | xxx | xxx | x | xxx | - | - | - | 850–900 | |
10 | xxx | x | - | - | - | x | - | 900–950 | ||
15 | xxx | x | xx | x | x | - | - | ≈800 | ||
7 * | xxx | xxx | - | xxx | - | - | - | 900–950 | ||
12 | xxx | xx | xx | x | x | x | x | ≈800 | ||
19 * | xxx | xx | - | xx | - | x | - | 900–950 | ||
22 | xxx | xx | xx | x | x | x | x | ≈800 | ||
Petro-Fabric 2. Calcite-Tempered Potsherds | 1 | xx | x | x | - | - | xxx | - | 800–850 | |
5 | xx | - | x | - | - | xxx | - | 800–850 | ||
6 | xx | - | x | - | - | xxx | - | 800–850 | ||
2 | xx | - | x | - | - | xxx | - | 800–850 | ||
25 | xx | - | x | - | - | xxx | - | 800–850 | ||
38 | xx | - | x | - | - | xxx | - | 800–850 | ||
Miscellaneous Petro-Fabric 1. | 3 | xx | xx | xx | - | - | xx | - | 800–850 | |
17 | xxx | x | xx | - | - | xx | xxx | 750–800 | ||
27 * | xxx | x | xxx | xx | xxx | x | - | <700 | ||
35 | xxx | x | xx | - | xx | xx | - | 700–750 | ||
36 | xxx | xx | x | xx | - | xx | - | 800–850 | ||
14 | xxx | xx | xxx | xx | xx | - | - | <700 | ||
21 | xxx | xx | xxx | xx | xx | - | - | <700 | ||
23 | xx | xxx | xxx | xxx | - | - | - | <800 | ||
33 * | xxx | x | xxx | x | - | x | - | <800 | ||
34 | xxx | x | xxx | - | - | xx | - | 800–850 |
4. Conclusions
- Local production from the southern Veneto territory (petro-fabric 1, dark-colored ceramic bodies). Common geo-resources were used, consisting in illitic–chloritic clays rich in quartz and alkaline feldspars. Firing regime conditions with a wide range of maximum firing temperatures (always <950 °C) and consistent with pit firing methods were adopted. For the manufacturing of the fine wares, the purification of the raw clays (delicate pieces of petro-fabric 1b) and/or the tempering with silica-rich inclusions (petro-fabric 1c) were accomplished.
- Regional and/or extra-regional calcite-tempered pottery (petro-fabric 2, dark- and brown-colored ceramic bodies). The pots corresponded to diverse productions, made with different illitic clays, that adopted different technological choices, mainly related to the quantity of calcite-temper addition and to the redox firing conditions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Picon, M. Introduction à L’étude Tecnnique des Céramiques Sigillées de Lezoux; Centre de Recherches sur les Techniques Gréco-romaines, Universitè de Dijon: Dijon, France, 1973; p. 135. [Google Scholar]
- Mirti, P.; Davit, P. New developments in the study of ancient pottery by colour measurement. J. Archaeol. Sci. 2004, 31, 741–751. [Google Scholar] [CrossRef]
- Pérez-Monserrat, E.M.; Maritan, L.; Garbin, E.; Cultrone, G. Production technologies of ancient bricks from Padua, Italy: Changing colors and resistance over time. Minerals 2021, 11, 744. [Google Scholar] [CrossRef]
- Pérez-Monserrat, E.M.; Causarano, M.-A.; Maritan, L.; Chavarria, A.; Brogiolo, G.P.; Cultrone, G. Roman brick production technologies in Padua (Northern Italy) along the Late Antiquity and Medieval times: Durable bricks on high humid environs. J. Cult. Herit. 2022, 54, 12–20. [Google Scholar] [CrossRef]
- Maritan, L. Ceramics: Chemical and petrographic analysis. Ref. Modul. Soc. Sci. 2023. [Google Scholar] [CrossRef]
