Karst Landscape Governance in the Guilin World Heritage Site, China
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Data and Analysis Methods
3. Multilevel Policy Related to Karst Heritage Conservation in China
3.1. Laws and Administrative Regulations
3.2. Sectoral and Local Regulations and Administrative Documents
4. Network and Perceived Effectiveness of Karst Heritage Governance
4.1. Stakeholders Involved in Karst Heritage Governance
4.2. Mapping Stakeholders’ Roles in Guilin Karst Governance
4.3. Assessing Governance and Stakeholders’ Roles in Karst Heritage Conservation
5. Discussion
5.1. Policy-Oriented Conservation and Integration at Different Levels
5.2. Governance Challenges and Stakeholder Participation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ford, D.C.; Williams, P.W. Karst Hydrogeology and Geomorphology; Wiley: Chichester, UK, 2007. [Google Scholar]
- Goldscheider, N. A holistic approach to groundwater protection and ecosystem services in karst terrains. Carbonates Evaporite 2019, 34, 1241–1249. [Google Scholar] [CrossRef]
- Williams, P.W. UNESCO world heritage caves and karst: Present situation, future prospects, and management requirements. In Proceedings of the 15th International Congress of Speleology, Kerrville, TX, USA, 19–26 July 2009; Volume 1, pp. 38–44. [Google Scholar]
- Gunn, J. A global overview of UNESCO protected areas that contain carbonate and evaporite caves and karst. In Proceedings of the 18th International Congress of Speleology—Karstologia Mémoires, Savoie Technolac, France, 25 July–1 August 2022; Volume 21, pp. 173–174. [Google Scholar]
- Gu, Y.Y.; Lin, N.F.; Ye, X.; Xu, M.J.; Qiu, J.; Zhang, K.; Zou, C.X.; Qiao, X.N.; Xu, D.L. Assessing the impacts of human disturbance on ecosystem services under multiple scenarios in karst areas of China: Insight from ecological conservation red lines effectiveness. Ecol. Indic. 2022, 142, 109202. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Parise, M.; DeWaele, J.; Jourde, H. A review on natural and human-induced geohazards and impacts in karst. Earth-Sci. Rev. 2014, 138, 61–88. [Google Scholar] [CrossRef]
- He, G.Z.; Zhao, X.; Yu, M.Z. Exploring multi-disturbances of karst landscape in Guilin World Heritage Site, China. Catena 2021, 203, 105349. [Google Scholar] [CrossRef]
- Li, S.L.; Liu, C.Q.; Chen, J.A.; Wang, S.J. Karst ecosystem and environment: Characteristics, evolution processes, and sustainable development. Agric. Ecosyst. Environ. 2021, 306, 107173. [Google Scholar] [CrossRef]
- He, G.Z.; Chen, C.C.; Zhao, X. Karst landscape management in China and America through the comparative lens. Acta Ecol. Sin. 2023, 43, 910–924. (In Chinese) [Google Scholar]
- Peng, J.; Xu, Y.Q.; Cai, Y.L.; Xiao, H.L. The role of policies in land use/cover change since the 1970s in ecologically fragile karst areas of Southwest China: A case study on the Maotiaohe watershed. Environ. Sci. Policy 2011, 14, 408–418. [Google Scholar] [CrossRef]
- Ravbar, N.; Šebela, S. The effectiveness of protection policies and legislative framework with special regard to karst landscapes: Insights from Slovenia. Environ. Sci. Policy 2015, 51, 106–116. [Google Scholar] [CrossRef]
- Gillieson, D. Caves, Processes, Development, Management; Blackwell Publishers Ltd.: Hoboken, NJ, USA, 1996; p. 268. [Google Scholar]
- Urich, P.B.; Day, M.J.; Lynagh, F. Policy and practice in karst landscape protection: Bohol, the Philippines. Geogr. J. 2001, 167, 305–323. [Google Scholar] [CrossRef]
- LeGrand, H.E. Hydrological and ecological problems of karst regions. Science 1973, 179, 859–864. [Google Scholar] [CrossRef]
- Bloom, A.L. Water-formed structures: Geomorphology and hydrology of karst terrains. Science 1989, 243, 1618–1619. [Google Scholar] [CrossRef] [PubMed]
