The Cataloging and Conservation of Digital Survey in Archaeology: A Photogrammetry Protocol in the Context of Digital Data Curation
Abstract
:1. Introduction
2. Common Problems Features and the Necessity of Abstraction
2.1. Classification Types: The Absence of Standards
2.2. Obsolescence
2.3. Interdisciplinarity
2.4. Traceability: Relations and Legitimacy Features
3. Towards an Encompassing Solution: The State of the Art
4. Digital Data Curation as a Theoretical Framework for an Encompassing Method
4.1. Before Digital Data Curation
4.2. Historical Development of DDC
4.3. Towards a DDC Scheme for Photogrammetry
5. A DDC-Compliant Workflow for Photogrammetry
5.1. The BeArchaeo Case Study: Interdisciplinarity and Internationality
5.2. The Conceptualization of Surveys
5.3. Acquisition
- Straight-line acquisition: an acquisition process to be used in the acquisition of large buildings and facades, proceeding parallel to the structure and turning the camera perpendicular to the object of the survey.
- Spiral acquisition: a set of photographs collected by defining an ideal focal point at the center of the object of the survey and pointing the camera towards the center proceed with an overall acquisition of the photographs, first perpendicularly then with an inclination of 45°, and finally with an inclination of 75°. This technique is to be used for single finds and artifacts. However, the spiral acquisition can also be used to collect data on a cavity or a structure with a structure similar to a corridor. In this case, the focal length must be placed at the bottom and one must proceed by placing the base of the spiral perpendicular to the ground and not parallel to it, as in the case of finds and other objects.
- Aerial acquisition: a variant of the straight line acquisition but considering proceeding parallel to the ground and turning the camera downwards. This technique is optimal when used with a drone for the acquisition of a territory and is also perfect for surveying archaeological trenches.
- Vertical capture: a straight line acquisition which is used for elevations that develop in height particularly, and in this case, a drone will most likely have to be used. The acquisition of the photographs can be carried out with cameras and mobile phones and there is no preferential indication for the choice of the instrument [82,83].
5.4. Processing
- The homogeneity of the point cloud, with a consistent average density.
- For all surveys, it was necessary to produce a control video in AVI format showing the survey in its entirety for a maximum duration of 1 min, with a black background and double lighting, one fixed and one mobile.
- The mesh correction of the part where the deformations of the texture coincidence must be eliminated.
- All the surveys must be known and exposed at the time of loading on the database in the form of a technical sheet whose structure is illustrated below.
5.5. Modeling
5.6. Exporting
5.7. Pre-Indexing
5.8. Archiving and Final Indexing
6. Final Observations and Conclusions
6.1. Verification and Legitimacy: The Case Study
6.2. Detailed Case Study
6.3. Overcoming the Paradigm of the Absolute Standard
6.4. Towards the Evolution of Bea-PG: Application of the Method on Another Project
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forte, M. 3D Archaeology. New Perspectives and Challenges. The example of Catalhoyuk. Near East. Archaeol. 2014, 2, 1–29. [Google Scholar] [CrossRef]
- Fiz, J.I.; Martín, P.M.; Cuesta, R.; Subías, E.; Codina, D.; Cartes, A. Examples and Results of Aerial Photogrammetry in Archeology with UAV: Geometric Documentation, High Resolution Multispectral Analysis, Models and 3D Printing. Drones 2022, 6, 59. [Google Scholar] [CrossRef]