- Bimsom, M. The examination of ceramics by X-ray Powder Diffraction. Stud. Conserv. 1969, 14, 83–89. [Google Scholar] [CrossRef]
- Philpotts, A.R.; Wilson, N. Application of petrofabric and phase equilibria analysis to the study of a potsherd. J. Archaeol. Sci. 1994, 21, 607–618. [Google Scholar] [CrossRef]
- Maritan, L. Archaeo-Ceramic 2.0: Investigating ancient ceramics using modern technological approaches. Archaeol. Anthropol. Sci. 2019, 11, 5085–5093. [Google Scholar] [CrossRef]
- Maritan, L.; Nodari, L.; Mazzoli, C.; Milano, A.; Russo, U. Influence of firing conditions on ceramic products: Experimental study on clay rich in organic matter. Appl. Clay Sci. 2006, 31, 1–15. [Google Scholar] [CrossRef]
- Gliozzo, E. Ceramic technology. How to reconstruct the firing process. Archaeol. Anthropol. Sci. 2020, 12, 260. [Google Scholar] [CrossRef]
- Kingery, W.D.; Bowen, H.K.; Uhlmann, D.R. Introduction to Ceramics, 2nd ed.; John Wiley: New York, NY, USA, 1976; p. 1056. [Google Scholar]
- Ionescu, C.; Hoeck, V. Ceramic technology. How to investigate surface finishing. Archaeol. Anthropol. Sci. 2020, 12, 204. [Google Scholar] [CrossRef]
- Eramo, G. Ceramic technology. How to recognize clay processing. Archaeol. Anthropol. Sci. 2020, 12, 164. [Google Scholar] [CrossRef]
- Rice, P.M. Pottery Analysis. A Sourcebook; University of Chicago Press: Chicago, IL, USA, 1987; p. 592. [Google Scholar]
- Iordanidis, A.; Garcia-Guinea, J.; Karamitrou-Mentessidi, G. Analytical study of ancient pottery from the archaeological site of Aiani, Northern Greece. Mater. Charact. 2009, 60, 292–302. [Google Scholar] [CrossRef]
- Segnit, E.R.; Anderson, C.A. Scanning Electron Microscopy of fired illite. Trans. Br. Ceram. Soc. 1972, 71, 85–88. [Google Scholar]
- Bronitsky, G.; Hamer, R. Experiments in ceramic technology: The effects of various tempering materials on impact and thermal-shock resistance. Am. Antiq. 1986, 51, 89–101. [Google Scholar] [CrossRef]
- Hoard, R.J.; O’Brien, M.J.; Khorasgany, M.G.; Gopalaratnam, V.S. A materials-science approach to understanding limestone-tempered pottery from the Midwestern United States. J. Archaeol. Sci. 1995, 22, 823–832. [Google Scholar] [CrossRef]
- Laird, R.T.; Worcester, M. The inhibition of lime blowing. Trans. Br. Ceram. Soc. 1956, 55, 545–563. [Google Scholar]
- Fabbri, B.; Gualtieri, S.; Shoval, S. The presence of calcite in archeological ceramics. J. Eur. Ceram. Soc. 2014, 34, 1899–1911. [Google Scholar] [CrossRef]
- Arsenovic´, M.; Stankovic´, S.; Pezo, L.; Mancic’, L.; Radojevic, Z. Optimization of the production process through response surface method: Bricks made of loess. Ceram. Int. 2013, 39, 3065–3075. [Google Scholar] [CrossRef]
- Maritan, L.; Mazzoli, C.; Nodari, L.; Russo, U. Second Iron Age grey pottery from Este (Northeastern Italy): Study of provenance and technology. Appl. Clay Sci. 2005, 29, 31–44. [Google Scholar] [CrossRef]
- Jobstraibitzer, P.; Malesani, P. I sedimenti dei fiumi Veneti. Mem. Soc. Geo. Ital. 1973, 12, 411–452. [Google Scholar]
