LCA as a Complementary Tool for the Evaluation of Biocolonization Management: The Case of Palazzo Rocca Costaguta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Casa a Ponente and Tested Areas
2.2. Biocidal Treatments and Pilot Areas
- -
- -
- Essenzio (IBIX BIOCARE, Lugo, Ravenna, Italy). A mixture of essential oils (EOs), with oregano oil as the main component [51]. EOs are natural compounds that have gained recognition as potential biocides due to their strong antimicrobial activity, and their use in the field has increased as a supposed “greener” alternative to conventional chemical biocides [52,53];
- -
2.3. Characterisation Methods
2.4. Sustainability of Biocolonization Removal
2.4.1. Methodology
2.4.2. Life Cycle Assessment
Goal and Scope Definition
Life Cycle Inventory
Life Cycle Impact Assessment
Uncertainty Analysis
3. Results and Discussion
3.1. Biofilm Characterisation and Assessment of the Plaster’s Conditions Before and After Treatments
3.2. LCA Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Villa, F.; Stewart, P.S.; Klapper, I.; Jacob, J.M.; Cappitelli, F. Subaerial Biofilms on Outdoor Stone Monuments: Changing Perspective Toward an Ecological Framework. Bioscience 2016, 66, 285–294. [Google Scholar] [CrossRef]
- Villa, F.; Wu, Y.-L.; Zerboni, A.; Cappitelli, F. In Living Color: Pigment-Based Microbial Ecology At the Mineral–Air Interface. Bioscience 2022, 72, 1156–1175. [Google Scholar] [CrossRef] [PubMed]
- Gorbushina, A.A. Life on the Rocks. Environ. Microbiol. 2007, 9, 1613–1631. [Google Scholar] [CrossRef] [PubMed]
- Warscheid, T.; Braams, J. Biodeterioration of Stone: A Review. Int. Biodeterior. Biodegrad. 2000, 46, 343–368. [Google Scholar] [CrossRef]
- Bartoli, F.; Municchia, A.C.; Futagami, Y.; Kashiwadani, H.; Moon, K.H.; Caneva, G. Biological Colonization Patterns on the Ruins of Angkor Temples (Cambodia) in the Biodeterioration vs Bioprotection Debate. Int. Biodeterior. Biodegrad. 2014, 96, 157–165. [Google Scholar] [CrossRef]
- Pinna, D. Biofilms and Lichens on Stone Monuments: Do They Damage or Protect? Front. Microbiol. 2014, 5, 133. [Google Scholar] [CrossRef]
- Liu, X.; Qian, Y.; Wu, F.; Wang, Y.; Wang, W.; Gu, J.-D. Biofilms on Stone Monuments: Biodeterioration or Bioprotection? Trends Microbiol. 2022, 30, 816–819. [Google Scholar] [CrossRef]
- Gulotta, D.; Villa, F.; Cappitelli, F.; Toniolo, L. Biofilm Colonization of Metamorphic Lithotypes of a Renaissance Cathedral Exposed to Urban Atmosphere. Sci. Total Environ. 2018, 639, 1480–1490. [Google Scholar] [CrossRef]
- Sanmartín, P.; Villa, F.; Cappitelli, F.; Balboa, S.; Carballeira, R. Characterization of a Biofilm and the Pattern Outlined by Its Growth on a Granite-Built Cloister in the Monastery of San Martiño Pinario (Santiago de Compostela, NW Spain). Int. Biodeterior. Biodegrad. 2020, 147, 104871. [Google Scholar] [CrossRef]
- Pinna, D.; Mazzotti, V.; Gualtieri, S.; Voyron, S.; Andreotti, A.; Favero-Longo, S.E. Damaging and Protective Interactions of Lichens and Biofilms on Ceramic Dolia and Sculptures of the International Museum of Ceramics, Faenza, Italy. Sci. Total Environ. 2023, 877, 162607. [Google Scholar] [CrossRef]