- Falkingham, P.L. Acquisition of high resolution three-dimensional models using free, open-source, photogrammetric software. Palaeontol. Electron. 2011, 15, 15.1.1T. [Google Scholar] [CrossRef] [PubMed]
- Cucchiaro, S.; Fallu, D.J.; Zhao, P.; Waddington, C.; Cockcroft, D.; Tarolli, P.; Brown, A.G. SfM photogrammetry for Geoarchaeology. Dev. Earth Surf. Process. 2020, 23, 183–205. [Google Scholar]
- Aicardi, I.; Chiabrando, F.; Lingua, A.M.; Noardo, F. Recent trends in cultural heritage 3D survey: The photogrammetric computer vision approach. J. Cult. Herit. 2018, 32, 257–266. [Google Scholar] [CrossRef]
- Deli, R.; Galantucci, L.M.; Laino, A.; D’Alessio, R.; Di Gioia, E.; Savastano, C.; Lavecchia, F.; Percoco, G. Three-dimensional methodology for photogrammetric acquisition of the soft tissues of the face: A new clinical-instrumental protocol. Prog. Orthod. 2013, 14, 32. [Google Scholar] [CrossRef] [Green Version]
- Faniel, I.; Kansa, E.; Kansa, S.W.; Barrera-Gomez, J.; Yakel, E. The Challenges of Digging Data: A Study of Context in Archaeological Data Reuse. In Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries, New York, NY, USA, 22–26 July 2013; pp. 295–304. [Google Scholar] [CrossRef]
- Koller, D.; Frischer, B.; Humphreys, G. Research challenges for digital archives of 3D cultural heritage models. J. Comput. Cult. Heritage 2009, 2, 1–17. [Google Scholar] [CrossRef]
- Črešnar, M.; Mele, M. Early Iron Age Landscapes of the Danube Region; Archaeolingua for the Iron-Age-Danube: Graz, Austria; Budapest, Hungary, 2019; p. 19. ISBN 978-615-5766-33-6. [Google Scholar]
- Abate, D.; Hermon, S.; Eliades, I. Virtual and physical re-composition of fragmented ecclesiastical frescoes using a photogrammetric approach. In Proceedings of the International Society for Photogrammetry and Remote Sensing, Commission VI, Prague, Czech Republic, 12–19 July 2016. [Google Scholar]
- Di Giulio, R. Integrated data capturing requirements for 3d semantic modelling of cultural heritage: The Inception Protocol. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W3, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Nechala, P.; Mahoney, J.; Farkas, L.G. Digital two-dimensional photogrammetry: A comparison of three techniques of obtaining digital photographs. Plast. Reconstr. Surg. 1999, 103, 1819–1825. [Google Scholar] [CrossRef] [PubMed]
- Baltsavias, E.P. A comparison between photogrammetry and laser scanning. ISPRS J. Photogramm. Remote Sens. 1999, 54, 83–94. [Google Scholar] [CrossRef]
- Gülch, E. PHOTOGRAMMETRIC MEASUREMENTS IN FIXED WING UAV IMAGERY. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2012, XXXIX-B1, 381–386. [Google Scholar] [CrossRef] [Green Version]
- European Commission; Directorate-General for Communications Networks, Content and Technology. Study on Quality in 3D Digitisation of Tangible Cultural Heritage: Mapping Parameters, Formats, Standards, Benchmarks, Methodologies, and Guidelines: Executive Summary; Publications Office of the European Union: Luxembourg, 2022; Available online: https://data.europa.eu/doi/10.2759/581678 (accessed on 10 September 2022).
- Documentary Heritage at Risk: Policy Gaps in Digital Preservation, Outcomes of UNESCO Policy Dialogue, Prepared by the Preservation Sub-Committee of the International Advisory Committee of the UNESCO Memory of the World Programme 5 September 2021. Available online: https://en.unesco.org/sites/default/files/documentary_heritage_at_risk_policy_gaps_in_digital_preservation_en.pdf (accessed on 26 February 2023).