- Piccoli, G.; Sedea, R.; Bellati, R.; di Lallo, E.; Medizza, F.; Girardi, A.; de Pieri, A.; de Vecchi, G.P.; Gregnanin, A.; Piccirillo, E.M.; et al. Note ilustrative della carta geologica dei Colli Euganei alla scala 1:25.000. Mem. Di Sci. Geol. dell’Università Degli Studi Di Padova 1981, 34, 523–566. [Google Scholar]
- Bartolomei, G.; Corsi, M.; dal Cin, R.; d’Amico, C.; Gatto, G.O.; Gatto, P.; Nardin, M.; Rossi, D.; Sacerdoti, M.; Semenza, E. Note Illustrative Della Carta Geologica d’Italia Alla Scala 1:100.000, Foglio 21 Trento; Poligrafica e Cartelavori Ercolano: Napoli, Italy, 1969. [Google Scholar]
- Leonardi, G. Premesse sociali e culturali alla formazione dei centri protourbani del Veneto. In Proceedings of the Bollettino di Archeologia on Line Volume Speciale F/F1/4 XVII International Congress of Classical Archaeology: Meeting between Cultures in the Ancient Mediterranean, Roma, Italy, 22–26 September 2008. [Google Scholar]
- Cupitò, M.; Lotto, D.; Facchin, A. Dinamiche di popolamento e modelli di organizzazione del territorio nella bassa pianura Veneta compresa tra Adige e tagliamento durante l’Età del Bronzo. In Studi di Preistoria e Protostoria—2—Preistoria e Protostoria del Veneto; Leonardi, G., Tinè, V., Eds.; Istituto Italiano di Preistoria e Protostoria: Firenze, Italia, 2015; pp. 295–306. [Google Scholar]
- Vidale, M.; Michelini, P. Attached versus independent craft production in the formation of the early city-state of Padova (Northeastern Italy), First Millennium BC. In Making Cities: Economies of Production and Urbanization in Mediterranean Europe, 1000–1500 BC; Gleba, M., Marín-Aguilera, B., Dimova, G., Eds.; University of Cambridge: Cambridge, UK, 2021; pp. 123–145. [Google Scholar]
- Bosio, L. Padova e il suo territorio in Età Preromana. In Padova Antica: Da Comunità Paleoveneta a Citta Romano-Cristiana, 1st ed.; Sartori, F., Bassignano, M.S., Eds.; Lint: Trieste, Italy, 1981; pp. 3–18. [Google Scholar]
- Balista, C.; Rinaldi, L. I percorsi Pre-Protostorici del fiume Brenta a Padova. In La Città Invisibile, Padova Preromana, Trent’anni di Scavi e Ricerche; De Min, M., Gambe, M., Gambecurta, G., Rate Serafin, A., Eds.; Banca Antoveneta, Tipoarte Edizione: Bologna, Italia, 2005; pp. 11–21. [Google Scholar]
- Michelini, P. L’Organizzazione della Produzione Artigianale a Padova Tra Il IX e Il I Secolo AC; Padova University Press: Padova, Italia, 2021; p. 152. [Google Scholar]
- Ruzzante, M. Il sito di Riviera Ruzante—Angolo Via Santa Chiara a Padova. Studio Tipo-Cronologico delle Ceramiche delle Prime fasi dell’Età del Ferro. Master’s Thesis, University of Padua, Padua, Italy, 2016. [Google Scholar]
- Maritan, L.; Mazzoli, C.; Michielin, V.; Bonacossi, D.M.; Luciani, M.; Molin, G. The provenance and production technology of Bronze Age and Iron Age pottery from Tell Mishrifeh/Qatna (Syria). Archaeometry 2005, 47, 723–744. [Google Scholar] [CrossRef]
- Albero Santacreu, D.; Cau Ontiveros, M.A. Technological choices in hand-made indigenous pottery from Western Mallorca (Balearic Islands, Spain) (C.1200–75 BC): An archaeometric approach. Archaeometry 2017, 59, 642–666. [Google Scholar] [CrossRef]