- Gillieson, D.; Gunn, J.; Auler, A.; Bolger, T. (Eds.) Guidelines for Cave and Karst Protection, 2nd ed.; International Union of Speleology and Gland, Switzerland, IUCN: Postojna, Slovenia, 2022. [Google Scholar]
- van Beynen, P.E. (Ed.) Karst Management; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Autin, W.J. Landscape evolution of the Five Islands of south Louisiana: Scientific policy and salt dome utilization and management. Geomorphology 2002, 47, 227–244. [Google Scholar] [CrossRef]
- Cao, J.; Yuan, D.; Tong, L.; Mallik, A.; Yang, H.; Huang, F. An overview of karst ecosystem in Southwest China: Current state and future management. J. Resour. Ecol. 2015, 6, 247–256. [Google Scholar]
- Zhuang, C.W.; Jiang, C.; Chen, W.L.; Huang, W.M.; Yang, J.; Zhao, Y.; Yang, Z.Y. Policy-driven co-evolution of the food–water–ecosystem–livelihood nexus in two ecosystem conservation hotspots in southern China. Glob. Ecol. Conserv. 2021, 30, e01789. [Google Scholar] [CrossRef]
- Li, Y.; Bai, X.Y.; Wang, S.J.; Tian, Y.C. Integrating mitigation measures for karst rocky desertification land in the Southwest mountains of China. Carbonates Evaporites 2019, 34, 1095–1106. [Google Scholar] [CrossRef]
- Wang, L.; Xiao, S.Z. Tourism space reconstruction of a world heritage site based on actor network theory: A case study of the Shibing Karst of the South China Karst World Heritage Site. Int. J. Geoheritage Park. 2020, 8, 140–151. [Google Scholar] [CrossRef]
- Zhang, F.T.; Wang, L.C.; Su, W.C.; Shao, J.X.; Yang, H.Y.; Tan, Y.; Long, S.L.; Shi, W. Innovated model for agricultural sustainable development in ecologically fragile karst area: Fish farming with karst running water in ecological gully. Trop. Geogr. 2012, 32, 210–215. [Google Scholar]
- Gregorič, A.C. Typical doline and surface landforms of Kras (Slovenia): Karst landscape features and possibilities for their conservation. Geoheritage 2021, 13, 26. [Google Scholar] [CrossRef]
- Oliver, D.M.; Zheng, Y.; Naylor, L.A.; Murtagh, M.; Waldron, S.; Peng, T. How does smallholder farming practice and environmental awareness vary across village communities in the karst terrain of southwest China? Agric. Ecosyst. Environ. 2020, 288, 106715. [Google Scholar] [CrossRef]
- Van Beynen, P.; Townsend, K. A disturbance index for karst environments. Environ. Manag. 2005, 36, 101–116. [Google Scholar] [CrossRef]
- LaMoreaux, P.E.; Powell, W.J.; LeGrand, H.E. Environmental and legal aspects of karst areas. Environ. Geol. 1997, 29, 23–36. [Google Scholar] [CrossRef]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. In Proceedings of the International AAAI Conference on Weblogs and Social Media, San Jose, CA, USA, 17–20 May 2009. [Google Scholar]
- Waltham, T. Fengcong, fenglin, cone karst and tower karst. Cave Karst Sci. 2008, 35, 77–88. [Google Scholar]
- Yuan, D.X. Yangshuo Karst, China. In Encyclopedia of Caves and Karst Science; Gunn, J., Ed.; Fitzroy Dearborn: New York, NY, USA, 2004. [Google Scholar]
- South China Karst nomination. Phase II, Nomination Document for World’s Heritage List of UNESCO; Ministry of Housing and Urban-Rural Development: Beijing, China, 2013. [Google Scholar]
- Tong, X.; Brandt, M.; Yue, Y.; Horion, S.; Wang, K.; De Keersmaecker, W.; Tian, F.; Schurgers, G.; Xiao, X.; Luo, Y.; et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 2018, 1, 44–50. [Google Scholar] [CrossRef]
- Sayer, J.A.; Margules, C.; Boedhihartono, A.K.; Sunderland, T.; Langston, J.D.; Reed, J.; Riggs, R.; Buck, L.E.; Campbell, B.M.; Kusters, K.; et al. Measuring the effectiveness of landscape approaches to conservation and development. Sustain. Sci. 2017, 12, 465–476. [Google Scholar] [CrossRef]