- Sobotkova, A. Sociotechnical Obstacles to Archaeological Data Reuse. Adv. Archaeol. Pract. 2018, 6, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Chodoronek, M. The Use and Application of Photogrammetry for the In-Field Documentation of Archaeological Features: Three Case Studies from the Great Plains and Southeastern Alaska. Master’s Thesis, University of Nebraska, Lincoln, Nebraska, 2015. [Google Scholar]
- Douglass, M.; Lin, S.; Chodoronek, M. The Application of 3D Photogrammetry for In-Field Documentation of Archaeological Features; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Gattiglie, G. Classificare le ceramiche: Dai metodi tradizionali all’intelligenza artificiale. In L’esperienza del progetto europeo ArchAIDE. In Proceedings of the ARCHEOLOGIA QUO VADIS? Catania, Italy, 18–19 January 2018; pp. 285–298. [Google Scholar] [CrossRef]
- Georgopoulos, A.; Ioannidis, C. Photogrammetric and Surveying Methods for the Geometric Recording of Archaeological Monuments in “Archaeological Surveys. FIG Work. Week 2004, 22, 27. [Google Scholar]
- Higgins, S. The DCC Curation Lifecycle Model. Int. J. Digit. Curation 2008, 3, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Amit, T. Data Curation: An opportunity for the libraries. In Proceedings of the MANLIBNET 2018: International Conference on Emerging Trends in Librarianship: Role of Libraries in Learning Environment, Indian Institute of Management Tiruchirappalli, Tamil Nadu, India, 10–12 December 2018. [Google Scholar]
- Abbott, D. What is Digital Curation? DCC Briefing Papers: Introduction to Curation. Edinburgh: Digital Curation Centre. Handle: 1842/3362. 2008. Available online: https://www.dcc.ac.uk/guidance/briefing-papers/introduction-curation (accessed on 9 August 2022).
- Kansa, E.C.; Kansa, S.W. Promoting data quality and reuse in archaeology through collaborative identifier practices. Proc. Natl. Acad. Sci. USA 2022, 119, e2109313118. [Google Scholar] [CrossRef]
- Huggett, J. Is big digital data different? Towards a new archaeological paradigm. J. Field Archaeol. 2020, 45 (Suppl. S1), S8–S17. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, A.P., III; Rozen, K.C. Debitage Analysis and Archaeological Interpretation in American Antiquity; Cambridge University Press: Cambridge, CA, USA, 1985; Volume 50, pp. 755–779. [Google Scholar] [CrossRef]
- Readt, D.W. Archaeological Classification. In The Encyclopedia of Archaeological Sciences; John Wiley & Sons, Inc.: New York, NY, USA, 2008; Available online: https://www.onlinelibrary.wiley.com/doi/book/10.1002/9781119188230 (accessed on 14 September 2022). [CrossRef]
- O’Donnell, D.P. Disciplinary Impact and Technological Obsolescence in Digital Medieval Studies; John Wiley & Sons, Inc.: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- O’Donnell, D.P. Cædmon’s Hymn: A Multimedia Study, Archive and Edition. Society for Early English and Norse Electronic Texts A.7; D. S. Brewer in association with SEENET and the Medieval Academy: Cambridge, UK, 2005. [Google Scholar]
- Lauro, V. A hypothesis for the Pyrgos Virtual Museum from Relief to Virtual Museum New technological proposals applied to cultural goods. In Proceedings of the Archaeometry and Charm, Gender Copper and Music of Silk, Archaeological Research Unit, University of Cyprus, Nicosia, Cyprus, 11–12 December 2013. [Google Scholar]
- MacLeod, M. What makes interdisciplinarity difficult? Some consequences of domain specificity in interdisciplinary practice. Synthese 2018, 195, 697–720. [Google Scholar] [CrossRef] [Green Version]
- Keeling, R. The Bologna Process and the Lisbon Research Agenda: The European Commission’s expanding role in higher education discourse. Eur. J. Educ. 2006, 41, 203–223. [Google Scholar] [CrossRef]
- Krebs, R.; Wenk, S. Disciplinary Barriers between the Social Sciences and Humanities, Current Debates about the Construction of Knowledge in the Social Sciences and Humanities and the Impact of These on Disciplinization in Eight European Countries; Carl von Ossietzky Universität: Oldenburg, Germany, 2005. [Google Scholar]
- Nowotny, H.; Scott, P.; Gibbons, M. Re-Thinking Science: Mode 2 in Societal Context. (This article is based on a revised version of Helga Nowotny, Peter Scott and Michael Gibbons, Mode 2 Revisited: The New Production of Knowledge, forthcoming in Minerva (2003)). In Knowledge Creation, Diffusion, and Use in Innovation Networks and Knowledge Clusters: A Comparative Systems Approach across the United States, Europe and Asia; Greenwood Publishing Group: Westport, CT, USA, 2006. [Google Scholar]
- Zarka, Yves Charles La Crise des Science Humaines et Sociales au CNRS (First Published as “Dérive des Sciences Humaines et Sociales au CNRS” Libération 27 July 2004) 21 March. 2005. Available online: http://recherche-en-shs.apinc.org/article.php3?id_article=80 (accessed on 11 July 2015).