- Maritan, L.; Ganzarolli, G.; Antonelli, F.; Rigo, M.; Kapatza, A.; Bajnok, K.; Coletti, C.; Mazzoli, C.; Lazzarini, L.; Vedovetto, P.; et al. What kind of calcite? Disclosing the origin of sparry calcite temper in ancient ceramics. J. Archaeol. Sci. 2021, 129, 105358. [Google Scholar] [CrossRef]
- Baker, A.; Smart, P.L.; Edwards, R.L.; Richards, D.A. Annual growth banding in a cave stalagmite. Nature 1993, 364, 518–520. [Google Scholar] [CrossRef]
- Frisia, S.; Borsato, A.; Fairchild, I.J.; McDermott, F. Calcite fabrics, growth mechanisms and environments of formation in speleothems from the Italian Alps and Southwestern Ireland. J. Sediment. Res. 2000, 70, 1183–1196. [Google Scholar] [CrossRef]
- Càssola Guida, P.; Mizzan, S. Pozzuolo del Friuli II, 1. La Prima Età del Ferro nel Settore Meridionale del Castelliere. Lo Scavo e la Ceramica; Edizioni Quasar: Roma, Italia, 1996; p. 370. [Google Scholar]
- Càssola Guida, P.; Balista, C. Gradisca Di Spilimbergo (Pordenone). Indagini Di Scavo in Un Castelliere Protostorico (1987–1992); Studi e Ricerche di Protostoria Mediterranea; Edizioni Quasar: Roma, Italy, 2007; Volume 7, ISBN 978-88-7140-349-6. [Google Scholar]
- Prosdocimi, B. Una Produzione di Ceramica della Prima Età del Ferro tra Veneto e Friuli: Le olle ad orlo Appiattito. Ph.D. Thesis, University of Udine, Udine, Italy, 2010. [Google Scholar]
- Tenconi, M. Study of the Production and the Regional and Interregional Relations between the Protohistory Communities from the Northern Italy, Particularly Focusing on the Middle-East Area, through the Archaeometrical Analysis of Their Pottery. Ph.D. Thesis, University of Padua, Padua, Italy, 2013. [Google Scholar]
- Tenconi, M.; Maritan, L.; Leonardi, G.; Prosdocimi, B.; Mazzoli, C. Ceramic production and distribution in North-East Italy: Study of a possible trade network between Friuli Venezia Giulia and Veneto regions during the Final Bronze Age and Early Iron Age through analysis of peculiar “Flared Rim and Flat Lip” pottery. Appl. Clay Sci. 2013, 82, 121–134. [Google Scholar] [CrossRef]
- Tenconi, M.; Maritan, L.; Mazzoli, C. Textural changes in speleothem inclusions during firing: A useful tool to estimate temperature in speleothem-bearing pottery. Archaeometry 2016, 58, 39–53. [Google Scholar] [CrossRef]
- Catasto Regionale Delle Grotte del Friuli Venezia Giulia. Available online: http://www.catastogrotte.fvg.it/.
- Germinario, L.; Zara, A.; Maritan, L.; Bonetto, J.; Hanchar, J.M.; Sassi, R.; Siegesmund, S.; Mazzoli, C. Tracking trachyte on the Roman routes: Provenance study of Roman infrastructure and insights into ancient trades in Northern Italy. Geoarchaeology 2018, 33, 417–429. [Google Scholar] [CrossRef]
- Marcassa, P.; Pirazzini, C. 46. Riviera Ruzante, Questura. In La città Invisibile, Padova Preromana, Trent’anni di Scavi e Ricerche; Banca Antoveneta, Tipoarte Adizione: Bologna, Italia, 2005; pp. 91–94. [Google Scholar]