- Favero-Longo, S.E.; Viles, H.A. A Review of the Nature, Role and Control of Lithobionts on Stone Cultural Heritage: Weighing-up and Managing Biodeterioration and Bioprotection. World J. Microbiol. Biotechnol. 2020, 36, 100. [Google Scholar] [CrossRef] [PubMed]
- Carter, N.E.A.; Viles, H.A. Bioprotection Explored: The Story of a Little Known Earth Surface Process. Geomorphology 2005, 67, 273–281. [Google Scholar] [CrossRef]
- Gadd, G.M.; Dyer, T.D. Bioprotection of the Built Environment and Cultural Heritage. Microb. Biotechnol. 2017, 10, 1152–1156. [Google Scholar] [CrossRef] [PubMed]
- Berti, L.; Villa, F.; Toniolo, L.; Cappitelli, F.; Goidanich, S. Methodological Challenges for the Investigation of the Dual Role of Biofilms on Outdoor Heritage. Sci. Total Environ. 2024, 954, 176450. [Google Scholar] [CrossRef]
- Society of Environmental Toxicology and Chemistry (SETAC). Guidelines for Life-Cycle Assessment: A “Code of Practice”. In Proceedings of the SETAC Workshop, Sesibra, Portugal, 31 March–3 April 1993. [Google Scholar]
- ISO 14040:2006/Amd 1:2020; Environmental Management-Life Cycle Assessment-Principles and Framework. ISO: Geneva, Switzerland, 2020.
- ISO 14044:2006/Amd 1:2017+Amd 2:2020; Environmental Management-Life Cycle Assessment-Requirements and Guidelines. ISO: Geneva, Switzerland, 2020.
- Bonoli, A.; Franzoni, E. Life Cycle Assessment (LCA) Analysis of Renders and Paints for the Restoration of Historical Buildings. IOP Conf. Ser. Earth Environ. Sci. 2019, 296, 012022. [Google Scholar] [CrossRef]
- Franzoni, E.; Volpi, L.; Bonoli, A. Applicability of Life Cycle Assessment Methodology to Conservation Works in Historical Building: The Case of Cleaning. Energy Build. 2020, 214, 109844. [Google Scholar] [CrossRef]
- Franzoni, E.; Volpi, L.; Bonoli, A.; Spinelli, R.; Gabrielli, R. The Environmental Impact of Cleaning Materials and Technologies in Heritage Buildings Conservation. Energy Build. 2018, 165, 92–105. [Google Scholar] [CrossRef]
- Settembre-Blundo, D.; Ferrari, A.M.; Fernández del Hoyo, A.; Riccardi, M.P.; García Muiña, F.E. Improving Sustainable Cultural Heritage Restoration Work through Life Cycle Assessment Based Model. J. Cult. Herit. 2018, 32, 221–231. [Google Scholar] [CrossRef]
- Sanchez, S.A.; Nunberg, S.; Cnossen, K.; Eckelman, M.J. Life Cycle Assessment of Anoxic Treatments for Cultural Heritage Preservation. Resour. Conserv. Recycl. 2023, 190, 106825. [Google Scholar] [CrossRef]
- Settembre-Blundo, D.; Ferrari, A.M.; Pini, M.; Riccardi, M.P.; Garcıá, J.F.; Del Hoyo, A.P.F. The Life Cycle Approach as an Innovative Methodology for the Recovery and Restoration of Cultural Heritage. J. Cult. Herit. Manag. Sustain. Dev. 2014, 4, 133–148. [Google Scholar] [CrossRef]
- Serrano, T.; Kampmann, T.; Ryberg, M.W. Comparative Life-Cycle Assessment of Restoration and Renovation of a Traditional Danish Farmer House. Build. Environ. 2022, 219, 109174. [Google Scholar] [CrossRef]