- Walter, S. ‘Über das Verhältnis der Soziologie zu den Geisteswissenschaften’. In Wozu Geisteswissenschaften? Kontroverse Argumente für eine überfällige Debatte; Institut für Hochschulforschung (HoF) an der Martin-Luther-Universität Halle-Wittenberg: Wittenberg, Germany, 2003; ISBN 3-593-37336-X. [Google Scholar]
- Holm, P.; Goodsite, M.E.; Cloetingh, S.; Agnoletti, M.; Moldan, B.; Lang, D.J.; Leemans, R.; Moeller, J.O.; Buendía, M.P.; Pohl, W.; et al. Collaboration between the natural, social and human sciences in Global Change Research. Environ. Sci. Policy 2013, 28, 25–35. [Google Scholar] [CrossRef]
- Bruce, A.; Lyall, C.; Tait, J.; Williams, R. Interdisciplinary integration in Europe: The case of the Fifth Framework programme. Futures 2004, 36, 457–470. [Google Scholar] [CrossRef]
- Marchetti, N.; Angelini, I.; Artioli, G.; Benati, G.; Bitelli, G.; Curci, A.; Marfia, G.; Roccetti, M. NEARCHOS. Networked Archaeological Open Science: Advances in Archaeology Through Field Analytics and Scientific Community Sharing. J. Archaeol. Res. 2018, 26, 447–469. [Google Scholar] [CrossRef] [Green Version]
- Atici, L.; Kansa, S.W.; Lev-Tov, J.; Kansa, E.C. Other People’s Data: A Demonstration of the Imperative of Publishing Primary Data. J. Archaeol. Method Theory 2012, 20, 663–681. [Google Scholar] [CrossRef] [Green Version]
- Kintigh, K.W.; Altschul, J.H.; Kinzig, A.P.; Limp, W.; Michener, W.K.; Sabloff, J.A.; Hackett, E.J.; Kohler, T.A.; Ludäscher, B.; Lynch, C.A. Cultural Dynamics, Deep Time, and Data: Planning cyberinfrastructure investments for archaeology. Adv. Archaeol. Pr. 2015, 3, 1–15. [Google Scholar] [CrossRef]
- Roosevelt, C.H.; Cobb, P.; Moss, E.; Olson, B.R.; Ünlüsoy, S. Excavation is Destruction Digitization: Advances in Archaeological Practice. J. Field Archaeol. 2015, 40, 325–346. [Google Scholar] [CrossRef]
- Kansa, E.C.; Whitcher-Kansa, S.; Watrall, E. (Eds.) Archaeology 2.0: New Approaches to Communication and Collaboration; Cotsen Digital Archaeology Series 1; Cotsen Institute of Archaeology Press: Los Angeles, CA, USA, 2011; Available online: http://escholarship.org/uc/item/1r6137tb (accessed on 21 October 2022).