- Whitbread, I.K. A proposal for the systematic description of thin sections towards the study of ancient ceramic technology. In Proceedings of the 25th International Symposium of Archaeometry, Athens, Greece, 19–23 May 1986; Maniatis, Y., Ed.; Elsevier: Amsterdam, The Netherlands, 1989; pp. 127–138. [Google Scholar]
- Quinn, P.S. Ceramic Petrography: The Interpretation of Archaeological Pottery and Related Artefacts in Thin Sections; Archaeopress: Oxford, UK, 2013; p. 260. [Google Scholar]
- Bish, D.L.; Reynolds, R.C. Modern Powder Diffraction. In Reviews in Mineralogy & Geochemistry; Bish, D.L., Post, J.E., Eds.; De Gruyter: Berlin, Germany; Boston, MA, USA, 1989; Volume 20, pp. 73–100. [Google Scholar]
- Maritan, L.; Holakooei, P.; Mazzoli, C. Cluster analysis of XRPD data in ancient ceramics: What for? Appl. Clay Sci. 2015, 114, 540–549. [Google Scholar] [CrossRef]
- Govindaraju, K. Compilation of working values and sample description for 383 Geostandards. Geostand. Newsl. 1994, 18, 1–158. [Google Scholar] [CrossRef]
- Nodari, L.; Maritan, L.; Mazzoli, C.; Russo, U. Sandwich structures in the Etruscan-Padan type pottery. Appl. Clay Sci. 2004, 27, 119–128. [Google Scholar] [CrossRef]
- Gazzi, P.; Zuffa, G.G.; Gandolfi, G.; Paganelli, L. Provenienza e dispersione litoranea delle sabbie delle spiagge Adriatiche fra le Foci dell’Isonzo e del Foglia: Inquadramento regionale. Mem. Soc. Geol. It. 1973, 12, 1–37. [Google Scholar]
- Maritan, L. Archaeometric study of Etruscan-Padan type pottery from the Veneto Region: Petrographic, mineralogical and geochemical-physical characterisation. Eur. J. Mineral. 2004, 16, 297–307. [Google Scholar] [CrossRef]
- Trindade, M.J.; Dias, M.I.; Coroado, J.; Rocha, F. Mineralogical transformations of calcareous rich clays with firing: A comparative study between calcite and dolomite rich clays from Algarve, Portugal. Appl. Clay Sci. 2009, 42, 345–355. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Kudlacz, K.; Ruiz-Agudo, E. The mechanism of thermal decomposition of dolomite: New insights from 2D-XRD and TEM analyses. Am. Mineral. 2012, 97, 38–51. [Google Scholar] [CrossRef]
- Warr, L.N. IMA-CNMNC Approved mineral symbols. Mineral. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Ruiz-Agudo, E.; Luque, A.; Rodriguez-Navarro, A.B.; Ortega-Huertas, M. Thermal decomposition of dalcite: Mechanisms of formation and textural evolution of CaO nanocrystals. Am. Mineral. 2009, 94, 578–593. [Google Scholar] [CrossRef]
- Jordán, M.M.; Boix, A.; Sanfeliu, T.; de la Fuente, C. Firing transformations of Cretaceous clays used in the manufacturing of ceramic tiles. Appl. Clay Sci. 1999, 14, 225–234. [Google Scholar] [CrossRef]
- Khalfaoui, A.; Kacim, S.; Hajjaji, M. Sintering mechanism and ceramic phases of an illitic-chloritic raw clay. J. Eur. Ceram. Soc. 2006, 26, 161–167. [Google Scholar] [CrossRef]
- El Ouahabi, M.; Daoudi, L.; Hatert, F.; Fagel, N. Modified mineral phases during clay ceramic firing. Clays Clay Miner. 2015, 63, 404–413. [Google Scholar] [CrossRef]
- Laita, E.; Bauluz, B.; Mayayo, M.J.; Yuste, A. Mineral and textural transformations in mixtures of Al-rich and Al-K-rich clays with firing: Refractory potential of the fired products. Ceram. Int. 2021, 47, 14527–14539. [Google Scholar] [CrossRef]