- Mohaddes Khorassani, S.; Ferrari, A.M.; Pini, M.; Settembre Blundo, D.; García Muiña, F.E.; García, J.F. Environmental and Social Impact Assessment of Cultural Heritage Restoration and Its Application to the Uncastillo Fortress. Int. J. Life Cycle Assess. 2019, 24, 1297–1318. [Google Scholar] [CrossRef]
- Ferraz, C.A.; Pastorinho, M.R.; Palmeira-de-Oliveira, A.; Sousa, A.C.A. Ecotoxicity of Plant Extracts and Essential Oils: A Review. Environ. Pollut. 2022, 292, 118319. [Google Scholar] [CrossRef] [PubMed]
- Pineda, P.; García-Martínez, A.; Castizo-Morales, D. Environmental and Structural Analysis of Cement-Based vs. Natural Material-Based Grouting Mortars. Results from the Assessment of Strengthening Works. Constr. Build. Mater. 2017, 138, 528–547. [Google Scholar] [CrossRef]
- Zanni, S.; Simion, I.M.; Gavrilescu, M.; Bonoli, A. Life Cycle Assessment Applied to Circular Designed Construction Materials. Procedia CIRP 2018, 69, 154–159. [Google Scholar] [CrossRef]
- Cuenca-Moyano, G.M.; Zanni, S.; Bonoli, A.; Valverde-Palacios, I. Development of the Life Cycle Inventory of Masonry Mortar Made of Natural and Recycled Aggregates. J. Clean. Prod. 2017, 140, 1272–1286. [Google Scholar] [CrossRef]
- Mauko Pranjić, A.; Ranogajec, J.; Škrlep, L.; Sever Škapin, A.; Vučetić, S.; Malovrh Rebec, K.; Turk, J. Life Cycle Assessment of Novel Consolidants and a Photocatalytic Suspension for the Conservation of the Immovable Cultural Heritage. J. Clean. Prod. 2018, 181, 293–308. [Google Scholar] [CrossRef]
- Turk, J.; Pranjić, A.M.; Tomasin, P.; Škrlep, L.; Antelo, J.; Favaro, M.; Škapin, A.S.; Bernardi, A.; Ranogajec, J.; Chiurato, M. Environmental Performance of Three Innovative Calcium Carbonate-Based Consolidants Used in the Field of Built Cultural Heritage. Int. J. Life Cycle Assess. 2017, 22, 1329–1338. [Google Scholar] [CrossRef]
- Dal Pozzo, A.; Masi, G.; Sassoni, E.; Tugnoli, A. Life Cycle Assessment of Stone Consolidants for Conservation of Cultural Heritage. Build. Environ. 2024, 249, 111153. [Google Scholar] [CrossRef]
- Napolano, L.; Menna, C.; Asprone, D.; Prota, A.; Manfredi, G. LCA-Based Study on Structural Retrofit Options for Masonry Buildings. Int. J. Life Cycle Assess. 2015, 20, 23–35. [Google Scholar] [CrossRef]
- Karoglou, M.; Kyvelou, S.S.; Boukouvalas, C.; Theofani, C.; Bakolas, A.; Krokida, M.; Moropoulou, A. Towards a Preservation-Sustainability Nexus: Applying LCA to Reduce the Environmental Footprint of Modern Built Heritage. Sustainability 2019, 11, 6147. [Google Scholar] [CrossRef]
- Elsorady, D.A. Assessment of the Compatibility of New Uses for Heritage Buildings: The Example of Alexandria National Museum, Alexandria, Egypt. J. Cult. Herit. 2014, 15, 511–521. [Google Scholar] [CrossRef]
- Assefa, G.; Ambler, C. To Demolish or Not to Demolish: Life Cycle Consideration of Repurposing Buildings. Sustain. Cities Soc. 2017, 28, 146–153. [Google Scholar] [CrossRef]
- STICH-Sustainable Tools in Cultural Heritage. Available online: https://stich.culturalheritage.org (accessed on 20 July 2024).