- Londoño, W. Reflexivity in archaeology. In Encyclopedia of Global Archaeology; Smith, C., Ed.; Springer: New York, NY, USA, 2014; pp. 6258–6261. [Google Scholar]
- Berggren, Å. Reflexivitet inom arkeologin. In Reflexiv fältarkeologi? Återsken av ett Seminarium; Berggren, Å., Burström, M., Eds.; Malmö Kulturmiljö & Riksantikvarieämbetet: Stockholm, Sweden; Malmö, Sweden, 2002; Volume 17–26. [Google Scholar]
- Berggren, Å. Reflexive approaches in archaeology, development of. In Encyclopedia of Global Archaeology; Smith, C., Ed.; Springer: New York, NY, USA, 2014; pp. 6249–6257. [Google Scholar]
- UNESCO. Draft Medium Term Plan 1990–1995; UNESCO: Paris, France, 1989. [Google Scholar]
- UNESCO. Charter on the Preservation of the Digital Heritage; United Nations Educational, Scientific and Cultural Organization Organisation des Nations Unies pour l’éducation, la Science et la Culture: Paris, France, 2009; Document Code: CL/3865. [Google Scholar]
- Russo, M.; Remondino, F.; Guidi, G. Principali tecniche e strumenti per il rilievo tridimensionale in ambito archeologico. Archeol. Calc. 2011, 22, 169–198. [Google Scholar]
- Remondino, F.; Pizzo, S.D.; Kersten, T.; Troisi, S. Low-Cost and Open-Source Solutions for Automated Image Orientation—A Critical Overview. In Proceedings of the Progress in Cultural Heritage Preservation, Limassol, Cyprus, 29 October–3 November 2012; pp. 40–54. [Google Scholar]
- De Reu, J.; Plets, G.; Verhoeven, G.; de Smedt, P.; Bats, M.; Cherretté, B.; de Maeyer, W.; Deconynck, J.; Herremans, D.; Laloo, P.; et al. Towards a three-dimensional cost-effective registration of the archaeological heritage. J. Archaeol. Sci. 2012, 40, 1108–1121. [Google Scholar] [CrossRef]
- Deseilligny, M.P.; Luca, L.D.; Remondino, F. Automated image-based procedures for accurate artifacts 3D modeling and orthoimage generation. Geoinf. FCE CTU 2011, 6, 291–299. [Google Scholar] [CrossRef]
- Hallot, P.; Gil, M. Methodology for 3d acquisition of highly reflective goldsmithing artefacts. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Proceedings of the 6th International Workshop LowCost 3D—Sensors, Algorithms, Applications, Strasbourg, France, 2–3 December 2019; International Society for Photogrammetry and Remote Sensing, Leibniz University Hannover Institute of Photogrammetry and GeoInformation Nienburger Str. 1 D-30167: Hannover, Germany, 2019; Volume XLII-2/W17, pp. 129–134. [Google Scholar] [CrossRef] [Green Version]
- Gasparini, M.; Moreno-Escribano, J.C.; Monterroso-Checa, A. Photogrammetric Acquisitions in Diverse Archaeological Contexts Using Drones: Background of the Ager Mellariensis Project (North of Córdoba-Spain). Drones 2020, 4, 47. [Google Scholar] [CrossRef]
- Vlachos, M.; Berger, L.; Mathelier, R.; Agrafiotis, P.; Skarlatos, D. Software comparison for underwater archaeological photogrammetric applications. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Proceedings of the 27th CIPA International Symposium “Documenting the Past for a Better Future”, Ávila, Spain, 1–5 September 2019; International Society for Photogrammetry and Remote Sensing Leibniz University Hannover Institute of Photogrammetry and GeoInformation Nienburger Str. 1 D-30167: Hannover, Germany, 2019; Volume XLII-2/W15. [Google Scholar]
