A First Approach to the Study of Winsor & Newton’s 19th-Century Manufacture of Madder Red Lake Pigments
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis Methods for Madder Lake Pigments
2.3. Analytical Equipment and Experimental Conditions
2.3.1. Colourimetry
2.3.2. Energy-Dispersive X-ray Fluorescence Spectrometry (XRF)
2.3.3. UV-VIS Absorption Spectroscopy
2.3.4. Fibre Optics Reflectance Spectroscopy (FORS)
2.3.5. High-Performance Liquid Chromatography with a Diode Array Detector (HPLC-DAD)
2.3.6. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.7. Microspectrofluorimetry
3. Results and Discussion
3.1. Research in the W&N 19th Century Archive Database
3.2. Main Steps for the W&N’s 19th-Century Manufacture of Madder Red Lake Pigments
3.3. Characterisation of the Madder Red Lake Pigments
3.4. Comparison with a W&N 19th-Century Oil Paint Tube
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional HPLC-DAD Analyses
Appendix B. Additional Data on the W&N Production Records
Formulation Name|Code | Original Production Name | URC * |
---|---|---|
Madder Rose | MR | Madder Rose-colours | P1P025AL01 ¥ |
Madder Carmine for Water | P1P257AL01 | |
Madder Lake | ML | Madder Lake | P1P127AL05 |
§ | ||
Rose Madder | RM | Rose Madder | P1P114AL13 |
Madder Carmine | P1P120AL11 | |
Another formula [RM extra quality] | P1P320BL01 | |
Madder Carmine | P1P322AL01 | |
- | Liquid Madder Lake | P1P030AL03 |
Crimson Madder | P1P205AL12 | |
Madder with lime water | P1P299AL01 |
Appendix C. Additional FTIR Analysis
References
- Cardon, D. Natural Dyes: Sources, Tradition, Technology and Science; Archetype Publications: London, UK, 2007; pp. 107–121. [Google Scholar]
- Schweppe, H.; Winter, J. Madder and Alizarin. In Artists’ Pigments: A Handbook of Their History and Characteristics; Fitzhugh, E.W., Ed.; National Gallery of Art: Washington, DC, USA; Archetype Publications: London, UK, 1997; Volume 3, pp. 109–134. [Google Scholar]
- Daniels, V.; Devièse, T.; Hacke, M.; Higgit, C. Technological insights into madder pigment production in antiquity. In The British Museum: Technical Research Bulletin; Archetype Publications: London, UK, 2014; Volume 8, pp. 13–28. [Google Scholar]
- Chenciner, R. Madder Reds: A History of Luxury and Trade, 1st ed.; Routledge Curzon: London, UK; New York, NY, USA, 2005; pp. 11–44, 202–252. [Google Scholar]
- Kirby, J.; Higgit, C.; Spring, M. Madder lakes of the 15th-17th centuries: Variability of the dyestuff content. In The Diversity of Dyes in History and Archaeology; Kirby, J., Ed.; Archetype Publications: London, UK, 2017; pp. 148–161. [Google Scholar]
- Kirby, J. The reconstruction of late 19th-century French red lake pigments. In Arts of the Past: Sources and Reconstructions; Clarke, M., Townsend, J.H., Stijnman, A., Eds.; Archetype Publications: London, UK, 2005; pp. 69–77. [Google Scholar]
- Kirby, J.; Spring, M.; Higgit, C. The Technology of Eighteenth- and nineteenth-Century Red Lake Pigments. Natl. Gallery Tech. Bull. 2007, 28, 69–87. [Google Scholar]
- Miliani, C.; Monico, L.; Melo, M.J.; Fantacci, S.; Angelin, E.M.; Romani, A.; Janssens, K. Recent insights into the photochemistry of artists’ pigments and dyes: Towards better understanding and prevention of colour change in works of art. Angew. Chem. Int. Ed. 2018, 57, 7324–7334. [Google Scholar] [CrossRef]
- Grazia, C.; Clementi, C.; Miliani, C.; Romani, A. Photophysical properties of alizarin and purpurin Al(III) complexes in solution and solid state. Photochem. Photobiol. Sci 2011, 10, 1249–1254. [Google Scholar] [CrossRef]