- Cappitelli, F.; Cattò, C.; Villa, F. The Control of Cultural Heritage Microbial Deterioration. Microorganisms 2020, 8, 1542. [Google Scholar] [CrossRef] [PubMed]
- Tretiach, M.; Crisafulli, P.; Imai, N.; Kashiwadani, H.; Hee Moon, K.; Wada, H.; Salvadori, O. Efficacy of a Biocide Tested on Selected Lichens and Its Effects on Their Substrata. Int. Biodeterior. Biodegrad. 2007, 59, 44–54. [Google Scholar] [CrossRef]
- Cámara, B.; De los Ríos, A.; Urizal, M.; Álvarez de Buergo, M.; Varas, M.J.; Fort, R.; Ascaso, C. Characterizing the Microbial Colonization of a Dolostone Quarry: Implications for Stone Biodeterioration and Response to Biocide Treatments. Microb. Ecol. 2011, 62, 299–313. [Google Scholar] [CrossRef]
- Villa, F.; Gulotta, D.; Toniolo, L.; Borruso, L.; Cattò, C.; Cappitelli, F. Aesthetic Alteration of Marble Surfaces Caused by Biofilm Formation: Effects of Chemical Cleaning. Coatings 2020, 10, 122. [Google Scholar] [CrossRef]
- Doehne, E.; Price, C.A. Stone Conservation: An Overview of Current Research; Getty Conservation Institute: Los Angeles, CA, USA, 2010; pp. 54–56. [Google Scholar]
- Giove, S.; Rosato, P.; Breil, M. An Application of Multicriteria Decision Making to Built Heritage. The Redevelopment of Venice Arsenale. J. Multi-Criteria Decis. Anal. 2010, 17, 85–99. [Google Scholar] [CrossRef]
- Shehata, A.O.; Megahed, N.A.; Shahda, M.M.; Hassan, A.M. (3Ts) Green Conservation Framework: A Hierarchical-Based Sustainability Approach. Build. Environ. 2022, 224, 109523. [Google Scholar] [CrossRef]
- ICOMOS. Charter Principles for the Analysis, Conservation and Structural Restoration of Architectural Heritage. 2003. Available online: https://www.icomos.org/en/about-the-centre/179-articles-en-francais/ressources/charters-and-standards/165-icomos-charter-principles-for-the-analysis-conservation-and-structural-restoration-of-architectural-heritage (accessed on 2 October 2023).
- Villar-dePablo, M.; Ascaso, C.; Rodríguez-Pérez, E.; Urizal, M.; Wierzchos, J.; Pérez-Ortega, S.; de los Ríos, A. Innovative Approaches to Accurately Assess the Effectiveness of Biocide-Based Treatments to Fight Biodeterioration of Cultural Heritage Monuments. Sci. Total Environ. 2023, 897, 165318. [Google Scholar] [CrossRef]
- Favero-Longo, S.E.; Matteucci, E.; Voyron, S.; Iacomussi, P.; Ruggiero, M.G. Lithobiontic Recolonization Following Cleaning and Preservative Treatments on the Rock Engravings of Valle Camonica, Italy: A 54-Months Monitoring. Sci. Total Environ. 2023, 901, 165885. [Google Scholar] [CrossRef]
- Berti, L.; Villa, F.; Cappitelli, F.; Napoli, S.; Barbieri, A.; Toniolo, L.; Gulotta, D.; Goidanich, S. Contact Angle as a Non-Destructive Method to Determine Wettability Changes Induced by Sub-Aerial Biofilms on Built Heritage Porous Substrates. In Proceedings of art’23: 14th International Conference on Non-Destructive Investigations and Microanalysis for the Diagnostics and Conservation of Cultural and Environmental Heritage, Brescia, Italy, 28–30 November 2023; Volume 15, pp. 147–152. [Google Scholar]
- Amelio, A. La Facciata Meridionale Della “Casa a Ponente Di Palazzo Rocca Costaguta” a Chiavari (GE): Analisi Dei Caratteri Estetici e Del Finalizzate All’intervento Di Restauro. Master’s Thesis, University of Milan, Milan, Italy, 2020. [Google Scholar]