- Bouckaert, G.; van de Walle, S. Comparing measures of citizen trust and user satisfaction as indicators of ‘good governance’: Difficulties in linking trust and satisfaction indicators. Int. Rev. Adm. Sci. 2003, 69, 329–343. [Google Scholar]
- Reed, M.S.; Graves, A.; Dandy, N.; Posthumus, H.; Hubacek, K.; Morris, J.; Prell, C.; Quinn, C.H.; Stringer, L.C. Who’s in and why? A typology of stakeholder analysis methods for natural resource management. J. Environ. Manag. 2009, 90, 1933–1949. [Google Scholar] [CrossRef]
- Salmoral, G.; Zegarra, E.; Vázquez-Rowe, I.; González, F.; del Castillo, L.; Saravia, G.R.; Graves, A.; Rey, D.; Knox, J.W. Water-related challenges in nexus governance for sustainable development: Insights from the city of Arequipa, Peru. Sci. Total Environ. 2020, 747, 141114. [Google Scholar] [CrossRef]
- Sulistyawan, B.S.; Feger, C.; McKenzie, E.; Gallagher, L.A.; Verweij, P.A.; Verburg, R. Towards more effective landscape governance for sustainability: The case of RIMBA corridor, Central Sumatra, Indonesia. Sustain. Sci. 2019, 14, 1485–1502. [Google Scholar] [CrossRef]
- Richardson, J.J. Local land use regulation of karst in the United States. In Sinkholes and the Engineering and Environmental Impacts of Karst; Beck, B.F., Ed.; special publication 112; ASCE: Reston, VA, USA, 2003; pp. 492–501. [Google Scholar]
- Fleury, S. Land Use Policy and Practice on Karst Terrains; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Kelman, C.C. Governance lessons from two Sumatran integrated conservation and development projects. Conserv. Soc. 2013, 11, 247–263. [Google Scholar] [CrossRef]
- Little, J.C.; Hester, E.T.; Carey, C.C. Assessing and enhancing environmental sustainability—A conceptual review. Environ. Sci. Technol. 2016, 50, 6380–6845. [Google Scholar] [CrossRef]
- Pahl-Wostl, C. Governance of the water-energy-food security nexus: A multi-level coordination challenge. Environ. Sci. Policy 2019, 92, 356–367. [Google Scholar] [CrossRef]
- Wiegant, D.; Mansourian, S.; Eshetu, G.Z.; Dewulf, A. Cross-sector challenges in Ethiopian forest and landscape restoration governance. Environ. Sci. Policy 2023, 142, 89–98. [Google Scholar] [CrossRef]
- Kenward, R.E.; Whittingham, M.J.; Arampatzis, S.; Manos, B.D.; Hahn, T.; Terry, T.; Simoncini, R.; Alcorn, J. Identifying governance strategies that effectively support ecosystem services, resource sustainability, and biodiversity. Proc. Natl. Acad. Sci. USA 2011, 108, 5308. [Google Scholar] [CrossRef] [PubMed]
- Galan, J.; Galiana, F.; Kotze, D.J.; Lynch, K.; Torreggiani, D.; Pedroli, B. Landscape adaptation to climate change: Local networks, social learning and co-creation processes for adaptive planning. Glob. Environ. Chang. 2023, 78, 102627. [Google Scholar] [CrossRef]
- García-Martín, M.; Bieling, C.; Hart, A.; Plieninger, T. Integrated landscape initiatives in Europe: Multi-sector collaboration in multi-functional landscapes. Land Use Policy 2016, 58, 43–53. [Google Scholar] [CrossRef]
- Newig, J.; Fritsch, O. Environmental governance: Participatory, multi-level—And effective? Environ. Policy Gov. 2009, 19, 197–214. [Google Scholar] [CrossRef]
- Al-Saidi, M.; Elagib, N.A. Towards understanding the integrative approach of the water, energy and food nexus. Sci. Total Environ. 2017, 574, 1131–1139. [Google Scholar] [CrossRef]
- Yu, M.Z.; Song, S.; He, G.Z.; Shi, Y.J. Vegetation landscape changes and driving factors of typical karst region in the Anthropocene. Remote Sens. 2022, 14, 5391. [Google Scholar] [CrossRef]
- Srigiri, S.R.; Dombrowsky, I. Analysing the water-energy-food nexus from a polycentric governance perspective: Conceptual and methodological framework. Front. Environ. Sci. 2022, 10, 725116. [Google Scholar] [CrossRef]