- Heimann, R.B. Assessing the technology of ancient pottery: The use of ceramic phase diagrams. Archeomaterials 1989, 3, 123–148. [Google Scholar]
- Jenkins, D.; Williams, J.L.; Levi, S.T. Petrographic analysis in provenancing and classification of sherds: The lower Po Valley—A case study. In Proceedings of the 4th European Meeting on Ancient Ceramics, Athens, Greece, 18–20 October 1999; Maggetti, M., Vendrell-Saz, M., Eds.; Govern d’Andorra Ministeri de Turisme I Cultura: Andorra, Andorra, 1999; pp. 175–181. [Google Scholar]
- Jones, R.; Vagnetti, L.; Levi, S.T.; Williams, J.; Jenkins, D.; De Guio, A. Mycenaean pottery from Northern Italy: Archaeological and Archaeometric Studies. Studi Micen. Ed Egeo-Anatolici 2002, 44, 221–261. [Google Scholar]
- Saracino, M. Archeologia della produzione ceramica nell’Alto e Medio Polesine tra il Bronzo Medio 2 e l’inizio della Prima Età del Ferro. In Padusa: Bollettino del Centro Polesano di Studi Storici Archeologici ed Etnografici: XLI; Fabrizio Serra Editore: Pisa, Italy, 2005; Volume 41, pp. 57–76. [Google Scholar] [CrossRef]
Petro-Fabric 1. Potsherds with Silicate Inclusions | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n° | SiO2 | TiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | Na2O | K2O | P2O5 | Tot | LOI * | |
Petro-fabric 1a | 13 | 64.6 | 1.42 | 18.3 | 6.32 | 0.08 | 1.78 | 2.24 | 1.75 | 2.30 | 0.67 | 99.5 | 7.64 |
24 | 61.0 | 1.64 | 18.0 | 7.18 | 0.08 | 2.23 | 3.83 | 1.43 | 2.36 | 1.30 | 99.0 | 8.50 | |
30 | 62.7 | 1.55 | 17.7 | 6.44 | 0.05 | 1.58 | 3.73 | 1.57 | 2.21 | 1.84 | 99.4 | 9.95 | |
39 | 66.5 | 1.37 | 17.4 | 5.78 | 0.05 | 1.19 | 2.19 | 1.87 | 2.35 | 0.79 | 99.5 | 4.78 | |
Petro-fabric 1b | 18 | 63.0 | 1.31 | 20.5 | 5.38 | 0.07 | 1.21 | 2.91 | 1.89 | 2.47 | 0.65 | 99.4 | 11.0 |
20 | 64.4 | 1.42 | 17.9 | 6.54 | 0.12 | 1.75 | 3.36 | 1.58 | 2.49 | 0.74 | 100.3 | 4.48 | |
28 | 64.7 | 1.51 | 18.2 | 5.81 | 0.05 | 1.38 | 2.89 | 1.54 | 2.01 | 1.39 | 99.5 | 9.37 | |
11 | 62.8 | 1.56 | 18.2 | 7.08 | 0.08 | 1.91 | 3.02 | 1.53 | 2.26 | 0.64 | 99.1 | 5.98 | |
Petro-fabric 1c Si-rich tempering | 9 | 61.8 | 1.02 | 19.4 | 5.13 | 0.05 | 1.16 | 4.46 | 2.31 | 2.78 | 1.19 | 99.3 | 9.78 |
10 | 67.5 | 0.89 | 16.6 | 5.45 | 0.07 | 1.77 | 2.70 | 1.59 | 2.61 | 0.47 | 99.7 | 2.96 | |
15 | 63.5 | 1.31 | 17.7 | 6.04 | 0.05 | 1.67 | 3.34 | 1.45 | 2.19 | 1.30 | 98.5 | 10.0 | |
7 | 59.2 | 1.98 | 19.2 | 8.42 | 0.12 | 2.36 | 3.62 | 1.80 | 2.24 | 0.43 | 99.4 | 1.61 | |
12 | 62.3 | 1.39 | 18.2 | 5.96 | 0.05 | 1.97 | 4.43 | 1.55 | 2.23 | 1.39 | 99.4 | 10.8 | |
19 | 63.6 | 1.41 | 17.8 | 6.79 | 0.12 | 1.75 | 3.05 | 1.54 | 2.43 | 0.44 | 99.0 | 2.95 | |
22 | 60.8 | 1.82 | 17.0 | 7.01 | 0.06 | 2.76 | 4.92 | 1.70 | 2.03 | 1.35 | 99.4 | 11.3 | |
63.23 | 1.44 | 18.14 | 6.36 | 0.07 | 1.76 | 3.38 | 1.67 | 2.33 | 0.97 | 99.36 | 7.41 | ||
Std | 2.16 | 0.27 | 0.97 | 0.86 | 0.03 | 0.45 | 0.80 | 0.23 | 0.20 | 0.44 | 0.39 | 3.32 | |
Petro-Fabric 2. Calcite-Tempered Potsherds | |||||||||||||
n° | SiO2 | TiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | Na2O | K2O | P2O5 | Tot | LOI | |