- Kakakhel, M.A.; Wu, F.; Gu, J.D.; Feng, H.; Shah, K.; Wang, W. Controlling Biodeterioration of Cultural Heritage Objects with Biocides: A Review. Int. Biodeterior. Biodegrad. 2019, 143, 104721. [Google Scholar] [CrossRef]
- Reale, R.; Medeghini, L.; Botticelli, M. Stealing from Phytotherapy—Heritage Conservation with Essential Oils: A Review, from Remedy to Sustainable Restoration Product. Sustainability 2024, 16, 5110. [Google Scholar] [CrossRef]
- Fidanza, M.R.; Caneva, G. Natural Biocides for the Conservation of Stone Cultural Heritage: A Review. J. Cult. Herit. 2019, 38, 271–286. [Google Scholar] [CrossRef]
- Caldeira, A.T. Green Mitigation Strategy for Cultural Heritage Using Bacterial Biocides. In Microorganisms in the Deterioration and Preservation of Cultural Heritage; Edith, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 137–154. [Google Scholar]
- Savković, Ž.D.; Stupar, M.; Grbić, M.V.L.; Vukojević, J.B. Comparison of Anti-Aspergillus Activity of Origanum vulgare L. Essential Oil and Commercial Biocide Based on Silver Ions and Hydrogen Peroxide. Acta Bot. Croat. 2016, 75, 121–128. [Google Scholar] [CrossRef]
- Long, N.; Li, F. Antifungal Mechanism of Natural Products Derived from Plants: A Review. Nat. Prod. Commun. 2024, 19, 1934578X241271747. [Google Scholar] [CrossRef]
- Macchia, A.; Aureli, H.; Prestileo, F.; Ortenzi, F.; Sellathurai, S.; Docci, A.; Cerafogli, E.; Colasanti, I.A.; Ricca, M.; La Russa, M.F. In-Situ Comparative Study of Eucalyptus, Basil, Cloves, Thyme, Pine Tree, and Tea Tree Essential Oil Biocide Efficacy. Methods Protoc. 2022, 5, 37. [Google Scholar] [CrossRef]
- Macchia, A.; Aureli, H.; Biribicchi, C.; Docci, A.; Alisi, C.; Prestileo, F.; Galiano, F.; Figoli, A.; Mancuso, R.; Gabriele, B.; et al. In Situ Application of Anti-Fouling Solutions on a Mosaic of the Archaeological Park of Ostia Antica. Materials 2022, 15, 5671. [Google Scholar] [CrossRef]
- Cennamo, P.; Scielzo, R.; Rippa, M.; Trojsi, G.; Carfagna, S.; Chianese, E. UV-C Irradiation and Essential-Oils-Based Product as Tools to Reduce Biodeteriorates on the Wall Paints of the Archeological Site of Baia (Italy). Coatings 2023, 13, 1034. [Google Scholar] [CrossRef]
- Zuena, M.; Ruggiero, L.; Caneva, G.; Bartoli, F.; Della Ventura, G.; Ricci, M.A.; Sodo, A. Assessment of Stone Protective Coatings with a Novel Eco-Friendly Encapsulated Biocide. Coatings 2021, 11, 1109. [Google Scholar] [CrossRef]
- Pinna, D.; Salvadori, B.; Galeotti, M. Monitoring the Performance of Innovative and Traditional Biocides Mixed with Consolidants and Water-Repellents for the Prevention of Biological Growth on Stone. Sci. Total Environ. 2012, 423, 132–141. [Google Scholar] [CrossRef]
- Ramil, A.; Vázquez-Nion, D.; Pozo-Antonio, J.S.; Sanmartín, P.; Prieto, B. Using Hyperspectral Imaging to Quantify Phototrophic Biofilms on Granite. J. Environ. Inform. 2020, 35, 34–44. [Google Scholar] [CrossRef]
- Sanmartín, P.; Rodríguez, A.; Aguiar, U. Medium-Term Field Evaluation of Several Widely Used Cleaning-Restoration Techniques Applied to Algal Biofilm Formed on a Granite-Built Historical Monument. Int. Biodeterior. Biodegrad. 2020, 147, 104870. [Google Scholar] [CrossRef]
- EN 15866:2010; Conservation of Cultural Property-Test Methods Colour Measurements of Surfaces. CEN: Brussels, Belgium, 2010.