- Rahaman, H.; Champion, E. To 3D or Not 3D: Choosing a Photogrammetry Workflow for Cultural Heritage Groups. Heritage 2019, 2, 1835–1851. [Google Scholar] [CrossRef] [Green Version]
- Guidi, G.; Beraldin, J.A.; Atzeni, C. High-Accuracy 3-D Modeling of Cultural Heritage: The Digitizing of Donatello’s “Maddalena”. IEEE Trans. Image Process. 2004, 13, 370–380. [Google Scholar] [CrossRef]
- Koutsoudis, A.; Arnaoutoglou, F.; Pavlidis, G.; Tsiafakis, D.; Chamzas, C. A versatile workflow for 3D reconstructions and modelling of cultural heritage sites based on open source software. In Proceedings of the Virtual Systems and Multimedia Dedicated to Digital Heritage Conference, Limassol, Cyprus, 20–26 October 2008. [Google Scholar]
- Barszcz, M.; Montusiewicz, J.; Paśnikowska-Łukaszuk, M.; Sałamacha, A. Comparative Analysis of Digital Models of Objects of Cultural Heritage Obtained by the “3D SLS” and “SfM” Methods. Appl. Sci. 2021, 11, 5321. [Google Scholar] [CrossRef]
- Učakar, A.; Sterle, A.; Vuga, M.; Pečak, T.T.; Trček, D.; Ahtik, J.; Košak, K.; Muck, D.; Tomc, H.G.; Kočevar, T.N. 3D Digital Preservation, Presentation, and Interpretation of Wooden Cultural Heritage on the Example of Sculptures of the FormaViva Kostanjevica Na Krki Collection. Appl. Sci. 2022, 12, 8445. [Google Scholar] [CrossRef]
- Hwan, Y.D. Current Situation and Prospect of Digital Heritage Study. J. Cult. Contents 2013, 3, 95–121. [Google Scholar]
- Hahulina, N.; Maslikhova, L.; Akimova, S. Modern Technologies Applied to Archaeological Research in Voronezh Region. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2019; Volume 272, p. 032037. [Google Scholar] [CrossRef]
- Hess, M.; Petrovic, V.; Meyer, D.; Rissolo, D.; Kuester, F. Fusion of multimodal three-dimensional data for comprehensive digital documentation of cultural heritage sites. Digit. Herit. 2015, 2, 595–602. [Google Scholar] [CrossRef]
- Maietti, F.; Di Giulio, R.; Balzani, M.; Piaia, E.; Medici, M.; Ferrari, F. 3D Data Acquisition and Modelling of Complex Heritage Buildings. In Proceedings of the Digital Cultural Heritage Final Conference of the Marie Skłodowska-Curie Initial Training Network for Digital Cultural Heritage, ITN-DCH 2017 Olimje, Slovenia, May 23–25 2017; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Coburn, E.; Lanzi, E.; O’Keefe, E.; Stein, R.; Whiteside, A. The Cataloging Cultural Objects experience: Codifying practice for the cultural heritage community. IFLA J. 2010, 36, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Baca, M. Practical Issues in Applying Metadata Schemas and Controlled Vocabularies to Cultural Heritage Information. Cat. Classif. Q. 2003, 36, 47–55. [Google Scholar] [CrossRef]
- Maietti, F.; Di Giulio, R.; Piaia, E.; Medici, M.; Ferrari, F. Enhancing Heritage fruition through 3D semantic modelling and digital tools: The INCEPTION project. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Volume 364, Florence Heri-Tech—The Future of Heritage Science and Technologies, Florence, Italy, 16–18 May 2018. [Google Scholar] [CrossRef]
- Donnelly, M.; Jones, S. DCC Data Management Plan Content Checklist; Digital Curation Centre: Scotland, UK, 2009; pp. 1–5. [Google Scholar]
- Higgins, S. Digital Curation: The development of a discipline within information science. J. Doc. 2018, 74, 1318–1338. [Google Scholar] [CrossRef] [Green Version]