- Kiel, E.G.; Heertjes, P.M. Metal complexes of Alizarin I-The structure of Calcium-Aluminium lake of Alizarin. J. Soc. Dye. Colour. 1963, 72, 21–27. [Google Scholar] [CrossRef]
- Wunderlich, C.H.; Bergerhoff, G. Konstitution and Farbe von Alizarin- un Purpurin-Farblacken. Chem. Ber. 1994, 127, 1185–1190. [Google Scholar] [CrossRef]
- Sanyova, J. Spectroscopic Studies (FTIR,SIMS,ES-MS) on the Structure of Anthraquinone-Aluminium Complexes. In Dyes in History and Archeology 21; Kirby, J., Ed.; Archetype Publications: London, UK, 2008; pp. 209–214. [Google Scholar]
- Saunders, D.; Kirby, J. Light-induced Colour Changes in Red and Yellow Lake Pigments. Natl. Gallery Tech. Bull. 1994, 15, 79–97. [Google Scholar]
- Berenbeim, J.A.; Boldissar, S.; Owens, S.; Haggmark, M.R.; Gate, G.; Siouri, F.M.; Cohen, T.; Rode, M.F.; Patterson, C.S.; de Vries, M.S. Excited state intramolecular proton transfer in ydroxianthraquinones: Toward predicting fading of organic colorants in art. Sci. Adv. 2019, 5, eaaw5227. [Google Scholar] [CrossRef]
- Melo, M.J.; Ferreira, J.L.; Parola, A.J.; Melo, J.S.S. Photochemistry for Cultural Heritage. In Applied Photochemistry: When Light Meets Molecules.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 499–530. [Google Scholar]
- Vitorino, T.; Casini, A.; Cucci, C.; Melo, M.J.; Picollo, M.; Stefani, L. Non-invasive identification of traditional red lake pigments in fourteenth to sixteenth centuries paintings through the use of hyperspectral imaging technique. Appl. Phys. A 2015, 121, 891–901. [Google Scholar] [CrossRef]
- Fonseca, B.; Patterson, C.S.; Ganio, M.; MacLennan, D.; Trentelman, K. Seeing red: Towards an improved protocol for the identification of madder and cochineal-based pigments by filter optics reflectance spectroscopy (FORS). Herit. Sci. 2019, 7, 92. [Google Scholar] [CrossRef]
- Melo, M.J.; Claro, A. Bright Light: Microspectrofluorimetry for the Characterization of Lake Pigments and Dyes in Works of Art. Acc. Chem. Res. 2010, 43, 857–866. [Google Scholar] [CrossRef]
- Nabais, P.; Melo, M.J.; Lopes, J.A.; Vieira, M.; Castro, R.; Aldo, R. Organic colorants based on lac dye and brazilwood as markers for a chronology and geography of medieval scriptoria: A chemometrics approach. Herit. Sci. 2021, 9, 32. [Google Scholar] [CrossRef]
- Osticioli, I.; Pagliai, M.; Comelli, D.; Schettino, V.; Nevin, A. Red lakes from Leonardo’s Last Supper and other Old Master Paintings: Micro-Raman spectroscopy of anthraquinone pigments in paint cross-sections. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 222, 117273. [Google Scholar] [CrossRef] [PubMed]
- Pagliai, M.; Osticioli, I.; Nevin, A.; Siano, S.; Cardini, G.; Schettino, V. DFT calculations of the IR and Raman spectra of anthraquinone dyes and lakes. J. Raman Spectrosc. 2018, 49, 668–683. [Google Scholar] [CrossRef]
- Mouri, C.; Laursen, R. Identification of anthraquinone markers for distinguishing Rubia species in madder-dyed textiles by HPLC. Microchim. Acta 2012, 179, 105–113. [Google Scholar] [CrossRef]
- Degano, I.; Tognotti, P.; Kunzelman, D.; Modugno, F. HPLC-DAD and HPLC-ESI-Q-ToF characterisation of early 20th century lake and organic pigments from Lefranc archives. Herit. Sci. 2017, 5, 7. [Google Scholar] [CrossRef]
- Pozzi, F.; van den Berg, K.J.; Fiedler, I.; Casadio, F. A systematic analysis of red lake pigments in French impressionist and Post-Impressionist paintings by surface-enhanced Raman spectroscopy (SERS). J. Raman Spectrosc. 2014, 45, 1119–1126. [Google Scholar] [CrossRef]
- Kirby, J.; Spring, M.; Higgitt, C. The technology of red lake pigment manufacture: Study of the dyestuff substrate. Natl. Gallery Tech. Bull. 2005, 26, 71–87. [Google Scholar]