- Schröer, L.; De Kock, T.; Godts, S.; Boon, N.; Cnudde, V. The Effects of Cyanobacterial Biofilms on Water Transport and Retention of Natural Building Stones. Earth Surf. Process Landf. 2022, 47, 1921–1936. [Google Scholar] [CrossRef]
- Devreux, G.; Santamaria, U.; Morresi, F.; Rodolfo, A.; Barbabietola, N.; Fratini, F.; Reale, R. Fitoconservazione. Trattamenti alternativi sulle opere in materiale lapideo nei giardini vaticani. In Proceedings of the XIII Congresso Nazionale IGIIC-Lo Stato dell’Arte, Turin, Italy, 22–24 October 2015; pp. 22–24. [Google Scholar]
- Colomb, V.; Ait, S.A.; Mens, C.B.; Gac, A.; Gaillard, G.; Koch, P.; Mousset, J.; Salou, T.; Tailleur, A.; Van Der Werf, H.M.G. AGRIBALYSE®, the French LCI Database for Agricultural Products: High Quality Data for Producers and Environmental Labelling. OCL-Oilseeds Fats 2015, 22, D104. [Google Scholar] [CrossRef]
- De Luca, D.; Piredda, R.; Scamardella, S.; Martelli Castaldi, M.; Troisi, J.; Lombardi, M.; De Castro, O.; Cennamo, P. Taxonomic and Metabolic Characterisation of Biofilms Colonising Roman Stuccoes at Baia’s Thermal Baths and Restoration Strategies. Sci. Rep. 2024, 14, 26290. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- European Platform on LCA|EPLCA. Available online: https://eplca.jrc.ec.europa.eu (accessed on 4 September 2024).
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Pedersen Weidema, B.; Suhr Wesnaes, M. Data Quality Management for Life Cycle Inventories—An Example of Using Data Quality Indicators. J. Clean. Prod. 1996, 4, 167–174. [Google Scholar] [CrossRef]
- Casanova Municchia, A.; Fidanza, M.R.; Caneva, G. Advances in Testing the Interference of Biocides on Stone Materials: A Comparative Analysis and Guidelines for a Standardised Approach. J. Cult. Herit. 2023, 64, 23–41. [Google Scholar] [CrossRef]
- Chau, T.T. A Review of Techniques for Measurement of Contact Angles and Their Applicability on Mineral Surfaces. Min. Eng. 2009, 22, 213–219. [Google Scholar] [CrossRef]
- Rodríguez-Valverde, M.A.; Cabrerizo-Vílchez, M.A.; Rosales-Ló Pez, P.; Páez-Dueñ, A.; Hidalgo-Alvarez, R. Contact Angle Measurements on Two (Wood and Stone) Non-Ideal Surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2002, 206, 485–495. [Google Scholar] [CrossRef]
- Pinna, D. Microbial Recolonization of Artificial and Natural Stone Artworks after Cleaning and Coating Treatments. J. Cult. Herit. 2023, 61, 217–228. [Google Scholar] [CrossRef]
- Rodrigues, J.D.; Vale Anjos, M.; Charola, A.E. Recolonization of Marble Sculptures in a Garden Environment. In Biocolonization of Stone: Control and Preventive Methods; Charola, A.E., McNamara, C., Koestler, R.J., Eds.; Smithsonian Institution Scholarly Press: Washington, DC, USA, 2011; pp. 71–86. [Google Scholar]
- Santo, A.P.; Agostini, B.; Cuzman, O.A.; Michelozzi, M.; Salvatici, T.; Perito, B. Essential Oils to Contrast Biodeterioration of the External Marble of Florence Cathedral. Sci. Total Environ. 2023, 877, 162913. [Google Scholar] [CrossRef] [PubMed]