- Cragin, M.H.; Heidorn, P.B.; Palmer, C.L.; Smith, L.C. An Educational Program on Data Curation; Institute of Museum and Library Services RE-05-06-0036-06; Illinois Library: Springfield, IL, USA, 2007. [Google Scholar]
- Higgins, S. Digital Curation: The Emergence of a New Discipline. Int. J. Digit. Curation 2011, 6, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Owda, A.; Balsa-Barreiro, J.; Fritsch, D. Methodology for digital preservation of the cultural and patrimonial heritage: Generation of a 3D model of the Church St. Peter and Paul (Calw, Germany) by using Laser scanning and digital photogrammetry. Sens. Rev. 2018, 38, 282–288. [Google Scholar] [CrossRef]
- Lombardo, V.; Karatas, T.; Damiano, R.; Mattutino, C.; Sasakura, M. Bringing Digital Curation to Archaeological Projects: Evidence from the BeArchaeo Project. In Proceedings of the AVI2CH Workshop on Advanced Visual Interfaces and Interactions in Cultural Heritage co-located with 2020 International Conference on Advanced Visual Interfaces (AVI 2020), Isola d’Ischia, Naples, Italy, 29 September 2020; pp. 1–4. [Google Scholar]
- Benardou, A.; Champion, E.; Dallas, C.; Hughes, L.M. (Eds.) Cultural Heritage Infrastructures in Digital Humanities; Series: Digital Research in the Arts and Humanities; Routledge: Abingdon, UK, 2018; ISBN 9781472447128. [Google Scholar]
- Higgins, S.; Weller, K.; Foster, A.; Rafferty, P. Managing Digital Cultural Objects; Facet: Online, 2018; ISBN 9781783301539. [Google Scholar] [CrossRef]
- Constantopoulos, P.; Dallas, C. Aspects of a digital curation agenda for cultural heritage. In IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews); IEEE: Piscataway, NJ, USA, 2007. [Google Scholar]
- Gavrilis, D.; Dallas, C.; Angelis, S. A curation-oriented thematic aggregator. In International Conference on Theory and Practice of Digital Libraries; Springer: Berlin/Heidelberg, Germany, 2013; pp. 132–137. [Google Scholar]
- Fernandez, R. Digital Curation of Photogrammetric Data. In Proceedings of the 84th Annual Meeting of the Society for American Archaeology, Albuquerque, NM, USA, 10–14 April 2019. tDAR id: 451423. [Google Scholar] [CrossRef]
- Gomes, L. 3D reconstruction methods for digital preservation of cultural heritage: A survey. Pattern Recognit. Lett. 2014, 50, 3–14. [Google Scholar] [CrossRef]
- Remondino, F.; Russo, M.; Guidi, G. Main techniques and tools for three-dimensional survey in the archaeological field. Archeol. Calc. 2011, 22, 182. [Google Scholar]
- Khalloufi, H.; Azough, A.; Ennahnahi, N.; Kaghat, F.Z. Low-cost terrestrial photogrammetry for 3d modeling of historic sites: A case study of the marinids’ royal necropolis city of Fez, Morocco. Mediterr. Archaeol. Archaeom. 2020, 20, 257–272. [Google Scholar]
- Abed, F.M.; Mohammed, M.U.; Kadhim, S.J. Architectural and cultural heritage conservation using low-cost cameras. Appl. Res. J. 2017, 3, 376–384. [Google Scholar]
- Denmark, E.L. A Technical Analysis of Photogrammetry with Reality Capture. Ph.D. Thesis, Computer Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 2017. [Google Scholar]
- Durand, H.; Engberg, A.; Pope, S.T. A Comparison of 3d Modeling Programs; ATON Project/CREATE; D.o.M, University of California: Santa Barbara, CA, USA, 2011; pp. 1–9. [Google Scholar]
- Wang, Y.-F. A Comparison Study of Five 3D Modeling Systems Based on the SfM Principles; Technical Report 2011–01; Visualize Inc.: Goleta, CA, USA, 2011; pp. 1–30. [Google Scholar]