Network | No. of Nodes and Edges | Metrics Statistics | Core Actors and Percentages |
---|---|---|---|
Full network | Nodes: 176 Edges: 1321 | Average Degree: 15.011 | Core: 20 actors (11.36%) |
Graph Density: 0.086 | Core national actors: MNR, MCT | ||
Modularity: 0.268 | Core provincial actors: GXPG | ||
Average Clustering Coefficient: 0.345 | Core municipal actors: GLRSMC | ||
Average Path Length: 2.149 | Core non-government actors: IPCK | ||
National agencies | Nodes: 76 Edges: 452 | Average Degree:11.895 | Core: 11 actors (14.47%) Core national actors: MCT Core non-government actors: IRCK |
Graph Density: 0.159 | |||
Modularity: 0.210 | |||
Average Clustering Coefficient: 0.300 | |||
Average Path length: 2.001 | |||
Institutions in Guangxi | Nodes: 51 Edges: 243 | Average Degree: 9.529 | Core: 9 actors (17.65%) Core provincial actors: GXDNR, GXDEE, GXDCT |
Graph Density: 0.191 | |||
Modularity: 0.146 | |||
Average Clustering Coefficient: 0.087 | |||
Average Path Length: 2.017 | |||
Institutions in Guilin City | Nodes: 49 Edges: 331 | Average Degree: 12.291 | Core: 9 actors (18.37%) Core municipal actors: GLRSMC, GLBCRTT, GLBNR |
Graph Density: 0.240 | |||
Modularity: 0.107 | |||
Average Clustering Coefficient: 0.129 | |||
Average Path length: 1.119 |
Ranking | Awareness and Concern | Roles of Law and Policy | Perceived Effectiveness | Participation and Coordination | Trust in Institutions |
---|---|---|---|---|---|
The lowest | 0.38% | 0.38% | 0.77% | 1.59% | 0.50% |
Low | 3.46% | 1.73% | 4.23% | 4.68% | 3.38% |
Medium | 20.19% | 14.42% | 20.00% | 20.28% | 17.89% |
High | 52.31% | 46.73% | 50.58% | 41.54% | 41.45% |
The highest | 23.65% | 36.73% | 24.42% | 31.91% | 36.78% |
Mean scores | 3.95 | 4.18 | 3.94 | 3.52 | 4.11 |
SD | 1.21 | 1.49 | 1.53 | 1.36 | 1.39 |
Variables | Test Results | Awareness and Concern | Roles of Law and Policy | Perceived Effectiveness | Participation and Coordination | Trust in Institutions |
---|---|---|---|---|---|---|
Age | Correlation coefficient | 0.016 | 0.119 *** | 0.101 ** | 0.053 | 0.120 *** |
Sig. (2-tailed) | 0.067 | 0.000 | 0.002 | 0.051 | 0.000 | |
Education level | Correlation coefficient | 0.054 | 0.052 | 0.062 * | 0.015 | −0.088 ** |
Sig. (2-tailed) | 0.081 | 0.093 | 0.045 | 0.624 | 0.005 | |
Month income | Correlation coefficient | 0.124 ** | 0.031 | 0.046 | 0.041 | 0.105 * |
Sig. (2-tailed) | 0.002 | 0.323 | 0.140 | 0.183 | 0.011 | |
Profession | Correlation coefficient | 0.104 ** | 0.049 | 0.060 | 0.095 * | 0.013 |
Sig. (2-tailed) | 0.001 | 0.115 | 0.053 | 0.035 | 0.671 | |
Distance | Correlation coefficient | 0.117 ** | 0.092 ** | 0.064 | 0.068 | −0.085 ** |
Sig. (2-tailed) | 0.001 | 0.003 | 0.055 | 0.059 | 0.006 | |
Living time | Correlation coefficient | 0.012 | 0.040 | 0.178 *** | 0.182 *** | 0.023 |
Sig. (2-tailed) | 0.515 | 0.202 | 0.000 | 0.000 | 0.462 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, G.; Yu, M.; Zhao, X.; Zhang, L.; Shen, L. Karst Landscape Governance in the Guilin World Heritage Site, China. Heritage 2023, 6, 4492-4508. https://doi.org/10.3390/heritage6060237
He G, Yu M, Zhao X, Zhang L, Shen L. Karst Landscape Governance in the Guilin World Heritage Site, China. Heritage. 2023; 6(6):4492-4508. https://doi.org/10.3390/heritage6060237
Chicago/Turabian StyleHe, Guizhen, Mingzhao Yu, Xiang Zhao, Lei Zhang, and Lina Shen. 2023. "Karst Landscape Governance in the Guilin World Heritage Site, China" Heritage 6, no. 6: 4492-4508. https://doi.org/10.3390/heritage6060237
APA StyleHe, G., Yu, M., Zhao, X., Zhang, L., & Shen, L. (2023). Karst Landscape Governance in the Guilin World Heritage Site, China. Heritage, 6(6), 4492-4508. https://doi.org/10.3390/heritage6060237