- Isola, D.; Bartoli, F.; Casanova Municchia, A.; Lee, H.J.; Jeong, S.H.; Chung, Y.J.; Caneva, G. Green Biocides for the Conservation of Hypogeal Mural Paintings Raised from Western and Eastern Traditions: Evaluation of Interference on Pigments and Substrata and Multifactor Parameters Affecting Their Activity. J. Cult. Herit. 2023, 61, 116–126. [Google Scholar] [CrossRef]
- Sanmartín, P.; Villa, F.; Silva, B.; Cappitelli, F.; Prieto, B. Color Measurements as a Reliable Method for Estimating Chlorophyll Degradation to Phaeopigments. Biodegradation 2011, 22, 763–771. [Google Scholar] [CrossRef]
- Brugnara, M.; Degasperi, E.; Della Volpe, C.; Maniglio, D.; Penati, A.; Siboni, S.; Toniolo, L.; Poli, T.; Invernizzi, S.; Castelvetro, V. The Application of the Contact Angle in Monument Protection: New Materials and Methods. Colloids Surf. A Physicochem. Eng. Asp. 2004, 241, 299–312. [Google Scholar] [CrossRef]
- Chirico, S.; Rovazzani, A.; Sutter, A. Best Practice e Protezione delle Superfici Lapidee: Il Caso della Torre di Pisa e del Protettivo Usato per Limitare i Danni Causati Dall’Acqua. In Proceedings of the Scienza e Beni Culturali 2020—Gli effetti Dell’acqua sui Beni Culturali. Valutazioni, Critiche, e Modalità di Verifica, Brixen, Italy, 1–3 July 2020; p. 215, ISBN 978-88-95409-24-5. [Google Scholar]
- Gaggero, L.; Scrivano, S. Contact Sponge Water Absorption Test Implemented for in Situ Measures. EGU Geophys. Res. Abstr. 2016, 18, 14985. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Vilches, A.; Garcia-Martinez, A.; Sanchez-Montañes, B. Life Cycle Assessment (LCA) of Building Refurbishment: A Literature Review. Energy Build. 2017, 135, 286–301. [Google Scholar] [CrossRef]
- Maes, C.; Meersmans, J.; Lins, L.; Bouquillon, S.; Fauconnier, M.L. Essential Oil-based Bioherbicides: Human Health Risks Analysis. Int. J. Mol. Sci. 2021, 22, 9396. [Google Scholar] [CrossRef]
- Essential Oils: More Harmful than Helpful? Available online: https://www.lung.org/blog/essential-oils-harmful-or-helpful (accessed on 22 November 2024).
- Putra, N.R.; Yustisia, Y.; Heryanto, R.B.; Asmaliyah, A.; Miswarti, M.; Rizkiyah, D.N.; Yunus, M.A.C.; Irianto, I.; Qomariyah, L.; Rohman, G.A.N. Advancements and Challenges in Green Extraction Techniques for Indonesian Natural Products: A Review. S. Afr. J. Chem. Eng. 2023, 46, 88–98. [Google Scholar] [CrossRef]
- Elservier. Reaxys. Available online: https://www.elsevier.com/products/reaxys (accessed on 7 July 2024).
- Spencer, T.A.; Onofrey, T.J.; Cann, R.O.; Russel, J.S.; Lee, L.E.; Blanchard, D.E.; Castro, A.; Gu, P.; Jiang, G.; Shechter, I. Zwitterionic Sulfobetaine Inhibitors of Squalene Synthase. J. Org. Chem. 1999, 64, 807–818. [Google Scholar] [CrossRef]
- Zhang, Y. CN109553536; Hubei Gedian Humanwell Pharmaceutical Excipients: Ezhou, China, 2019. [Google Scholar]
- Moncada, J.; Tamayo, J.A.; Cardona, C.A. Techno-Economic and Environmental Assessment of Essential Oil Extraction from Oregano (Origanum vulgare) and Rosemary (Rosmarinus officinalis) in Colombia. J. Clean. Prod. 2016, 112, 172–181. [Google Scholar] [CrossRef]
- IEA. Electricity Generation by Source, Italy. Available online: https://www.iea.org (accessed on 7 July 2024).