- Bolognesi, M.; Furini, A.; Russo, V.; Pellegrinelli, A.; Russo, P. Accuracy of cultural heritage 3D models byRPAS and terrestrial photogrammetry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Knapitsch, A.; Park, J.; Zhou, Q.-Y.; Koltun, V. Tanks and Temples: Benchmarking Large-Scale Scene Reconstruction. ACM Trans. Graph. 2017, 36, 78. [Google Scholar] [CrossRef]
- Santagati, C.; Inzerillo, L.; Di Paola, F. Image based modeling techniques for architectural heritage 3d Digitalization: Limits and potentialities. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXIV International CIPA Symposium, Strasbourg, France, 2–6 September 2013. [Google Scholar]
- Montusiewicz, J.; Barszcz, M.; Korga, S. Preparation of 3D Models of Cultural Heritage Objects to Be Recognised by Touch by the Blind—Case Studies. Appl. Sci. 2022, 12, 11910. [Google Scholar] [CrossRef]
- Scopigno, R.; Callieri, M.; Cignoni, P.; Corsini, M.; Dellepiane, M.; Ponchio, F.; Ranzuglia, G. 3D Models for Cultural Heritage: Beyond Plain Visualization. Computer 2011, 44, 48–55. [Google Scholar] [CrossRef]
- Rahaman, H.; Champion, E.; Bekele, M. From photo to 3D to mixed reality: A complete workflow for cultural heritage visualisation and experience. Digit. Appl. Archaeol. Cult. Heritage 2019, 13, e00102. [Google Scholar] [CrossRef]
- Ştefan, R.-M. A Comparison of Data Classification Methods. Procedia Econ. Finance 2012, 3, 420–425. [Google Scholar] [CrossRef] [Green Version]
- Kintigh, K.W. The promise and challenge of archaeological data integration. Am. Antiq. 2006, 71, 567–578. [Google Scholar] [CrossRef]
- Iadanza, E.; Maietti, F.; Ziri, A.E.; Di Giulio, R.; Medici, M.; Ferrari, F.; Bonsma, P.; Turillazzi, B. Semantic Web Technologies Meet Bim for Accessing and Understanding Cultural Heritage. Available online: https://www.researchgate.net/publication/330771926_SEMANTIC_WEB_TECHNOLOGIES_MEET_BIM_FOR_ACCESSING_AND_UNDERSTANDING_CULTURAL_HERITAGE (accessed on 26 February 2023).
- Karatas, T.; Lombardo, V. A Multiple Perspective Account of Digital Curation for Cultural Heritage: Tasks, Disciplines and Institutions. In Proceedings of the Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation and Personalization (UMAP ‘20 Adjunct), Association for Computing Machinery, New York, NY, USA, 14–17 July 2020; pp. 325–332. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauro, V.; Lombardo, V. The Cataloging and Conservation of Digital Survey in Archaeology: A Photogrammetry Protocol in the Context of Digital Data Curation. Heritage 2023, 6, 3113-3136. https://doi.org/10.3390/heritage6030166
Lauro V, Lombardo V. The Cataloging and Conservation of Digital Survey in Archaeology: A Photogrammetry Protocol in the Context of Digital Data Curation. Heritage. 2023; 6(3):3113-3136. https://doi.org/10.3390/heritage6030166
Chicago/Turabian StyleLauro, Vittorio, and Vincenzo Lombardo. 2023. "The Cataloging and Conservation of Digital Survey in Archaeology: A Photogrammetry Protocol in the Context of Digital Data Curation" Heritage 6, no. 3: 3113-3136. https://doi.org/10.3390/heritage6030166
APA StyleLauro, V., & Lombardo, V. (2023). The Cataloging and Conservation of Digital Survey in Archaeology: A Photogrammetry Protocol in the Context of Digital Data Curation. Heritage, 6(3), 3113-3136. https://doi.org/10.3390/heritage6030166