- Harley, R.D. Artists’ Pigments c. 1600-1835; Archetype Publications: London, UK, 2001; pp. 131–147. [Google Scholar]
- Carlyle, L. The Artist’s Assistant: Oil Painting Instructions Manuals and Handbooks in Britain 1800-1900 With References to Selected Eighteenth-Century Sources; Archetype Publications: London, UK, 2001; pp. 506–535. [Google Scholar]
- Otero, V.; Pinto, J.V.; Carlyle, L.; Vilarigues, M.; Cotte, M.; Melo, M.J. Nineteenth century chrome yellow and chrome deep from Winsor & Newton. Stud. Conserv. 2017, 62, 123–149. [Google Scholar]
- Vitorino, T.; Otero, V.; Carlyle, L.; Melo, M.J.; Parola, A.J.; Picollo, M. Nineteenth-century cochineal lake pigments from Winsor & Newton: Insight into their methodology through reconstructions. In Proceedings of the ICOM-CC 18th Triennial Conference Preprints, Copenhagen, Denmark, 4–8 September 2017. [Google Scholar]
- Otero, V.; Campos, M.F.; Pinto, J.V.; Vilarigues, M.; Carlyle, L.; Melo, M.J. Barium, zinc and strontium yellows in late 19th-early 20th century oil paintings. Herit. Sci. 2017, 5, 1–13. [Google Scholar] [CrossRef]
- Santos, A.; Otero, V.; Vilarigues, M. The colour of moving images: A documentary study of Winsor & Newton 19th-century watercolours used to paint glass slides for magic lanterns. In Proceedings of the 8th Symposium of the ICOM-CC Working Group Art Technological Source Research, Cologne, Germany, 26–27 September 2019. [Google Scholar]
- Veneno, M.; Nabais, P.; Otero, V.; Clemente, A.; Oliveira, M.C.; Melo, M.J. Yellow Lake Pigments from Weld in Art: Investigating the Winsor & Newton 19th Century Archive. Heritage 2021, 4, 422–436. [Google Scholar]
- Daniels, V. Revealing the Mysteries of the Madder Bath. In Dyes in History and Archeology 35/36; Kirby, J., Ed.; Archetype Publications: London, UK, 2017; pp. 70–77. [Google Scholar]
- La Nasa, J.; Doherty, B.; Rosi, F.; Braccini, C.; Broers, F.T.; Degano, I.; Matinero, J.M.; Miliani, C.; Modugno, F.; Sabatini, F.; et al. An integrated analytical study of crayons from the original art materials collection of the MUNCH museum in Oslo. Sci. Rep. 2021, 11, 7152. [Google Scholar] [CrossRef]
- Clarke, M.; Carlyle, L. Page-image recipe databases, a new approach for accessing art technological manuscripts and rare printed sources: The Winsor & Newton archive prototype. In Proceedings of the ICOM Committee for Conservation 14th Triennial Meeting, The Hague, The Netherlands, 12–16 September 2005. [Google Scholar]
- Claro, A.; Melo, M.J.; Schaefer, S.; Melo, J.S.S.; Pina, F.; Berg, K.J.; Burnstock, A. The use of microspectrofluorimetry for the characterisation of lake pigments. Talanta 2008, 74, 922–929. [Google Scholar] [CrossRef]
- Zhuang, G.; Pedetti, S.; Bourlier, Y.; Jonnard, P.; Méthivier, C.; Walter, P.; Pradier, C.M.; Jaber, M. New Insights into the Structure and Degradation of Alizarin Lake Pigments: Input of the Surface Study Approach. J. Phys. Chem. C 2020, 124, 12370–12380. [Google Scholar] [CrossRef]
- Van der Weerd, J.; van Loon, A.; Boon, J.J. FTIR Studies of the Effects of Pigments on the Aging of Oil. Stud. Conserv. 2005, 50, 3–22. [Google Scholar] [CrossRef]
- Monico, L.; Rosi, F.; Miliani, C.; Daveri, A.; Brunetti, B.G. Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 116, 270–280. [Google Scholar] [CrossRef]
W&N 19th-c. Madder Red Colours | Oil Paint Tube | Powder | ||
---|---|---|---|---|
First Appearance | Last Appearance | First Appearance | Last Appearance | |
Pink Madder | 1835 | - | 1835 1 | - |
Rose Madder | 1835 | - | 1835 1 | - |
Madder Carmine | c. 1840 | - | c. 1840 | - |
Madder Lake | c. 1840 2 | - | not in powder | |
Extra Madder Carmine Deep | c. 1861 | c. 1861 | not in powder | |