Area | Chemical | Active Substance | Concentration | Volume [mL/cm2] | Application Method |
---|---|---|---|---|---|
A | Preventol RI 50 | Benzalkonium chloride | 10% (in water) | 0.30 | By brush/3 repeated applications (2nd after 20 min, 3rd after few days) |
B | Essenzio | Essential oregano oil | as provided by the supplier | 0.30 | By brush/3 repeated applications (2nd after 20 min, 3rd after few days) |
C | Hydrogen peroxide | Hydrogen peroxide | 130 volumes | 0.10 | By brush 20 min after application, the surface was cleaned with wet sponges (water) and brushed again (rigid bush) |
(a) | Post-Treatment (T6-Month)—Pre-Treatment (T0) | |||
ΔL* | Δa* | Δb* | ΔE | |
Biocolonized | 6.04 | 3.29 | −6.51 | 9.47 |
Preventol RI 50 | 12.81 | 8.15 | −6.30 | 16.44 |
Essenzio | 10.43 | 3.58 | −5.90 | 12.50 |
Hydrogen peroxide | 19.38 | 7.28 | −10.92 | 23.41 |
Uncolonized | 0.31 | 0.00 | -0.91 | 0.96 |
(b) | Post-Treatment (T6-Month)—Uncolonized (NC, T6-Month) | |||
ΔL* | Δa* | Δb* | ΔE | |
Preventol RI 50 | −8.21 | −0.40 | −1.16 | 8.30 |
Essenzio | −7.22 | −4.28 | −0.69 | 8.43 |
Hydrogen peroxide | −1.30 | −2.52 | −2.71 | 3.92 |
WCA [°] | Drop Absorption Time [s] | |||||
---|---|---|---|---|---|---|
Biocolonized | 123 | ± | 17 | >60 | ||
Preventol RI 50 | 109 | ± | 15 | 24 | ± | 8 |
Essenzio | 96 | ± | 9 | 18 | ± | 4 |
Hydrogen peroxide | 66 | ± | 7 | 9 | ± | 2 |
Uncolonized | 46 | ± | 17 | 9 | ± | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berti, L.; Arfelli, F.; Villa, F.; Cappitelli, F.; Gulotta, D.; Ciacci, L.; Bernardi, E.; Vassura, I.; Passarini, F.; Napoli, S.; et al. LCA as a Complementary Tool for the Evaluation of Biocolonization Management: The Case of Palazzo Rocca Costaguta. Heritage 2024, 7, 6871-6890. https://doi.org/10.3390/heritage7120318
Berti L, Arfelli F, Villa F, Cappitelli F, Gulotta D, Ciacci L, Bernardi E, Vassura I, Passarini F, Napoli S, et al. LCA as a Complementary Tool for the Evaluation of Biocolonization Management: The Case of Palazzo Rocca Costaguta. Heritage. 2024; 7(12):6871-6890. https://doi.org/10.3390/heritage7120318
Chicago/Turabian StyleBerti, Letizia, Francesco Arfelli, Federica Villa, Francesca Cappitelli, Davide Gulotta, Luca Ciacci, Elena Bernardi, Ivano Vassura, Fabrizio Passarini, Salvatore Napoli, and et al. 2024. "LCA as a Complementary Tool for the Evaluation of Biocolonization Management: The Case of Palazzo Rocca Costaguta" Heritage 7, no. 12: 6871-6890. https://doi.org/10.3390/heritage7120318
APA StyleBerti, L., Arfelli, F., Villa, F., Cappitelli, F., Gulotta, D., Ciacci, L., Bernardi, E., Vassura, I., Passarini, F., Napoli, S., & Goidanich, S. (2024). LCA as a Complementary Tool for the Evaluation of Biocolonization Management: The Case of Palazzo Rocca Costaguta. Heritage, 7(12), 6871-6890. https://doi.org/10.3390/heritage7120318