Dark-colored bodies | 1 | 55.1 | 0.79 | 14.2 | 4.85 | 0.08 | 1.68 | 19.4 | 0.66 | 1.59 | 0.72 | 99.1 | 19.3 |
5 | 50.0 | 0.68 | 14.2 | 4.23 | 0.03 | 1.14 | 26.2 | 0.16 | 1.97 | 0.56 | 99.1 | 18.6 | |
6 | 52.0 | 0.71 | 15.8 | 5.30 | 0.04 | 1.03 | 21.1 | 0.30 | 2.27 | 0.80 | 99.3 | 16.0 | |
52.4 | 0.73 | 14.7 | 4.79 | 0.05 | 1.28 | 22.2 | 0.37 | 1.94 | 0.69 | 99.2 | 18.0 | ||
Std | 2.57 | 0.06 | 0.92 | 0.54 | 0.03 | 0.35 | 3.54 | 0.26 | 0.34 | 0.12 | 0.12 | 1.74 | |
Brown-colored bodies | 2 | 44.3 | 0.86 | 15.1 | 4.01 | 0.05 | 1.66 | 30.6 | 0.23 | 1.56 | 1.20 | 99.6 | 24.2 |
25 | 49.8 | 0.75 | 14.7 | 4.15 | 0.05 | 0.94 | 26.2 | 0.16 | 1.89 | 0.80 | 99.4 | 19.5 | |
38 | 40.3 | 0.67 | 15.3 | 4.05 | 0.03 | 1.41 | 34.3 | 0.28 | 2.31 | 0.45 | 99.0 | 22.6 | |
44.8 | 0.76 | 15.0 | 4.07 | 0.04 | 1.34 | 30.4 | 0.22 | 1.92 | 0.82 | 99.3 | 22.1 | ||
Std | 4.77 | 0.10 | 0.31 | 0.07 | 0.01 | 0.37 | 4.06 | 0.06 | 0.38 | 0.38 | 0.31 | 2.39 | |
Miscellaneous Petro-Fabrics | |||||||||||||
n° | SiO2 | TiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | Na2O | K2O | P2O5 | Tot | LOI | |
3 | 58.6 | 1.55 | 17.3 | 6.76 | 0.05 | 2.18 | 8.56 | 1.66 | 2.34 | 0.64 | 99.6 | 9.71 | |
17 | 58.2 | 0.92 | 15.6 | 4.81 | 0.07 | 4.70 | 11.3 | 0.84 | 2.05 | 1.11 | 99.6 | 16.2 | |
27 | 61.8 | 0.93 | 21.2 | 6.48 | 0.09 | 1.93 | 2.31 | 1.12 | 3.64 | 0.39 | 99.8 | 2.63 | |
35 | 57.9 | 0.79 | 21.3 | 5.86 | 0.08 | 1.96 | 6.42 | 0.87 | 3.46 | 0.67 | 99.2 | 12.8 | |
36 | 64.9 | 1.15 | 18.1 | 5.38 | 0.04 | 1.45 | 3.68 | 1.52 | 2.56 | 0.54 | 99.3 | 7.56 | |
14 | 63.8 | 0.97 | 18.0 | 5.76 | 0.05 | 1.40 | 2.31 | 2.14 | 3.00 | 1.47 | 98.9 | 7.69 | |
21 | 65.4 | 0.90 | 17.8 | 5.15 | 0.04 | 1.49 | 2.05 | 2.36 | 3.20 | 0.98 | 99.4 | 7.03 | |
23 | 62.5 | 1.25 | 19.4 | 5.25 | 0.05 | 0.09 | 3.11 | 2.39 | 3.30 | 2.29 | 99.7 | 9.64 | |
61.64 | 1.06 | 18.59 | 5.68 | 0.06 | 1.90 | 4.97 | 1.61 | 2.94 | 1.01 | 99.44 | 9.16 | ||
Std | 3.05 | 0.25 | 1.95 | 0.67 | 0.02 | 1.30 | 3.44 | 0.64 | 0.57 | 0.62 | 0.30 | 4.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Monserrat, E.M.; Maritan, L.; Baratella, V.; Vidale, M. Production Technologies and Provenance of Ceramic Materials from the Earliest Foundry of Pre-Roman Padua, NE Italy. Heritage 2023, 6, 2956-2977. https://doi.org/10.3390/heritage6030157
Pérez-Monserrat EM, Maritan L, Baratella V, Vidale M. Production Technologies and Provenance of Ceramic Materials from the Earliest Foundry of Pre-Roman Padua, NE Italy. Heritage. 2023; 6(3):2956-2977. https://doi.org/10.3390/heritage6030157
Chicago/Turabian StylePérez-Monserrat, Elena Mercedes, Lara Maritan, Vanessa Baratella, and Massimo Vidale. 2023. "Production Technologies and Provenance of Ceramic Materials from the Earliest Foundry of Pre-Roman Padua, NE Italy" Heritage 6, no. 3: 2956-2977. https://doi.org/10.3390/heritage6030157
APA StylePérez-Monserrat, E. M., Maritan, L., Baratella, V., & Vidale, M. (2023). Production Technologies and Provenance of Ceramic Materials from the Earliest Foundry of Pre-Roman Padua, NE Italy. Heritage, 6(3), 2956-2977. https://doi.org/10.3390/heritage6030157