Extra Madder Carmine Bright | c. 1861 | - | 1864 | - |
Extra Madder Carmine | 1864 | - | 1864 | - |
Scarlet Madder | 1886 | - | 1892 | - |
Crimson Madder | 1886 | - | not in powder | |
Rose Madder (pink shade) | 1900 | - | not in powder | |
Pink Madder Lake | not in oil | c. 1840 | c. 1849 | |
Rose Madder Lake | not in oil | c. 1840 | c. 1849 |
Formulation Name|Code | Synthesis Methods |
---|---|
Madder Rose | MR | 1. Wash 5 g of madder powder with 100 mL of water (repeat 5 times); 2. Dissolve 8.57 g of alum in 30 mL of hot water (near boiling); 3. Pour the above solution into the madder roots; 4. Decant the supernatant liquor into 88 mL of distilled water; 5. Slowly add an aqueous solution of carbonate of ammonia (1.2 M) and stir occasionally; 6. Filter the precipitate. |
Madder Lake | ML | 1. Let 5 g of madder powder rest in 100 mL of water for 1 h; 2. Decant the supernatant and let the madder rest in 100 mL of water for 30 min; 3. Decant the supernatant and wash the madder 3 times; 4. Dissolve 10.48 g of alum in 30 mL of hot water (80 °C); 5. Run through the above solution into the madder roots placed in a cotton filter bag and collect the red extract; 6. To the red extract, add immediately, one at a time, three solutions of sodium borate: 1.9 g in 10 mL, 0.24 g in 5 mL and 0.06 g in 2.5 mL; 7. Filter the precipitate. |
Rose Madder | RM | 1. Prepare a solution of 0.5 mL of sulfuric acid in 4 mL of water; 2. Pour the solution into the madder roots after step 5 of the Madder Lake recipe. 3. After 30 days, add 16 mL of boiling water; 4. Add immediately, one at a time, three solutions of sodium borate: 0.5 g in 2.5 mL, 0.06 g in 1.25 mL and 0.03 g in 1.25 mL; 5. Filter the precipitate. |
Formulation Name | Code | L* | a* | b* | FORS | XRF | FTIR | HPLC-DAD |
---|---|---|---|---|---|---|---|---|
Madder Rose | MR1 | 78.80 ± 0.35 | 32.87 ± 0.25 | 2.81 ± 0.08 | 511, 549 (sh) | S, K, Al | Aluminate | 1. Pseudopurpurin 2. Alizarin 3. Purpurin |
MR2 | 78.82 ± 0.61 | 31.59 ± 0.58 | 3.00 ± 0.21 | 512, 546 (sh) | ||||
MR3 | 82.81 ± 0.46 | 24.79 ± 0.28 | 2.45 ± 0.24 | 513, 549 (sh) | ||||
Madder Lake | ML1 | 85.61 ± 0.75 | 23.38 ± 1.37 | 5.37 ± 0.24 | 511, 547 (sh) | S, K, Al | ||
ML2 | 83.48 ± 0.53 | 23.21 ± 1.31 | 4.19 ± 0.21 | 512, 547 (sh) | ||||
ML3 | 85.12 ± 1.04 | 20.60 ± 1.75 | 3.69 ± 0.06 | 510, 547 (sh) | ||||
Rose Madder | RM1 | 92.24 ± 0.07 | 5.98 ± 0.12 | 6.86 ± 0.06 | 508 | S, K, Al, Fe | ||
RM2 | 86.96 ± 1.03 | 16.18 ± 1.38 | 4.95 ± 0.1 | 504, 538 (sh) | ||||
RM3 | 89.67 ± 0.32 | 8.97 ± 0.4 | 7.61 ± 0.1 | 505, 538 (sh) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veiga, T.; Moro, A.J.; Nabais, P.; Vilarigues, M.; Otero, V. A First Approach to the Study of Winsor & Newton’s 19th-Century Manufacture of Madder Red Lake Pigments. Heritage 2023, 6, 3606-3621. https://doi.org/10.3390/heritage6040192
Veiga T, Moro AJ, Nabais P, Vilarigues M, Otero V. A First Approach to the Study of Winsor & Newton’s 19th-Century Manufacture of Madder Red Lake Pigments. Heritage. 2023; 6(4):3606-3621. https://doi.org/10.3390/heritage6040192
Chicago/Turabian StyleVeiga, Tiago, Artur J. Moro, Paula Nabais, Márcia Vilarigues, and Vanessa Otero. 2023. "A First Approach to the Study of Winsor & Newton’s 19th-Century Manufacture of Madder Red Lake Pigments" Heritage 6, no. 4: 3606-3621. https://doi.org/10.3390/heritage6040192
APA StyleVeiga, T., Moro, A. J., Nabais, P., Vilarigues, M., & Otero, V. (2023). A First Approach to the Study of Winsor & Newton’s 19th-Century Manufacture of Madder Red Lake Pigments. Heritage, 6(4), 3606-3621. https://doi.org/10.3390/heritage6040192